Subject Code: C9511

M.Tech - I Semester [R09] Regular/Supplementary Examinations, April - 2012

## DIGITAL CONTROL SYSTEMS

(Control Systems)

Time: 3 Hours

Max Marks: 60

## Answer any FIVE questions. All questions carry EQUAL marks.

- 1. a State the advantages and disadvantages of digital data systems?
  - b. With a suitable circuit, explain the operation of sampler and hold devices. Also derive
    the transfer function of zero-order hold. [4M+8M]
- 2. a. Obtain the z? Transform of the following x(k)-(.)  $/ 0k(2^{123}) 4 2^5 + 6$ , k/0,1,2, ..... Assume that x(k)/0 for k<0.
  - b. Obtain the inverse z-transform of the following

i.9(:) 
$$\frac{1}{(1,23)^{5}}$$
 and  
ii. 9(:)  $\frac{1}{(32;7)^{6}}$ 

[4M+4M+4M]

6. The weighting sequence of a linear discrete-data system is

$$C(.) / D_0^{0.1E(0.F)^1} = 0.1E(0.4)^1$$
 - G 0

- (i). Find the transfer function G(Z) of the system.
- 4. Construct the bode diagram of the open loop transfer function G(Z)/C(z)/E(Z) with  $Z/e^{iwt}$ ,  $0 \le U \le U_V/2$  for the system  $W_X(Y)/\frac{=(V < 3)}{V(V < =)}$ , T/0.Es. Determine in the gain margin and phase margin of the system. [12M]
- E. Find the block diagrams of direct programs for the digital controllers given

a. 
$$[(\) / \frac{(;2].^{`a})(;2].abc)}{(;23)(;<].==)(;<]._)$$
b.  $[(\) / \frac{3...<]...;?@<;?>}{32;?@}$ 
c.  $[(\) / \frac{].=2].a;?@<].=;?>}{32]._;?@2].^;?>}$ 

[4M+4M+4M]

## Subject Code: C9511

- 6. a. Give the properties of state transition matrix.
  - Find the state transition equations of the following systems by means of the state diagram method.

$$-(.+1) / d-(.) + ef(.)$$

The initial states are given as -(0)

$$d \neq g_{0.E}^{0} = 0.6^{h}, e \neq g_{1}^{0}h$$
 [4M+8M]

Given the discrete data control system

Where

$$d / g_{42}^{0} = {}_{46}^{1} h, e / g_{1}^{0} h, [ / [1 \ 41] ]$$

The control is realized through state feedback,

$$f(.)/4W(.)/4[C_3 C_=]-(.)$$

Where  $g_1$  and  $g_2$  are real constants. Determine the values of  $g_1$  and  $g_2$  that must be avoided for the system to be completely observable. [12M]

- 8. a. Discuss about dead beat control?
  - b. Consider the system given by

$$j_{-=(.+1)}^{-3(.+1)} k / g_{40.1F}^{0} = \frac{1}{41} h j_{-=(.)}^{-3(.)} k + g_{1}^{0} h f(.)$$

Determine the state feedback gain matrix 'k' such that when the control signal is given by f(.) / 4.-(.) the closed system exhibits the dead beat response. [4M+8M]