JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. II Mid Examinations, February – 2012

MATHEMATICS - I

Objective E	xam
-------------	-----

Nam	e: Hall Ticket No. A		
Ansv	wer All Questions. All Questions Carry Equal Marks. Time: 20 Min. M	arks:	10.
I.	Choose the correct alternative:		
1.	The radius of curvature for the curve $(at^2, 2at)$ s (a) $2a(1+t^2)$ (b) $a(1+t^2)^2$ (c) $\frac{2a(1+t^2)^{3/2}}{t^2}$ (d) $2a(1+t^2)^2$	[) ^{3/2}]
2.	The curve $x = a\cos^3 t$, $y = a\sin^3 t$ is symmetrical about the line (a) $x = 0$ (b) $y = 0$ (c) $x = 0$, $y = 0$ (d) $y = x$, $y = -x$	[]
3.	The tangents to the curve $y^2 = x^2 \frac{(a+x)}{a-x}$ at the origin are (a) $x = 0$, $y = 0$ (b) $x = \pm a$ (c) $y = \pm x$ (d) $y = 0$ and $y = a$	[]
4.	After transforming to polar coordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy =$ (a) $\int_{0}^{\pi/2} \int_{0}^{1} e^{-r^{2}} dr d\theta$ (b) $\int_{0}^{\pi/2} \int_{0}^{1} e^{-r^{2}} r dr d\theta$ (c) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^{2}} r dr d\theta$ (d) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-y^{2}} r dr d\theta$]]
5.	The orthogonal trajectories of $xy = c$ is (a) $x^2 + y^2 = a^2$ (b) $x^2 - y^2 = a^2$ (c) $x^2 + 2x = c$ (d) $y^2 - 2x = c$	[]
6.	The rate of bending of a curve in any interval is the (a) radius of curvature (b) curvature (c) evolute (d) envelope	[]
7.	Radius of curvature at (0,0) of $x^3 + 3x^2y - 4y^3 + y^2 - 6x = 0$ is	[]
	(a) 6 (b) 2 (c) 3 (d) 0		
8.	The differential equation reduced from $\frac{dy}{dx} = \frac{x+y}{x-y}$ is (a) $\frac{(1+v)dv}{1+v^2} = \frac{dx}{x}$ (b) $\frac{(1+v)dv}{1-v^2} = \frac{dx}{x}$ (c) $\frac{(2+v)dv}{1-v^2} = \frac{dx}{x}$ (d) $\frac{(1-v)dv}{1+v^2} = \frac{dx}{x}$	[]

9. The nature of the differential equation $y \sin 2x dx - (y^2 + \cos^2 x) dy = 0$]

- (a) Homogeneous (b) Linear
- (c) Bernoulli
- (d) Exact

The integrating factor of $e^{y} \left(\frac{dy}{dx} + 1 \right) = e^{x}$ is 10.

]

- (a) e^x
- (b) $e^{x/2}$
- (c) e^{-x}
- (d) x

II Fill in the Blanks

- Envelope of $y = mx + \frac{2}{m}$ is _____ 11.
- 12. The curve $r = a(1 + \cos \theta)$ is symmetrical about _____
- $\int_{0}^{\pi} \int_{0}^{a\cos\theta} r\sin\theta dr d\theta \ \underline{\hspace{1cm}}$ 13.
- In Evaluating $\iint xy(x+y)dxdy$ over the region between $y=x^2$ and y=x, the limits are _____ 14.
- The integrating factor of $(x+2y^3)\frac{dy}{dx} = y$ is_____ 15.
- 16. The x-coordinates of centre of curvature of xy = 3 at (3,1) is_____
- $\int_0^1 \int_0^2 xy^2 dy dx = \underline{\hspace{1cm}}$ 17.
- $\int_0^a \int_0^x \int_0^y xyz dx dy dz = \underline{\qquad}$ 18.
- The length of arc from 0 to π of x=a $(\theta + \sin \theta)$ $y=a(1+\cos \theta)$ is _____ 19.
- If $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$, x = X+h, y = Y+k then the values of h and k are _____ 20.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. II Mid Examinations, February – 2012

MATHEMATICS - I

Objective 1	Exam
-------------	------

Nan	ne: Hall Ticket No. A		
Ans	wer All Questions. All Questions Carry Equal Marks. Time: 20 Min.	Marks:	10.
I.	Choose the correct alternative:		
1.	After transforming to polar coordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy =$	[]
	(a) $\int_0^{\pi/2} \int_0^1 e^{-r^2} dr d\theta$ (b) $\int_0^{\pi/2} \int_0^1 e^{-r^2} r dr d\theta$		
	(c) $\int_0^{\pi/2} \int_0^\infty e^{-r^2} r dr d\theta$ (d) $\int_0^{\pi/2} \int_0^\infty e^{-y^2} r dr d\theta$		
2.	The orthogonal trajectories of $xy = c$ is	[]
	(a) $x^2 + y^2 = a^2$ (b) $x^2 - y^2 = a^2$ (c) $x^2 + 2x = c$ (d) $y^2 - 2x = c$		
3.	The rate of bending of a curve in any interval is the (a) radius of curvature (b) curvature (c) evolute (d) envelope]]
4.	Radius of curvature at (0,0) of $x^3 + 3x^2y - 4y^3 + y^2 - 6x = 0$ is	[]
	(a) 6 (b) 2 (c) 3 (d) 0		
5.	The differential equation reduced from $\frac{dy}{dx} = \frac{x+y}{x-y}$ is	[]
	(a) $\frac{(1+v)dv}{1+v^2} = \frac{dx}{x}$ (b) $\frac{(1+v)dv}{1-v^2} = \frac{dx}{x}$		
	(c) $\frac{(2+v)dv}{1-v^2} = \frac{dx}{x}$ (d) $\frac{(1-v)dv}{1+v^2} = \frac{dx}{x}$		
6.	The nature of the differential equation $y \sin 2x dx - (y^2 + \cos^2 x) dy = 0$	[]
	(a) Homogeneous (b) Linear (c) Bernoulli (d) Exact		
7.	The integrating factor of $e^y \left(\frac{dy}{dx} + 1\right) = e^x$ is	[]
	(a) e^{x} (b) $e^{x/2}$ (c) e^{-x} (d) x		
8.	The radius of curvature for the curve (at^2 , $2at$)s	[]
	(a) $2a(1+t^2)$ (b) $a(1+t^2)^2$ (c) $\frac{2a(1+t^2)^{3/2}}{t^2}$ (d) $2a(1-t^2)^{3/2}$	$+t^2)^{3/2}$	

9. The curve $x = a \cos^3 t$, $y = a \sin^3 t$ is symmetrical about the line

[]

- (a) x = 0
- (b) y = 0
- (c) x = 0, y = 0
- (d) y = x, y = -x
- 10. The tangents to the curve $y^2 = x^2 \frac{(a+x)}{a-x}$ at the origin are

[]

- (a) x = 0, y = 0
- (b) $x = \pm a$
- (c) $y = \pm x$
- (d) y = 0 and y = a

II Fill in the Blanks

- 11. In Evaluating $\iint xy(x+y)dxdy$ over the region between $y=x^2$ and y=x, the limits are ______
- 12. The integrating factor of $(x+2y^3)\frac{dy}{dx} = y$ is_____
- 13. The x-coordinates of centre of curvature of xy = 3 at (3,1) is_____
- 14. $\int_{0}^{1} \int_{0}^{2} xy^{2} dy dx =$ _____
- 15. $\int_0^a \int_0^x \int_0^y xyzdxdydz = \underline{\hspace{1cm}}$
- 16. The length of arc from 0 to π of x=a $(\theta + \sin \theta)$ $y=a(1+\cos \theta)$ is _____
- 17. If $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$, x = X + h, y = Y + k then the values of h and k are _____
- 18. Envelope of $y = mx + \frac{2}{m}$ is _____
- 19. The curve $r = a(1 + \cos \theta)$ is symmetrical about _____
- $20. \qquad \int_0^\pi \int_0^{a\cos\theta} r\sin\theta dr d\theta \ _$

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. II Mid Examinations, February – 2012

MATHEMATICS - I

Objective E	xam
-------------	-----

Naı	me: Hall Ticket No.		
An	swer All Questions. All Questions Carry Equal Marks. Time: 20 Min.	Marks:	10.
I.	Choose the correct alternative:		
1.	The rate of bending of a curve in any interval is the (a) radius of curvature (b) curvature (c) evolute (d) envelope	[]
2.	Radius of curvature at (0,0) of $x^3 + 3x^2y - 4y^3 + y^2 - 6x = 0$ is	[]
	(a) 6 (b) 2 (c) 3 (d) 0		
3.	The differential equation reduced from $\frac{dy}{dx} = \frac{x+y}{x-y}$ is	[]
	(a) $\frac{(1+v)dv}{1+v^2} = \frac{dx}{x}$ (b) $\frac{(1+v)dv}{1-v^2} = \frac{dx}{x}$ (c) $\frac{(2+v)dv}{1-v^2} = \frac{dx}{x}$ (d) $\frac{(1-v)dv}{1+v^2} = \frac{dx}{x}$		
4.	The nature of the differential equation $y \sin 2x dx - (y^2 + \cos^2 x) dy = 0$	[]
	(a) Homogeneous (b) Linear (c) Bernoulli (d) Exact		
5.	The integrating factor of $e^y \left(\frac{dy}{dx} + 1\right) = e^x$ is	[]
	(a) e^{x} (b) $e^{x/2}$ (c) e^{-x} (d) x		
6.	The radius of curvature for the curve (at^2 , $2at$)s	[]
	(a) $2a(1+t^2)$ (b) $a(1+t^2)^2$ (c) $\frac{2a(1+t^2)^{3/2}}{t^2}$ (d) $2a(1+t^2)^{3/2}$	$-t^2$) ^{3/2}	
7.	The curve $x = a\cos^3 t$, $y = a\sin^3 t$ is symmetrical about the line	[]
	(a) $x = 0$ (b) $y = 0$ (c) $x = 0$, $y = 0$ (d) $y = x$, $y = -x$		
8.	The tangents to the curve $y^2 = x^2 \frac{(a+x)}{a-x}$ at the origin are	[]
	(a) $x = 0$, $y = 0$ (b) $x = \pm a$ (c) $y = \pm x$ (d) $y = 0$ and $y = a$		

- After transforming to polar coordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy =$ 9.
-]

(a) $\int_{0}^{\pi/2} \int_{0}^{1} e^{-r^2} dr d\theta$

(b) $\int_{0}^{\pi/2} \int_{0}^{1} e^{-r^2} r dr d\theta$

(c) $\int_0^{\pi/2} \int_0^\infty e^{-r^2} r dr d\theta$

- (d) $\int_0^{\pi/2} \int_0^{\infty} e^{-y^2} r dr d\theta$
- The orthogonal trajectories of xy = c is 10.

-]
- (a) $x^2 + y^2 = a^2$ (b) $x^2 y^2 = a^2$ (c) $x^2 + 2x = c$ (d) $y^2 2x = c$

II Fill in the Blanks

- 11. The x-coordinates of centre of curvature of xy = 3 at (3,1) is_____
- $\int_{0}^{1} \int_{0}^{2} xy^{2} dy dx =$ 12.
- $\int_0^a \int_0^x \int_0^y xyzdxdydz = \underline{\qquad}$ 13.
- The length of arc from 0 to π of x=a $(\theta + \sin \theta)$ $y=a(1+\cos \theta)$ is _____ 14.
- If $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$, x = X+h, y = Y+k then the values of h and k are _____ 15.
- Envelope of $y = mx + \frac{2}{m}$ is _____ 16.
- The curve $r = a(1 + \cos \theta)$ is symmetrical about _____ 17.
- $\int_{\alpha}^{\pi} \int_{\alpha}^{a\cos\theta} r\sin\theta dr d\theta$ 18.
- In Evaluating $\iint xy(x+y)dxdy$ over the region between $y=x^2$ and y=x, the limits are _____ 19.
- The integrating factor of $(x+2y^3)\frac{dy}{dx} = y$ is_____ 20.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I B.Tech. II Mid Examinations, February – 2012 MATHEMATICS – I

Objective Exam

	Objective Exam					
Name: _	Hall Ticket No.			A		

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

I. Choose the correct alternative:

$\frac{dx}{dx} = \frac{x-y}{x-y}$	1.	The differential equation reduced from $\frac{dy}{dx} = \frac{x+y}{x-y}$ is	[]
-----------------------------------	----	---	---	---

(a)
$$\frac{(1+v)dv}{1+v^2} = \frac{dx}{x}$$
 (b) $\frac{(1+v)dv}{1-v^2} = \frac{dx}{x}$

(c)
$$\frac{(2+v)dv}{1-v^2} = \frac{dx}{x}$$
 (d) $\frac{(1-v)dv}{1+v^2} = \frac{dx}{x}$

2. The nature of the differential equation
$$y \sin 2x dx - (y^2 + \cos^2 x) dy = 0$$

- (a) Homogeneous (b) Linear (c) Bernoulli (d) Exact
- 3. The integrating factor of $e^y \left(\frac{dy}{dx} + 1\right) = e^x$ is
 - (a) e^x (b) $e^{x/2}$ (c) e^{-x} (d) x
- 4. The radius of curvature for the curve $(at^2, 2at)$ s
 - (a) $2a(1+t^2)$ (b) $a(1+t^2)^2$ (c) $\frac{2a(1+t^2)^{3/2}}{t^2}$ (d) $2a(1+t^2)^{3/2}$
- 5. The curve $x = a\cos^3 t$, $y = a\sin^3 t$ is symmetrical about the line
 - (a) x = 0 (b) y = 0 (c) x = 0, y = 0 (d) y = x, y = -x
- 6. The tangents to the curve $y^2 = x^2 \frac{(a+x)}{a-x}$ at the origin are
- (a) x = 0, y = 0 (b) $x = \pm a$ (c) $y = \pm x$ (d) y = 0 and y = a
- 7. After transforming to polar coordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy =$ []
 - (a) $\int_0^{\pi/2} \int_0^1 e^{-r^2} dr d\theta$ (b) $\int_0^{\pi/2} \int_0^1 e^{-r^2} r dr d\theta$
 - (c) $\int_0^{\pi/2} \int_0^{\infty} e^{-r^2} r dr d\theta$ (d) $\int_0^{\pi/2} \int_0^{\infty} e^{-y^2} r dr d\theta$
- 8. The orthogonal trajectories of xy = c is
 - (a) $x^2 + y^2 = a^2$ (b) $x^2 y^2 = a^2$ (c) $x^2 + 2x = c$ (d) $y^2 2x = c$

- 9 The rate of bending of a curve in any interval is the
 - (a) radius of curvature
- (b) curvature
- (c) evolute
- (d) envelope
- 10. Radius of curvature at (0,0) of $x^3 + 3x^2y 4y^3 + y^2 6x = 0$ is

[

]

]

- (a) 6
- (b) 2
- (c) 3
- (d) 0

II Fill in the Blanks

- 12. The length of arc from 0 to π of $x = a (\theta + \sin \theta) y = a(1 + \cos \theta)$ is _____
- 13. If $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$, x = X+h, y = Y+k then the values of h and k are _____
- 14. Envelope of $y = mx + \frac{2}{m}$ is _____
- 15. The curve $r = a(1 + \cos \theta)$ is symmetrical about _____
- 16. $\int_0^{\pi} \int_0^{a\cos\theta} r\sin\theta dr d\theta$
- 17. In Evaluating $\iint xy(x+y)dxdy$ over the region between $y=x^2$ and y=x, the limits are ______
- 18. The integrating factor of $(x+2y^3)\frac{dy}{dx} = y$ is_____
- 19. The x-coordinates of centre of curvature of xy = 3 at (3,1) is_____
- 20. $\int_0^1 \int_0^2 xy^2 dy dx =$ _____