Contents
- 1 I. Question 1. Simplify (i) sin2θ1+cos2θ
- 2 Question 2. Evaluate the following (i) 6sin 20° – 8 sin3 20°
- 3 Question 3. (i) Express sin4θsinθ in terms of cos3 θ and cos θ.
- 4 Question 4. (i) If sin α = 35, where π2 < α < π, evaluate cos 3α and tan 2α. (March 2015-T.S)
- 5 Question 5. Find the extreme values of (i) cos 2x + cos2x
- 6 Question 7. Find the periods for the following functions (i) cos4x
- 7 II. Question 1. (i) If 0 < A < (π4), and cos A = 45, find the values of sin 2A and cos 2A.
I.
Question 1.
Simplify
(i) sin2θ1+cos2θ
Answer:

(ii)
Answer:

Question 2.
Evaluate the following
(i) 6sin 20° – 8 sin3 20°
Answer:
2(3 sin 20° – 4sin3 20°) (Formula)
= 2.sin (3 × 20°) = 2 sin 60°
=
(ii) cos272° – sin254°
Answer:
cos272° – sin254°
= sin218° – cos236°

(iii) sin242° – sin212°
Answer:
sin242° – sin212° (Formula)
sin (42° + 12°) sin (42° – 12°)
= sin 54° sin 30°
=
Question 3.
(i) Express sin4θsinθ in terms of cos3 θ and cos θ.
Answer:
sin4θ = sin (3θ + θ) = sin 3θ cos θ +cos 3θ sin θ
= (3 sin θ – i sin 3θ) cos θ + (4 cos 3θ – 3 cos θ) sin θ
= 3 sin θ cos θ – 4 sin 3θ cos θ + 4 cos 3θ sin θ – 3 cos θ sin θ
= 4 cos 3θ sin θ – 4 sin 3θ cos θ
= sin θ(1 cos 3θ – 4 sin 2θ cos θ)
= sin θ [4 cos 3θ – 4 sin 2θ cos θ]
∴
= 4 cos 3θ – 4 sin 2θ cos θ
= 4 cos 3θ – 4 (1- cos 2θ) cos θ
= 8 cos 3θ – 4 cos θ
(ii) Express cos6 A + sin6 A in terms of sin 2A.
Answer:
cos6A + sin6A = (cos2A + sin2A)3
= (cos2A + sin2A)3 – 3 cos2A sin2A (cos2A + sin2 A)
= 1 – 3 cos2A sin2A ……………(1)
= 1 –
= 1 –
(iii) Express
Answer:

Question 4.
(i) If sin α = 35 , where π2 < α < π, evaluate cos 3α and tan 2α. (March 2015-T.S)
Answer:
since
cos 3α = 4 cos3 α – 3 cos α

(ii) If cos A =
Answer:

(iii) If 0 < θ <
Answer:

Question 5.
Find the extreme values of
(i) cos 2x + cos2x
Answer:
cos 2x + cos2x = 2 cos2 x – 1 + cos2 x
= 3 cos2 x – 1
and 0 ≤ cos2 x ≤ 1
⇒ 0 ≤ 3 cos2 x ≤ 3
⇒ -1 ≤ 3 cos2 x – 1 ≤ 2
Maximum value = 2
and minimum value = -1
(or) cos 2x + cos2 x = cos 2x +
We have -1 < cos 2x ≤ 1
⇒ -3 ≤ 3 cos 2x ≤ 3
⇒ -2 ≤ 3 cos 2x + 1 ≤ 4
⇒ -1 ≤
Maximum value = 2
Minimum value = -1

(ii) 3sin2x + 5 cos2x
Answer:
3sin2x + 5 cos2x

Question 7.
Find the periods for the following functions
(i) cos4x
Answer:

(ii) 2sin
Answer:

(iii) sin2x + 2 cos2x
Answer:
Let f(x) = sin2x + 2cos2x

(iv) 2sin(
Answer:

Period of f(x) is LCM of [π, π] = π
(v)
Answer:

II.
Question 1.
(i) If 0 < A < (π4) , and cos A = 45 , find the values of sin 2A and cos 2A.
Answer:



