M.Tech - I Semester [R09] Regular/Supplementary Examinations, April - 2012

COMPUTATION TECHNIQUES and OPTIMIZATION

(Control Systems)

Max Marks: 60

Time: 3 Hours

Answer any FIVE questions. All questions carry EQUAL marks.

- 1. a. Find the root of the equation $x^3 x 11 = 0$, correct to 4 decimals using bisection method
 - b. Solve the system of equations

$$3x_1 - 6x_2 - 3x_3 = -3$$
$$2x_1 + 6x_3 = -22$$
$$-4x_1 + 7x_2 + 4x_3 = 3$$

by using LU decompostion method?

 Use Lagrange's interpolation formula, find the values of y when x =10, from the following table

> x: 5 6 9 11 y: 12 13 14 16

b. Find the curve of best fit of the type $y = ae^{bx}$ to the following data by method of least squares

x: 1 5 7 9 12 y: 10 15 12 15 21

- Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using (i) simpson's $\frac{1}{3}$ rule taking $h = \frac{1}{4}$ (ii) simpson's $\frac{3}{8}$ rule taking $h = \frac{1}{6}$
- a. Use Milne's predictor corrector method to obtain the solution of the equation $\frac{dy}{dx} = x y^2$ at x =0.8, given that y(0) = 0.0000, y(0.2) = 0.0200, y(0.4) = 0.0795, y(0.6) = 0.1762
 - b. Use Runge-Kutta method to find y when x = 1.2 n steps of 0.1 given that $\frac{dy}{dx} = x^2 + y^2$ and y(1) = 1.5
- 5 Solve the following problem by simplex method

$$Maxmize Z = x_1 - x_2 + 3x_3$$

Subject to

$$x_1 + x_2 + x_3 \le 10$$

$$2x_1 - x_3 \le 2$$

$$2x_1 - 2x_2 + 3x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

Subject Code: C9517

- Show that the function $f(x) = x_2$, $0 \le x \le 1$, f(x) = 2 x, $0 \le x \le 1$, is unimodel in (0, 2). Use the Fibonacci method to find its maximal point with in an interval of uncertainty 0.1
- 7 Solve

Maxmize
$$Z = 3X_1^2 + 14X_1X_2 - 8X_2^2$$

Subject to $3X_1 + 6X_2 \le 72$
 $X_1, X_2 \ge 0$

by using Kuhn - Tucker conditions?

- 8 a. Distinguish between CPM and PERT
 - b. Define the following
 - (i) Total float
 - (ii) Free float
 - (iii) Critical path