HomeTG InterStudy MaterialTS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(a)

TS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(a)

Manabadi

TS Inter 1st Year Maths 1A Functions Solutions Exercise 1(a)
I.
Question 1.
If the function f is defined by

then find the values of
(i) f(3)
(ii) f(0)
(iii) f(-1.5)
(iv) f(2) + f(- 2)
(v) f(- 5)
Answer:
(i) f(3), For x > 1; f(x) = x + 2
f(3) = 3 + 2 = 5
(ii) f(0), For – 1 ≤ x ≤ 1; f(0) = 2
(iii) f(-1.5), For – 3 < x < – 1; f(x) = x – 1
∴ f(-1.5) = -1.5- 1 = – 2.5
(iv) f(2) + f(-2); For x > 1, f(x) = x + 2
∴ f(2) = 2 + 2 = 4
For – 3 < x < – 1;
f(x) = x – 1
f(-2) = -2 – 1 = -3
f(2) + f (-2) = 4 – 3 = 1
(v) f(-5); is not defined such domain of ‘f’ is {x / x > – 3].
Question 2.
If f : R {0} → R defined by f(x) = x3 – 1/x3, then show that f(x) + f(1/x) = 0.
Answer:
Given f(x) = x3 – 1/x3

Question 3.
If f: R → R defined by f(x) = 1−x2/1+x2, then show that f(tan θ) = cos 2θ
Answer:
Given f(x) = 1−x2/1+x2 ∀ x ∈ R

= cos 2θ
Question 4.
If f: R – (±1) → R is defined by f(x) = log∣1+x/1−x∣, then show that f(2x/1+x2) = 2f(x).
Answer:
Given f: R – (±1) → R defined by f(x) = log∣1+x/1−x∣

Question 5.
If A = (-2, -1, 0, 1, 2) and f : A → B is a surjection defined by f(x) = x2 + x + 1, then find B. (May 2014)
Answer:
A = {-2,-1,0,1,2} and f: A → B is a surjection and f(x) = x2 + x + 1;
∴ f(-2) = (-2)2 + (-2) + 1=3,
f(-1) = (-1)2 + (-1) + 1 = 1
f(0) = 02 + 0 + 1 = 1
f(1) =12 + 1 + 1 = 3
f(2) = 22 + 2 + 1 = 7
∴ B = f(A) = (1, 3, 7)
Question 6.
If A = {1, 2, 3, 4} and f: A → R is a function defined by f(x) = x2−x+1/x+1, then find the range of f.
Answer:
Given A = {1, 2, 3, 4} and f(x) = x2−x+1/x+1

Question 7.
If f (x + y) = f (xy) ∀ x, y ∈ R, then prove that f is a constant function.
Answer:
Given f (x + y) = f(x y) ∀ x, y ∈ R Suppose x = y = 0 then
f(0 + 0) = f(0 x 0)
⇒ f(0) = f(0) ………………..(1)
Suppose x = 1, y = 0 then then f (1 + 0) = f(1 x 0)
⇒ f(D = f (0) ……………(2)
Suppose x = 1, y = 1 then f (1 + 1) = f(1 x 1)
⇒ f(2) = f(1) …………….. (3)
f(0) = f(1) = f(2)
= f(0) = f(2)
Similarly f(3) = f(0), f(4) = f(0) …………. f(n) = f(0)
∴ f is a constant function.

II.
Question 1.
If A = {x / – 1 ≤ x ≤ 11, f(x) = x2, g(x) = x3 Which of the following are surjections
(i) f : A → A
(ii) g : A → A.
Answer:
i) Given A {x / – 1 ≤ x ≤ 1}, f(x) = x2
and f : A → A
Suppose y ∈ A
then x2 = y ⇒ x = ± √y
If x = √y and if y = – 1 then x = √-1 ∈ A
f : A → A is not a surjection.
ii) Given A = {x/-1 ≤ x ≤ 1), g(x) = x3
and g : A → A
Suppose ye A then x2 = y ⇒ x = y√3 ∈ A
If y = -1 then x = -1 ∈ A
y = 0 then x = 0 ∈ A
y = 1 then x = 1 ∈ A
g : A → A is a surjection.
Question 2.
Which of the following are injections or surjections or Bisections ? Justify your answers.
i) f : R → R defined by f(x) = 2x+1/3
Answer:
Given f(x) = 2x+1/3
Let a1, a2 ∈ R
∴ f(a1) = f(a2)
⇒ 2a1+1/3=2a2+1/3
⇒ 2a1 + 1 = 2a2 + 1
⇒ a1 = a2
f(a1) = f(a2) ⇒ a1 = a2 ∀ a1, a2 ∈ R
f(x) = 2x+1/3 is an injection.

Suppose y ∈ R (codomain of f) then
y = 2x+1/3 ⇒ x = 3y−1/2
Then f(x) = f(3y−1/2)=2(3y−1)/2+1/3 = y
f is a surjection f: R → R defined by f(x) = 2x+1/3 is a bijection.

ii) f : R → (0, ∞) defined by f(x) = 2x
Answer:
Let a1, a2 ∈ R then f(a1) = f(a2)
⇒ 2a1 = 2a2
⇒ a1 = a2 ∀ a1, a2 ∈ R
f(x) = 2x, f: R → (0, ∞) is injection.
Let y ∈ (0, ∞) and y = 2x ⇒ x = log2 y
then f(x) = 2x = 2 log2y = y
∴ f is a surjection.
Since f is injection and surjection, f is a bijection.
iii) f : (0, ∞) → R defined by f(x) = logex.
Answer:
Let x1, x2 ∈ (0, ∞)and = logex. then f(x1) = f(x2)
⇒ logex1 = logex2 ⇒ x1 = x2
∴ f(x1) = f(x2)
x1 = x2 and f is injection.

Let y ∈ R then y = logex ⇒ x = ey
f(x) = logex = logeey = y and f is a surjection.
Since f is both injective and surjective, f is a bijection.

iv) f : [0, ∞) → [0, ∞) defined by f(x) = x2
Answer:
Let x1, x1 ∈ [0, ∞) given f(x) = x2
f(x1) = f(x2)
⇒ x1 = x2
x1 = x2 (∵ x1, x2 > 0)
f(x) = x2,
∴ f: [0, ∞) → [0, ∞) is an injection.

Let y ∈ [0, ∞)then y = x2 ⇒ x = √y (∵ y > 0)
f(x) = x2 = (√y)2 = y
and f is a surjection
∴ f is a bijection.

v) f : R → [0, ∞) defined by f(x) = x2
Answer:
Let x1 x2 ∈ R and f(x) = x2
∴ f(x1) = f(x2)
⇒ x12 = x22
⇒ x1 = ±x2 (∵ x1, x2 ∈ R)
f is not an injection
Let y ∈ [0, ∞] then y = x2 ⇒ x = ±√y
where y ∈ [0, ∞] then f(x) = x2 = (√y )2 = y.
∴ f is a surjection.
Since f is not injective and only surjective, we say that f is not a bijection.

vi) f : R → R defined by f(x) = x2
Answer:
Let x1 x2 ∈ R then f(x1) = f(x2)
⇒ x12 = x22
⇒ x1 = ± x2 (∵ x1, x2 ∈ R)
f(x) is not an injection.
Let y ∈ R then y = x2
⇒ x = ±√y
For elements that belong to (-∞, 0).
codomain R of f has no pre-image in f.
∴ f is not a surjection.
Hence f is not a bijection.

Question 3.
If g = 1(1,1), (2, 3), (3, 5), (4, 7)) is a function from A = {1, 2, 3, 4} to B = {1, 3, 5, 7}. If this is given by the formula g(x) = ax + b then find a and b.
Answer:
A = {1, 2, 3, 4}, B = {1, 3, 5, 7}
g = {(1, 1), (2, 3), (3, 5), (4, 7)}
∵ g(1) = 1, g(2) = 3, g(3) = 5, g(4) = 7
Hence for an element a ∈ A f ∃ b ∈ B such that g : A → B is a function.
Given g(x) = ax + b ∀ x ∈ A
g(1) = a + b = 1
g(2) = 2a + b = 3
solving a = 2, b = -1
Question 4.
If the function f : R → R defined by f(x) = 3x+3−x/2, then show that f (x+y) + f (x-y) = 2 f(x) f(y).
Answer:

Question 5.
If the function f : R → R defined by f(x) = 4x/4x+2, then show that f (1 – x) = 1 – f(x) and hence reduce the value of f(14) + 2f(12) + f(34).
Answer:

Question 6.
If the function f : {-1, 1} → {0, 2} defined by f(x) = ax + b is a subjection, then find a and b.
Answer:
Since f: {-1, 1} → {0, 2} and f(x) = ax + b is a surjection.
Given f (-1) = 0, f (1) = 2 (or) f (-1) = 2, f (1)=0
Case I : f (-1) = 0, f (1) = 2
∴ – a + b = 0, a + b = 2
Solving b =1 , a = 1

Case II : f (-1) = 2, and f (1) = 0
then – a + b = 2 and a + b = 0
Solving b = 1, a = -1
Hence a = + 1 and b = 1
Question 7.
If f(x) = cos (log x), then show that f(1/x) f(1/y) – (1/2)[f(x/y) + f(x/y)] = 0
Answer:
Given f(x) = cos(log x)
then f(1/x) = cos(log(1/x))
= cos(-log x) = cos(log x) (∵ log 1 = 0)
Similarly f(1/x) = cos(log y)
f(x/y) = cos(log(xy)) = cos(log x – log y)
f(x/y) = cos (log xy) = cos [log x + log y]
f(x/y) + f(x y) = cos(log x – log y) + cos (log x + log y)
= 2 cos (log x) cos (log y) (∵ cos (A – B) + cos (A + B))
= 2 cos A cos B
f(1/x) f(1/y) – (1/2)[f(x/y) + f(x/y)] = cos (log x) cos (log y) – 1/2 [2cos (log x) cos (logy)]
= 0

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Latest News

CBSE Class 10 Admit Card 2026 (OUT), Download CBSE 10th Class Hall Ticket PDF at manabadi.co.in

The Central Board of Secondary Education (CBSE) has officially issued the CBSE Class 10 Admit Card 2026 for regular...

CBSE Class 12 Admit Card 2026 (OUT), Download CBSE 12th Class Hall Ticket PDF at manabadi.co.in

The Central Board of Secondary Education (CBSE) will conduct the CBSE Class 12 Board Examinations 2026 starting from February...

TS 10th Class Hall Ticket 2026 Out: Download Telangana Board SSC Hall Ticket at manabadi.co.in

The Board of Secondary Education (BSE), Telangana has officially released the TS SSC Hall Tickets 2026 in online mode....

TS Inter 1st Year Hall Ticket 2026 Out: Download TSBIE Intermediate I Yr Hall Ticket at manabadi.com

The Telangana State Board of Intermediate Education (TGBIE) has officially released the TS Inter 1st Year Hall Ticket 2026...

TS Inter 2nd Year Hall Ticket 2026 Released: TSBIE Telangana Intermediate II Yr Hall Ticket Download at manabadi.com

The Telangana State Board of Intermediate Education (TGBIE) has officially released the TS Inter 2nd Year Hall Tickets 2026...

AP Inter 2nd Year Hall Ticket 2026 Out: Download BIEAP II Yr Hall Ticket at manabadi.co.in

The Board of Intermediate Education, Andhra Pradesh (BIEAP) is set to conduct the AP Intermediate 2nd Year Public Examinations...

AP Inter 1st Year Hall Ticket 2026 Out: Download BIEAP I Yr Hall Ticket at manabadi.co.in

The Board of Intermediate Education, Andhra Pradesh (BIEAP) will conduct the AP Intermediate 1st Year Public Exams 2026 from...

TS Inter 1st Year Economics Study Material: Telangana Board Intermediate IYr Textbook Solutions at manabadi.co.in

TS Inter 1st Year Economics Study Material Textbook Solutions TS Inter 1st Year Economics Study Material Textbook Solutions are essential...

TS Inter 1st Year Economics Study Material Chapter 6 Theories of Distribution

Long Answer Questions Question 1.Explain critically the marginal productivity theory of distribution? Answer: This theory was developed by J.B. Clark. According to...

AP 10th Class Hall Ticket 2026: Download BSEAP SSC Hall Ticket at manabadi.com

The Board of Secondary Education, Andhra Pradesh (BSEAP) is likely to release the AP 10th Class Hall Ticket 2026....