HomeTG InterStudy MaterialTS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(b)

TS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(b)

Manabadi

Contents

TS Inter 1st Year Maths 1A Functions Solutions Exercise 1(b)

I.

Question 1.
If f(x) = ex, and g(x) = logex, then show that fog = gof and find f-1 and g-1.

Answer:
Given f(x) = ex and g(x) = logex
Now (fog) (x) = f[g(x)] = f [logex]
= elogex = x
(gof) (x) = g [f(x)] = g [ex] = logeex = x
fog = gof
given f(x) = ex = y
then x = f-1 (y) and y = ex ⇒ x = logey
f-1(y) = logey ⇒ f-1 (x) = logex
similarly y = g(x) = logex
then x = g-1 (y) and y = logex
⇒ x = ey
g-1 (y) = ey ⇒ g-1(x) = ex

Question 2.
If f(y) = y/√1−y2, g(y) = y/√1+y2 then show that (fog)(y) = y.

Answer:

∴ (fog) (y) = y

Question 3. If R → R; g : R → R are defined by . f(x) = 2x2 + 3 and g(x) = 3x – 2, then find
(i) (fog) (x)
(ii) (gof) (x)
(iii) (fof)(0)
(iv) go (fof) (3)

Answer:
f; R → R; g : R → R and
f(x) = 2x2 + 3, g(x) = 3x – 2 then
(i) (fog) (x) = f [g (x)] = f (3x – 2)
= 2 [(3x – 2)2] + 3 (∵ f (x) = 2x2 + 3)
= 2 [9x2 – 12x + 4] + 3
= 18x2 – 24x + 11
(ii) (gof) (x) = g [f (x)] = g (2x2 + 3)
= 3 (2x2 + 3) -2 = 6x2 + 7

iii) (fof) (0) = f [f (0)] = f [3] = 2(3)2 + 3 = 21

iv) go (fof) (3)
= go [f (f (3))] (v f (x) = 2x2 + 3)
= go [f (2(3)2 + 3)]
= go [f (21)]
= g [2 (21)2 + 3]
= g [2 (441) + 3]
= g [885]
= 3 (885) – 2 = 2653 (∵ g(x) = 3x – 2)

Question 4.
If f:R → R, g:R → R are defined by f(x) = 3x – 1, g(x) = x2 + 1, then find
(i) (fof) (x2 + 1)
(ii) (fog) (2) (March 2012)
(iii) (gof)(2a – 3)

Answer:
Given f: R → R and g : R → R defined by f (x) = 3x – 1, g (x) = x2 + 1
(i)(fof) (x2 + 1 ) = f [f (x2 + 1)]
= f [3 (x2 + 1) – 1]
⇒ f [3x2 + 2] (∵ f (x) = 3x – 1)
= 3 (3×2 + 2) – 1 = 9×2 + 5

(ii) (fog) (2) = f [g (2)] = f [22 + 1] = f [5]
= 3(5) – 1 = 14

(iii) (gof ) (2a – 3)
=g[f(2a – 3)]
= g[3(2a – 3) – 1] (∵ f(x) = 3x- 1)
= g [6a – 10]
= (6a – 10)2 + 1 (∵ g(x)=x2 + 1)
= 36a2 – 120a + 101

Question 5.
If f(x) = 1/x, g(x) = √x ∀ x ∈ (0, ∞) then find (gof)(x).

Answer:
(gof)(x) = g[f(x)] = g[1/x]
= 1/√x (∵ g(x) = x)

Question 6.
f(x) = 2x – 1, g(x) = x+1/2 ∀ x ∈ R, find (gof)(x).

Answer:
(gof)(x) = g[f(x)] = g(2x – 1)
= 2x−1+1/2 = x (∵ g(x) = 2x−1+1/2)

Question 7.
If f(x) = 2, g(x) = x2, h(x) = 2x ∀ x ∈ R, then find [fo(goh) (x)].

Answer:
fo(goh)= fog [h(x)]
= fog [2x]
= f [g(2x)]
= f [ (2x)2 ] = f (4x2) = 2
fo(goh) = 2

Question 8.
Find the inverse of the following functions.
(i) a, b ∈ R, f: R → R, defined by f(x) = ax + b, (a ≠ 0).

Answer:
a, b ∈ R, f : R → R and f(x) = ax + b
⇒ y = ax + b = f(x)
⇒ x = f-1(y)
= y−b/a
∴ f-1(x) = x−b/a
(ii) f: R → (0, ∞) defined by 5x (March 2011)
Answer:
f: R→ (0, ∞) and f(x) = 5x
Let y = f (x) = 5x ⇒ x = f-1(y)
and x = log5y
∴ f-1(y) = log5y ⇒ f-1(x) = log5x

(iii) f : (0, ∞) → R defined by f(x) = log2x
Answer:
Gii’en f: (0, ∞) → R defined by f(x) = log2x
Let y = f (x) = log2x then x = f1 (y)
y = log2x ⇒ x = 2y
∴ f-1(y) = 2y ⇒ f-1(x) = 2x

Question 9.
If f(x) = 1 + x + x2 + ………….. for |x| < 1, then show that f-1(x) = x−1/x

Answer:
Given f(x) = 1 + x + x2 + ………. for |x| < 1

Question 10.
If f : [1, ∞] → [1, ∞] defined by f(x) = 2x(x – 1), then find f-1(x)

Answer:
Given f : [1, ∞] → [1, ∞] defined by f(x) = 2x(x – 1)
Let y = f(x) then x = f-1(y)
Also y = 2x(x – 1) ⇒ x(x – 1) = log2y
⇒ x2 – x – log2y = 0

II.

Question 1.
If f(x) = x−1/x+1, x ≠ ±1, then verify (fof-1)(x) = x

Answer:
Given f(x) = x−1/x+1, (x ≠ ±1)
and Let y = f(x) ⇒ x = f-1(x)

Question 2.
If A = (1, 2, 3), B = (α, β, γ), C = (p, q, r) and f : A → B, g : B → C are defined by f = {(1, α), (2, γ), (3, β)}, g = {(α, q), (β, r), (γ, p)}
then show that f and g are bijective functions and (gof)-1 = f-1og-1.

Answer:
Given A = {1, 2, 3}, B = (α, β, γ), c = {p, q, r) and f : A → B, g : B → C defined by f ={(1, α) (2, γ), (3, β)}and g = {(a, q), (β, r), (γ, p)}
From the definitions of f and g f (1) = α, f (2) = γ, f (3) = β and g (α) = q, g (β) = r, g (γ) = p
Distinct elements of A have distinct imagine in B. Hence f is an Injection. Also, range of f = (a, y, P) and f is a surjection.
∴ f is abijection = B similarly distinct elements of B have distinct images in c and g is an Injection.
Also range of ‘g’ = {q, γ, p} = C;
∴ g is a surjection.
Hence g is a bijection.
∴ f and g are bijective functions.
Also gof = {(1, q), (2, r), (3, p)}
and (gof-1) = {(q, 1), (r, 2), (p, 3)} …………….(1)
f-1 = {(α, 1), (γ, 2), (β, 3)}
and g-1 = {(q, α), (r, β), (p, γ)}
∴ f-1og-1 ={(q, 1), (r, 2), (p, 3)} ………………(2)
∴ From (1) and (2), (gof-1) = f-1og-1

Question 3.
If f:R → R; g:R → R defined by f(x) = 3x – 2, g(x) = x2 + 1, then find
(i) (gof-1) (2)
(ii)(gof)(x – 1) (March 2008, May 2006)

Answer:
Given f: R → R, g : R → R defined by f(x) = 3x – 2, g(x) = x2 + 1
et y = f (x) then x = f-1 (y)
y = 3x – 2 ⇒ 3x = y + 2
⇒ x = y+2/3
∴ f-1(y) = 3+2/3 ⇒ f-1(x) = x+2/3
∴ (i)(gof-1) (2) = g[f-1(2)] = g[4/3]
= (4/3)2 + 1 = 16/9 + 1 = 25/9
(ii)(gof) (x – 1) = g [f (x – 1)
= g [3 (x – 1) – 2] = g [3x – 5]
= (3x – 5)2 + 1
= 9x2 – 30x + 26
(∵ g(x) = x2 + 1)

Question 4.
Let f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a) (4, b), (1, c), (3, d)} then show that (gof)-1 = f-1o g-1

Answer:
Given f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a), (4, b), (1, c), (3, d)}
∴ g = {(a, 2), (b, 4), (c, 1), (d, 3)} gof = {(1, 2), (2, 1), (4, 3), (3, 4)}
∴ (gof)-1 = {(2, 1), (1, 2), (3, 4), (4, 3)}
f-1 = {(a, 1) (c, 2), (d, 4), (b, 3)}
g-1 = {(2, a), (4, b), (1, c), (3, d)}
f(x) = 3x – 2, g(x) = x2 + 1
Let y = f (x) then x = f” (y)
∴ f-1o g-1 = {(2, 1), (1, 2), (4, 3), (3, 4)}
(gof)-1 = f-1o g-1

Question 5.
Let f:R → R; g:R → R be defined by f(x) = 2x – 3, g(x) = x3 + 5 then find (fog)-1(x)

Answer:
We have from the formula
(fog)-1(x) = (g-1of-1) …………..(1)
where f: R → R and g : R → R are defined by
f(x) = 2x – 3 and g(x) = x3 + 5
Let y = f(x) = 2x – 3 : Then x = f-1(y)
and 2x – 3 = y ⇒ x = y+3/2
f-1(x)x+3/2 ………..(2)

Let y = g(x) = x3 + 5. Then x = g-1(y) and x3 + 5 = y
⇒ x = (y – 5)1/3
g-1(y) = (y – 5)1/3
g-1(x) = (x – 5)1/3 ……….(3)

From (1), (g-1of-1)(x)

Question 6.
Let f(x) = x2,g(z) = 2x. Then solve the equation (fog) (x) = (gof) (x)

Answer:
Given f(x) = x2 and g(x) = 2x
(fog) (x) = f [g(x)] = f [2x] = (2x)2 = 22x ……………(1)
and (gof)(x) = g[f(x)] = g[x2] = 2x2
∴ from (1) and (2), 22x = 2x2
⇒ x2 – 2x = 0
⇒ x(x – 2) =0
⇒ x = 0, 2

Question 7.
If f(x) = x+1/x−1,(x ≠ ±1),then find(fofof)(x) and (fofofof) (z)

Answer:
Given f(x) = x+1/x−1, (x ≠ ± 1)
then (fofof) (x) = fof(f(x)]

LEAVE A REPLY

Please enter your comment!
Please enter your name here

-

Latest News

AP 10th Class Hall Ticket 2026: Download BSEAP SSC Hall Ticket at manabadi.com

The Board of Secondary Education, Andhra Pradesh (BSEAP) is likely to release the AP 10th Class Hall Ticket 2026....

TG 10th Class Hall Ticket 2026: Download Telangana Board 10th Hall Ticket at manabadi.co.in

The Telangana Board of Secondary Education (BSE Telangana) will release the TS SSC Hall Tickets 2026 on its official...

AP Inter 2nd Year Hall Ticket 2026: Download BIEAP II Yr Hall Ticket at manabadi.co.in

The Board of Intermediate Education, Andhra Pradesh (BIEAP) is set to conduct the AP Intermediate 2nd Year Public Examinations...

AP Inter 1st Year Hall Ticket 2026: Download BIEAP I Yr Hall Ticket at manabadi.co.in

The Board of Intermediate Education, Andhra Pradesh (BIEAP) will conduct the AP Intermediate 1st Year Public Exams 2026 from...

TS Inter 1st Year Maths 1A Study Material Pdf Download | TS Intermediate Maths 1A Solutions

TS Inter 1st Year Maths 1A Functions Solutions Chapter 1 Functions Ex 1(a) Chapter 1 Functions Ex 1(b) Chapter 1 Functions Ex...

TS Inter 1st Year Maths 1A Products of Vectors Solutions Exercise 5(C)

I. Question 1. Compute Answer: = ∣∣∣∣10−1−1100−11∣∣∣∣left|begin{array}{rrr} 1 & -1 & 0 \ 0 & 1...

TS Intermediate 1st Year Zoology Study Material Pdf Download | TG Inter 1st Year Zoology Textbook Solutions at manabadi.co.in

TS Intermediate 1st Year Zoology subject విద్యార్థులకు బేసిక్ కాన్సెప్ట్స్‌ను బలంగా నిర్మించడంలో కీలక పాత్ర పోషిస్తుంది. TG Inter Board syllabus ప్రకారం...

TS Inter 1st Year Zoology Study Material Chapter 6 Biology in Human Welfare

Very Short Answer Type Questions Question 1. Define parasitism and justify this term. Answer: An intimate association between two organisms of different species...

TS Inter 1st Year Zoology Study Material Chapter 5 Locomotion and Reproduction in Protozoa

Very Short Answer Type Questions Question 1. Draw a labelled diagram of T.S. of flagellum. Answer: Question 2. List any two differences between...

TS Inter 1st Year Maths 1A Products of Vectors Solutions Exercise 5(b)

I. Question 1. If |p̅| = 2, |q̅| = 3 and (p, q) = π/6 , then find |p̅...