M.Tech - I Semester [R09] Regular/Supplementary Examinations, April - 2012

RANDOM VARIABLES & STOCHASTIC PROCESS (Control Systems)

Time	: 3 Hours		M	ax Marks: 60
Answer any FIVE questions. All questions carry EQUAL marks.				
1.	a. State and Prove Bab. Present the axiom	ayes Theorem. atic approach of probability.		(6M+6M)
2.	2. a. Obtain the variance of a uniformly distributed random variable.			
	b. Prove that	$f_X(x/X \le b) = \begin{cases} \frac{f_X(x)}{\int_{-\infty}^b f_X(a) dx} \\ 0 \end{cases}$	$\begin{array}{l} x < b \\ x \ge b \end{array}$	(6M+6M)

- 3. a. If X is a zero mean Gaussian random variable find the density of Y =CX², where C is a real constant >0
 - b. Show that characteristic functional Gaussian Random variable is $e^{-\left(\frac{\sigma_{K}^{2}\omega^{2}}{2}\right)}$ (6M + 6M)
- 4. a. X and Y are statically independent random variables and W = X + Y. Find the density of 'W'
 - b. The radial "miss -distance" of landings from parachuting sky drivers, as measured from a target's center, is a Rayleigh random variable with $b = 800m^2$ and a = 0. The target is a circle of 50m radius with a bull's eye of 10m radius. Find the probability of a parachute hitting the bull's eye given that the landing is on the (6M + 6M)target.
- 5 a. Define random process and present the detailed classification of random processes.

b.Explain stationarity in strict and weak sense using necessary relations. (6M+6M)

- 6 a.R_{xx}(τ) is the autocorrelation function of a WSS random process where $R_{XX}(\tau) = 25 + (4 / (1+6\tau^2))$, find mean & variance of X(t). b.Write the necessary conditions for a random process to be ergodic.
 - c.State and prove any two properties of autocorrelation function. (5M+2M+5M)
- a. State & Prove Wiener Khintchine relations. b. Given $R_{XX}(\tau) = (A_0^2/2) \cos \omega_0 \tau$, Find $S_{XX}(\omega)$ (9M+3M)
- 8. Write notes on :
 - a. Bandlimited random process.
 - b. Effective noise temperature.
 - c. Average noise figure.

* * *

(4+4+4)