HomeTelanganaSCERT (TG)TS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(b)

TS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(b)

Manabadi

Contents

TS Inter 1st Year Maths 1A Functions Solutions Exercise 1(b)

I.

Question 1.
If f(x) = ex, and g(x) = logex, then show that fog = gof and find f-1 and g-1.

Answer:
Given f(x) = ex and g(x) = logex
Now (fog) (x) = f[g(x)] = f [logex]
= elogex = x
(gof) (x) = g [f(x)] = g [ex] = logeex = x
fog = gof
given f(x) = ex = y
then x = f-1 (y) and y = ex ⇒ x = logey
f-1(y) = logey ⇒ f-1 (x) = logex
similarly y = g(x) = logex
then x = g-1 (y) and y = logex
⇒ x = ey
g-1 (y) = ey ⇒ g-1(x) = ex

Question 2.
If f(y) = y/√1−y2, g(y) = y/√1+y2 then show that (fog)(y) = y.

Answer:

∴ (fog) (y) = y

Question 3. If R → R; g : R → R are defined by . f(x) = 2x2 + 3 and g(x) = 3x – 2, then find
(i) (fog) (x)
(ii) (gof) (x)
(iii) (fof)(0)
(iv) go (fof) (3)

Answer:
f; R → R; g : R → R and
f(x) = 2x2 + 3, g(x) = 3x – 2 then
(i) (fog) (x) = f [g (x)] = f (3x – 2)
= 2 [(3x – 2)2] + 3 (∵ f (x) = 2x2 + 3)
= 2 [9x2 – 12x + 4] + 3
= 18x2 – 24x + 11
(ii) (gof) (x) = g [f (x)] = g (2x2 + 3)
= 3 (2x2 + 3) -2 = 6x2 + 7

iii) (fof) (0) = f [f (0)] = f [3] = 2(3)2 + 3 = 21

iv) go (fof) (3)
= go [f (f (3))] (v f (x) = 2x2 + 3)
= go [f (2(3)2 + 3)]
= go [f (21)]
= g [2 (21)2 + 3]
= g [2 (441) + 3]
= g [885]
= 3 (885) – 2 = 2653 (∵ g(x) = 3x – 2)

Question 4.
If f:R → R, g:R → R are defined by f(x) = 3x – 1, g(x) = x2 + 1, then find
(i) (fof) (x2 + 1)
(ii) (fog) (2) (March 2012)
(iii) (gof)(2a – 3)

Answer:
Given f: R → R and g : R → R defined by f (x) = 3x – 1, g (x) = x2 + 1
(i)(fof) (x2 + 1 ) = f [f (x2 + 1)]
= f [3 (x2 + 1) – 1]
⇒ f [3x2 + 2] (∵ f (x) = 3x – 1)
= 3 (3×2 + 2) – 1 = 9×2 + 5

(ii) (fog) (2) = f [g (2)] = f [22 + 1] = f [5]
= 3(5) – 1 = 14

(iii) (gof ) (2a – 3)
=g[f(2a – 3)]
= g[3(2a – 3) – 1] (∵ f(x) = 3x- 1)
= g [6a – 10]
= (6a – 10)2 + 1 (∵ g(x)=x2 + 1)
= 36a2 – 120a + 101

Question 5.
If f(x) = 1/x, g(x) = √x ∀ x ∈ (0, ∞) then find (gof)(x).

Answer:
(gof)(x) = g[f(x)] = g[1/x]
= 1/√x (∵ g(x) = x)

Question 6.
f(x) = 2x – 1, g(x) = x+1/2 ∀ x ∈ R, find (gof)(x).

Answer:
(gof)(x) = g[f(x)] = g(2x – 1)
= 2x−1+1/2 = x (∵ g(x) = 2x−1+1/2)

Question 7.
If f(x) = 2, g(x) = x2, h(x) = 2x ∀ x ∈ R, then find [fo(goh) (x)].

Answer:
fo(goh)= fog [h(x)]
= fog [2x]
= f [g(2x)]
= f [ (2x)2 ] = f (4x2) = 2
fo(goh) = 2

Question 8.
Find the inverse of the following functions.
(i) a, b ∈ R, f: R → R, defined by f(x) = ax + b, (a ≠ 0).

Answer:
a, b ∈ R, f : R → R and f(x) = ax + b
⇒ y = ax + b = f(x)
⇒ x = f-1(y)
= y−b/a
∴ f-1(x) = x−b/a
(ii) f: R → (0, ∞) defined by 5x (March 2011)
Answer:
f: R→ (0, ∞) and f(x) = 5x
Let y = f (x) = 5x ⇒ x = f-1(y)
and x = log5y
∴ f-1(y) = log5y ⇒ f-1(x) = log5x

(iii) f : (0, ∞) → R defined by f(x) = log2x
Answer:
Gii’en f: (0, ∞) → R defined by f(x) = log2x
Let y = f (x) = log2x then x = f1 (y)
y = log2x ⇒ x = 2y
∴ f-1(y) = 2y ⇒ f-1(x) = 2x

Question 9.
If f(x) = 1 + x + x2 + ………….. for |x| < 1, then show that f-1(x) = x−1/x

Answer:
Given f(x) = 1 + x + x2 + ………. for |x| < 1

Question 10.
If f : [1, ∞] → [1, ∞] defined by f(x) = 2x(x – 1), then find f-1(x)

Answer:
Given f : [1, ∞] → [1, ∞] defined by f(x) = 2x(x – 1)
Let y = f(x) then x = f-1(y)
Also y = 2x(x – 1) ⇒ x(x – 1) = log2y
⇒ x2 – x – log2y = 0

II.

Question 1.
If f(x) = x−1/x+1, x ≠ ±1, then verify (fof-1)(x) = x

Answer:
Given f(x) = x−1/x+1, (x ≠ ±1)
and Let y = f(x) ⇒ x = f-1(x)

Question 2.
If A = (1, 2, 3), B = (α, β, γ), C = (p, q, r) and f : A → B, g : B → C are defined by f = {(1, α), (2, γ), (3, β)}, g = {(α, q), (β, r), (γ, p)}
then show that f and g are bijective functions and (gof)-1 = f-1og-1.

Answer:
Given A = {1, 2, 3}, B = (α, β, γ), c = {p, q, r) and f : A → B, g : B → C defined by f ={(1, α) (2, γ), (3, β)}and g = {(a, q), (β, r), (γ, p)}
From the definitions of f and g f (1) = α, f (2) = γ, f (3) = β and g (α) = q, g (β) = r, g (γ) = p
Distinct elements of A have distinct imagine in B. Hence f is an Injection. Also, range of f = (a, y, P) and f is a surjection.
∴ f is abijection = B similarly distinct elements of B have distinct images in c and g is an Injection.
Also range of ‘g’ = {q, γ, p} = C;
∴ g is a surjection.
Hence g is a bijection.
∴ f and g are bijective functions.
Also gof = {(1, q), (2, r), (3, p)}
and (gof-1) = {(q, 1), (r, 2), (p, 3)} …………….(1)
f-1 = {(α, 1), (γ, 2), (β, 3)}
and g-1 = {(q, α), (r, β), (p, γ)}
∴ f-1og-1 ={(q, 1), (r, 2), (p, 3)} ………………(2)
∴ From (1) and (2), (gof-1) = f-1og-1

Question 3.
If f:R → R; g:R → R defined by f(x) = 3x – 2, g(x) = x2 + 1, then find
(i) (gof-1) (2)
(ii)(gof)(x – 1) (March 2008, May 2006)

Answer:
Given f: R → R, g : R → R defined by f(x) = 3x – 2, g(x) = x2 + 1
et y = f (x) then x = f-1 (y)
y = 3x – 2 ⇒ 3x = y + 2
⇒ x = y+2/3
∴ f-1(y) = 3+2/3 ⇒ f-1(x) = x+2/3
∴ (i)(gof-1) (2) = g[f-1(2)] = g[4/3]
= (4/3)2 + 1 = 16/9 + 1 = 25/9
(ii)(gof) (x – 1) = g [f (x – 1)
= g [3 (x – 1) – 2] = g [3x – 5]
= (3x – 5)2 + 1
= 9x2 – 30x + 26
(∵ g(x) = x2 + 1)

Question 4.
Let f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a) (4, b), (1, c), (3, d)} then show that (gof)-1 = f-1o g-1

Answer:
Given f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a), (4, b), (1, c), (3, d)}
∴ g = {(a, 2), (b, 4), (c, 1), (d, 3)} gof = {(1, 2), (2, 1), (4, 3), (3, 4)}
∴ (gof)-1 = {(2, 1), (1, 2), (3, 4), (4, 3)}
f-1 = {(a, 1) (c, 2), (d, 4), (b, 3)}
g-1 = {(2, a), (4, b), (1, c), (3, d)}
f(x) = 3x – 2, g(x) = x2 + 1
Let y = f (x) then x = f” (y)
∴ f-1o g-1 = {(2, 1), (1, 2), (4, 3), (3, 4)}
(gof)-1 = f-1o g-1

Question 5.
Let f:R → R; g:R → R be defined by f(x) = 2x – 3, g(x) = x3 + 5 then find (fog)-1(x)

Answer:
We have from the formula
(fog)-1(x) = (g-1of-1) …………..(1)
where f: R → R and g : R → R are defined by
f(x) = 2x – 3 and g(x) = x3 + 5
Let y = f(x) = 2x – 3 : Then x = f-1(y)
and 2x – 3 = y ⇒ x = y+3/2
f-1(x)x+3/2 ………..(2)

Let y = g(x) = x3 + 5. Then x = g-1(y) and x3 + 5 = y
⇒ x = (y – 5)1/3
g-1(y) = (y – 5)1/3
g-1(x) = (x – 5)1/3 ……….(3)

From (1), (g-1of-1)(x)

Question 6.
Let f(x) = x2,g(z) = 2x. Then solve the equation (fog) (x) = (gof) (x)

Answer:
Given f(x) = x2 and g(x) = 2x
(fog) (x) = f [g(x)] = f [2x] = (2x)2 = 22x ……………(1)
and (gof)(x) = g[f(x)] = g[x2] = 2x2
∴ from (1) and (2), 22x = 2x2
⇒ x2 – 2x = 0
⇒ x(x – 2) =0
⇒ x = 0, 2

Question 7.
If f(x) = x+1/x−1,(x ≠ ±1),then find(fofof)(x) and (fofofof) (z)

Answer:
Given f(x) = x+1/x−1, (x ≠ ± 1)
then (fofof) (x) = fof(f(x)]

LEAVE A REPLY

Please enter your comment!
Please enter your name here

-

Latest News

TS Inter 1st Year English Study Material Textbook Solutions Telangana

TS Intermediate 1st Year English Study Material Textbook Solutions Telangana TS Inter 1st Year English Textbook Answers TS Intermediate 1st Year...

TS Inter 1st Year English Grammar Odd Sound Out

Q.No. 18 (4 × 1 = 4 Marks) A set of three words are given. One or two letters which...

TS Inter 1st Year English Grammar Phonetic Transcription 

Q.No. 17 (4 × 1 = 4 Marks) Meaningful speech sounds are the basic raw material for any language. These...

TS Inter 1st Year English Grammar Silent Letters 

Q.No. 16 (8 × 1/2 = 4 Marks) Silent letters are a peculiar feature of English spelling. Letters are used...

TS Inter 1st Year Study Material Textbook Solutions PDF Download: Telangana Board Intermediate I Year Books at manabadi.co.in

The Telangana State Board of Intermediate Education (TSBIE) plays a crucial role in shaping the academic future of Intermediate...

TS Inter 2nd Year Study Material Textbook Solutions PDF Download: Telangana Board Intermediate II Year Books at Manabadi.co.in

The Telangana State Board of Intermediate Education (TSBIE) plays a vital role in shaping the academic foundation of students...

TS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(a)

TS Inter 1st Year Maths 1A Functions Solutions Exercise 1(a)I.Question 1.If the function f is defined bythen find the...

TS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(c)

TS Inter 1st Year Maths 1A Functions Solutions Exercise 1(c)I.Question 1.Find the domains of the following real valued functions....

TS Inter 1st Year Maths 1A Study Material Pdf Download | TS Intermediate Maths 1A Solutions

TS Inter 1st Year Maths 1A Functions Solutions Chapter 1 Functions Ex 1(a)Chapter 1 Functions Ex 1(b)Chapter 1 Functions Ex...

CBSE Class 10th Time Table 2026 Reschedule Date Out: Download PDF Exams Final Schedule at Manabadi.co.in

CBSE has been released the final Class 10 Date Sheet 2026. The board exams will be held from February...