1. If the ground state energy of H-atom is 13.6 eV, the energy required to ionize an H-atom from second excited state is :							
A. 1.51 eV	B. 3.4 eV	C. 13.6 eV	D. 12.1 eV				
2. The binding energy per nucleon is maximum in case of:							
A. 2He^4	B. $_{26}$ Fe ⁵⁶	C. ${}_{56}Ba^{14}$	D. $_{92}U^{23}$				
3. The energy of a pho							
A. hc λ	B. hc/ λ	C. λ /hc	D. $h\lambda/c$				
4. Radio waves of cons	stant amplitude can be ge	enerated with :					
A. rectifier	B. filter	C. FET	D. oscillator				
5. Great bear is a							
A. Star	B. Galaxy	C. Constellation	D. Planet				
6. Monoclinic crystal l	attice has dimensions						
A. $\alpha = \beta = \gamma$ C. $\alpha \neq \beta \neq \gamma$		B. $\alpha = \beta = 90^{\circ}, \gamma \neq 90^{\circ}$ D. None of these					
C. $\alpha \neq \beta \neq \gamma$		D. None of these					
7. Which of the follow	ing relations is correct?						
A. $E^2 = pc^2$	B. $E^2 = p^2 c$	$C. E^2 = p^2 c^2$	D. $E^2 = p^2/c^2$				
8. During nuclear disin	tegration, the following	is true					
A. mass in conserved C. kinetic Energy is co	nserved	B. energy is conserved D. momentum is conserved	rved				
		D. momentum is conse.	i vod				
9. The nucleus forces a A. charge-dependent		C. charge-symmetric	D. long range				
10. During radio-active A. X-rays	e decay, the negative cha	rged particle is emitted b B. β emissions	ecause of				
C. Transmutation of ne	eutron into proton	D. None of these					
11. Particle in β - deca	v is						
A. Neutron	B. Proton	C. Electron	D. Photon				
12. Energy in stars is p	roduced by						
A. fusion	B. fission	C. radioactive decay	D. artificial				
		, i i i i i i i i i i i i i i i i i i i	transmutation				

13. Atomic packing fraction in *bcc* lattice is

A. $1/\sqrt{\pi}$	B. $\sqrt{\pi}$	C. $\pi / \sqrt{2}$	D. None of these					
14. The count of α - particles decreases from 28,800 to 1,800 in 48 hours, the half-life of this radioactive element will be								
A. 4 hours	B. 8 hours	C. 12 hours	D. 16 hours					
15. Binding energy will be maximum in the case of								
A. He ³	B. He ²	$C. H^2$	D. He ⁴					
16. Binding energy per	nucleon in heavy nuclei	is of the order of						
A. 8 MeV	B. 8 eV	C. 80 eV	D. 80 MeV					
17. Complete the series	$s He^{6}> e + Li^{6} + ?$							
A. nutrino	B. anti-nutrino	C. proton	D. neutron					
18. Line spectrum can	be obtained from							
A. Sun	B. Candle	C. Mercury Vapour Lamp	D. Electric Bulb					
	st Bohr's orbit in a Hydro	-						
A. $0.53 \times 10^{-10} \text{ cm}$ C. 2.73 x 10^{-10} cm		B. 0.53 x 10 ⁻⁸ cm D. 2.73 x 10 ⁻¹² cm						
20. What is the energy	of an electron of Hydrog	gen in its ground state?						
A13.6 eV	B. 0	C. infinity	D. 13.6 eV					
21. What is the rest ma	uss of a photon ?		25					
A. 0	B. 13.6 eV	C. 1 MeV	D. 3.1 x 10 ⁻²⁷ kg					
22. Two lenses of pow	ers 12D and - 2D are pla	0	ed focal length will be					
A. 1 cm	B. 10 cm	C. 100 cm	D. 1000 cm					
23. The critical angle is	s maximum when light tr	avels from						
A. water to air	B. glass to air	C. glass to water	D. air to water					
	back falls forward when	• •	. This is due to					
A. inertia of horseC. large weight of the l	horse	B. inertia of riderD. losing of the balance	2					
c. mige weight of the		2. Iosnig of the balance						
25. Fundamental partic	ele in an electro-magnetic	e wave is						
A. photon	B. electron	C. phonon	D. proton					

26. The wavelength is least in case of									
A. γ -rays	B. X-rays	C. infrared	D. ultraviolet						
27. The speed of electro-magnetic radiation in vacuum is									
A. $\mu_0 \epsilon_0$	B. $\sqrt{(\mu_0 \epsilon_0)}$	C. $1/\mu_0 \epsilon_0$	D. $1/\sqrt{(\mu_0 \epsilon_0)}$						
28. Power factor in <i>LC</i> oscillations is									
A. 0	B. 1	C. 1/4	D. $1/\sqrt{2}$						
29. 220 V is changed to what is the current in the	o 2,200 V through a step he secondary?	-up transformer. Th curr	ent in primary is 5 A,						
A. 5 A	B. 50 A	C. 0.5 A	D. 500 A						
 30. When a bar is placed near a strong magnet, it is repelled, then the material of the bar is A. Dimagnetic C. Paramagnetic D. Anti-ferrimagnetic 									
31. Electron enters into	a magnetic field at an a	ngle of 60°, its path will	be						
A. straight line	B. circle	C. parabola	D. helix						
32. One electron is mo	ving in electric and mag	netic fields, it will gain e	nergy from:						
A. electric field	B. magnetic field	C. both of these	D. none of these						
33. Force acting on a c the magnetic field of 1	onductor of length 5 m c .5 tesla is	arrying current 8 ampere	es kept perpendicular to						
A. 10 N	B. 100 N	C. 15 N	D. 50 N						
34. If $E = at - bt^3$, the	neutral temperature is								
A2a/b	B2b/a	C. $\sqrt{(a/3b)}$	Db/2a						
35. The charge carriers in an electrolyte are									
A. negative ions	B. positive ions	C. both A and B	D. none of these						
36. When 4 equal resistors are connected in series with a battery and dissipate a power of 10 W, what will be the power dissipated through any of them if it is individually connected across the same battery?									
A. 40 W	B. 10/3 W	C.90W	D.10W						

37. Cell of emf 1 volt is connected across a potentiometer, balancing length is 600 cm. What will be the balancing length for 2.5 volts ?

A. 400 cm B. 600 cm C. 1500 cm D. 1200 cm

38. A Wire of resistanc A. 4 R	e <i>R</i> is stretched to twice B. R/9	its original length, what C. 3 R	is its new resistance ? D. R/3					
39. The charge carriersA. electronsC. phonons	in super-conductors are	B. protons D. photons						
	40. 8 drops of mercury are combined to form a bigger single drop. The capacitance of a single big drop and of the single small drop will be in the ratio							
A. 2 : 1	B. 1 : 8	C. 8 : 1	D. 1 : 2					
41. A dipole is placed i angle between its axis a		l, its potential energy wil	ll be minimum when the					
A. 0	Β. π	C. π /2	D. 2π					
42. Charge of 2 c is pla through one face ?	ced at the centre of a cul	be of volume 8 cc, what i	is electric flux passing					
A. $1/(3\epsilon_0)$	B. (1/2) ε ₀	C. $2/\epsilon_0$	D. $3/\epsilon_0$					
43. 1 MeV is A. 1.6 x 10 ⁻ B. 1.6 x 10 ⁻¹⁹ J ⁻¹³ J	$^{-}$ C. 1.6 x 10 ⁻ D. 1.6 x 10 ⁻ J 9 J)-						
-	ency of a sonometer wire acreased 3 times, what is	e is <i>n</i> , if the tension is ma the new frequency ?	ade 3 times and length					
A. n/3√ 3	B. 3n	C. √ 3 n	D. 3√3 n					
	•	iver of a taxi which is ap acy 300 Hz ? Velocity of B. 15 D. 25	1 0					
46. A person is standing on a railway platform and a train is approaching, what is the maximum wavelength of sound he can hear ? Given wavelength of whistle = 1 m; speed of sound in air = 330 m/s ; speed of the train = 36 km/hr .								
A. 1 m	B. 32/33 m	C. 33/32 m	D. 12/13 m					
47. Velocity of sound in open-ended tube is 330 m/s , the frequency of waves is 1.1 kHz and the length of tube = 30 cm , which harmonic will it emit ?								
A. 2nd 48. If both sprong cons increased to $4K_1$ and K be the new frequency, i	2 respectively, what will	C. 4th	D. 5th					

frequency?

A.f	B. 2 <i>f</i>	K1 K2
C. (1/2) f	D. 4 <i>f</i>	

49. The radii of two drops are in the ratio 3 : 2, their terminal velocities areA. 9 : 4B. 2 : 3C. 3 : 2D. 2 : 9

50. When a body is raised to a height R (which is the radius of earth), the change in its P.E. will be

A. mgR B. 2 mgR C. mgR/2 D. 4 mgR

51. If the length of a simple pendulum is tripled, what will be its new time period? (T =original time period)

A. 0.7 *T* B. 1.7 *T* C. *T*/2 D. *T*

52. A pendulum of length 2m left at P. When it reaches Q, it looses 10% of its total energy due to air resistance. The velocity at Q is

PO

A. 6m/s B. 1m/s C. 2m/s D. 8m/s

53. A lift is falling freely under gravity, what is the time period of a pendulum attached to its ceiling ?

A. zero B. infinity C. one D. two second second

54. What is the ratio of the moment of inertia of two rings of radius *r* and *nr* respectively about an axis perpendicular to their plane and passing through their centres? A. $1: n^2$ B. 1: n C. 1: 2n D. $n^2: 1$

55. Beta-particle is emitted from the nucleus of mass number A, with velocity V, what is the recoil speed of the nucleus?

A. $M_e V/(A - M_e)$ B. 4V/(A + 4) C. V D. V/(A - 4)

56. If an alpha particle collides head-on with the nucleus, what is the impact parameter ?A. zeroB. infinityC. 10^{-10} mD. 10^{10} m

57. If momentum decreases by 20%, kinetic energy will decreaseA. 40%B. 36%C. 18%D. 8%

58. If two balls are projected at angles 60° and 45° and the total heights reached are same, what is the ratio of their initial velocities ?

A. $\sqrt{3}: \sqrt{2}$ B. $\sqrt{2}: \sqrt{3}$ C. 3:2D. 2:359. Which one is a vector quantity ?

A. heat B. couple C. energy D. volume

60. Gravel is dropped on to a conveyor belt at a rate of 0.5Kg s⁻². The extra force in Newton required to keep the belt moving at 2 ms^{-2} is A. 1 C. 4 B 2 D. 5 61. An element with atomic number 20 is B. an A. an alkali C. a D. a noble alkaline metal halogen gas earth metal 62. When supercooled water suddenly freezes, the free energy of the system A. increases B. decreases C. remains same D. becomes zero 63. The density of neon is highest at A. STP B. 0° C, 2 atm C. 273°C, 1 atm D. 273°C, 2 atm 64. Cadmium in a nuclear reactor acts as A. nuclear fuel B. neutron absorber C. a moderator D. neutron liberator to start the chain 65. The end product of 4π series D. 82Bi²⁰⁴ A. ${}_{82}Pb^{203}$ B. 92Pb²⁰⁷ C. 82Pb²⁰⁸ 66. Haemoglobin is a co-ordination compound in which the central metal atom is A. iron B. cobalt C. sodium D. manganese 67. The element californium belongs to the family of D. alkali B. alkaline C. A. actinide earth lanthanide metal series family series family 68. The coloured discharge tube for advertisements contain C. helium A. argon B. xenon D. neon 69. Which of the following is the strongest base? A. PH₃ C. NH₃ D. SbH₃ B. AsH₃ 70. Canizzaro reaction is not given by A. B. Acetaldehyde C. Benzaldehyde D. Formaldehyde Triethylacetaldehyde 71. Which of the following statements is not true for alcohols? A. Lower alcohols have fiery pungent and strong smell B. As molecular mass increases, boiling point also increases

C. Lower alcohols are water insoluble and their solubility increases with molecular weight

D. Lower alcohols are water insoluble and their solubility decreases with molecular weight

72. Formaldehyde when heated with CH₃CH₂CH₂MgBr gives B. Secondary alcohol C. Tertiary alcohol A. Primary alcohol D. Acetone 73. A compound of molecular formula C₃H₈O on oxidation gives a compound of formula $C_3H_6O_2$. The original compound is Β. A. Primary C. D. Tertiary Secondary Aldehyde alcohol alcohol alcohol 74. The increasing order of size of F^- , Cl^- , Br^- , I^- is A. $I^{-} < Br^{-} < Cl^{-} < F^{-}$ B. $I^{-} < Cl^{-} < Br^{-} < F^{-}$ C. $F^{-} < Cl^{-} < Br^{-} < I^{-}$ D. $Br^{-} < Cl^{-} < F^{-} < I^{-}$ 75. Which of the following series contains only nucleophiles? B. NH₃, ROH, H₂O C. H_2O , H_3O^+ , SO_3 D. None of these A. NH₃, H₂O, AlCl₃ 76. The formula of acetonitrite is A. CH₃COCH B. CH₃CN C. CH₃CH₂CN D. CH₃CONH₂ 77. The IUPAC name of CH₃CONH₂ is A. Propionaldehyde B. Acetamide C. Ethanamide D. Ethylamine 78. The rate of reaction increases with temperature because A. threshold energy increases B. kinetic energy of molecules increases C. effective collision increases D. none of the above 79. If the graph of concentration of A versus time for completion of reaction is a straight line, then the order of the reaction is B. second C. first A. zero D. third 80. The decomposition of hydrogen peroxide $2H_2O_2 \rightarrow 2H_2O + O_2$ is C. second order A. zero order reaction B. first order reaction D. third order reaction reaction 81. The half-life period of a first order process is 1.6 min⁻¹. It will be 90% complete in A. 0.8 min B. 3.2 min C. 5.3 min D. 1.6 min 82. Which of the following is an electrophile? B. CN⁻ A. AlCl₃ C. NH₃ D. CH₃OH 83. Molarity of a solution is the number of A. moles of solute per litre of solution B. moles of solute per 100 gm of the solution C. gram molecular weight of solute dissolved per litre of the solution

D. gram equivalents of	solute dissolved per litre	e of solution		
 84. The hybridisation in A. sp³ 85. Which of the follow A. Deoxyribose B. Starch 	B. sp^2	C. dsp ³	D. d ² sp ³	
86. Propyne when treat A. Acetone	ed with H ₂ SO ₄ in presen B. Propionaldehyde		D. Propanoic acid	
87. The general formula A. C_nH_{2n+2}	a for alkyne is B. CnH _{2n}	C. C_nH_{2n-2}	D. C _n H _n	
A. molecular symmetry C. external compensation	on	b the presence ofB. molecular asymmetryD. two asymmetric carbon atoms		
alkali metals?	ving electronic configura B. (n - l) s ² p ⁶ d ¹⁰ ns ¹		ell is characteristic of D. ns ² p ⁶ d ¹	
	B. hot water e is placed in a solution of colour. This is due to the		D. acetic acid	
colour with	ed with hydrochloric aci		-	
A. $K_4Fe(CN)_6$	B. KCN	C. $K_3Fe(CN)_6$	D. KSNC	
93 The ignition mixtureA. magnesium powderC. magnesium and alum			, aluminium powder and	

94. One of the most im	portant use of quick lime	e is		
A. as a purgative	B. drying gases and alcohols	C. in bleaching silk	D. dyeing cotton	
95. In preparing Cl_2 from A. dehydrating agent	om HCl, MnO ₂ acts as a/a B. reducing agent	an C. catalytic agent	D. oxidising agent	
96. Seaweed is an impoA. chlorine97. Nitrates of all metaA. unstable B. stable	B. iodine	C. fluorine	D. bromine	
98. Ostwald's method i A. HNO ₃	is used for manufacture of B. NO ₂	of C. NO	D. P ₂ O ₅	
99. Magnesium reactssuch reactions, magnesA. oxidationC. neither oxidation no	-	lrogen and correspondin B. reduction D. simple dissolution	g magnesium salts. In	
100. An acidic buffer s A. ammonium chloride	olution can be prepared	by mixing solution of B. H ₂ SO ₄ and Na ₂ SO ₄ D. ammonium acetate and acetic acid		
C. acetic acid and sulpl			and acetic acid	
C. acetic acid and sulpl		D. ammonium acetate	and acetic acid D. CCl4	
C. acetic acid and sulpl 101. Which of the follo A. BF ₃	huric acid owing is not a Lewis acid B. AlCl ₃ methane and oxygen are	D. ammonium acetate a l? C. SnCl ₄	D. CCl ₄	
 C. acetic acid and sulple 101. Which of the following A. BF₃ 102. Equal weights of a fraction of total pressure A. 1/2 103. HI was heated in a 	huric acid owing is not a Lewis acid B. AlCl ₃ methane and oxygen are	D. ammonium acetate a l? C. SnCl ₄ mixed in an empty conta C. 2/3 l the equilibrium was	D. CCl ₄ ainer at 25°C. The D. 1/3 x (273/298)	
 C. acetic acid and sulple 101. Which of the follow A. BF₃ 102. Equal weights of a fraction of total pressure A. 1/2 103. HI was heated in a reached. HI was found for dissociation is A. 0.282 B. 1.99 104. The molar heat of condensation of water from the state of the sta	huric acid wing is not a Lewis acid B. AlCl ₃ methane and oxygen are re exerted by oxygen is B. $1/3$ a sealed tube at 440°C til to be 22% decomposed. C. 0.0199 D. 0.0796 vaporisation Δ H _{vap} for v	D. ammonium acetate a ? C. SnCl ₄ mixed in an empty conta C. 2/3 I the equilibrium was The equilibrium constan water is 2079 cal mol ⁻¹ ,	D. CCl ₄ iner at 25°C. The D. 1/3 x (273/298) t	
 C. acetic acid and sulple 101. Which of the follow A. BF₃ 102. Equal weights of a fraction of total pressure A. 1/2 103. HI was heated in a reached. HI was found for dissociation is A. 0.282 B. 1.99 104. The molar heat of 	huric acid wing is not a Lewis acid B. AlCl ₃ methane and oxygen are re exerted by oxygen is B. 1/3 a sealed tube at 440°C til to be 22% decomposed. C. 0.0199 D. 0.0796 vaporisation Δ H _{vap} for vis	D. ammonium acetate a ? C. SnCl ₄ mixed in an empty conta C. 2/3 I the equilibrium was The equilibrium constan	D. CCl ₄ iner at 25°C. The D. 1/3 x (273/298) it therefore, molar heat of	
 C. acetic acid and sulple 101. Which of the follow A. BF₃ 102. Equal weights of a fraction of total pressure A. 1/2 103. HI was heated in a reached. HI was found for dissociation is A. 0.282 B. 1.99 104. The molar heat of condensation of water a A. + 2079 cal mol⁻¹ 	huric acid wing is not a Lewis acid B. AlCl ₃ methane and oxygen are re exerted by oxygen is B. 1/3 a sealed tube at 440°C til to be 22% decomposed. C. 0.0199 D. 0.0796 vaporisation Δ H _{vap} for v is ll mol ⁻¹	D. ammonium acetate a P? C. SnCl ₄ mixed in an empty conta C. 2/3 I the equilibrium was The equilibrium constant water is 2079 cal mol ⁻¹ , B 2079 cal mol ⁻¹	D. CCl ₄ iner at 25°C. The D. 1/3 x (273/298) it therefore, molar heat of	

A. Anthracite	B. Bituminous	C. Peat	D. Lignite	
107. Among N ³⁻ , O ²⁻ , A. N ³⁻	107. Among N $^{3-}$, O $^{2-}$, F $^{-}$, and Na $^{+}$, which one 2 A. N $^{3-}$ B. O $^{2-}$		D. Na ⁺	
A. 12th 109. A mixture of 200 r proportion at STP is exp	idiometer immediately a	C. 8th oxygen in equal What will be the nature	D. 10th	
110. If 9.8 gm of hexan A. 6	ne bums completely in ox B. 0.6	cygen, how many moles C. 0.9	of CO ₂ is produced? D. 1.2	
111. Which one of the b A. NaNO ₃	following nitrates does n B. Pb(NO ₃) ₂	ot give NO ₂ on heating? C. AgNO ₃	D. Cu(NO ₃) ₂	
112. Which has lowest A. N	1st I.P.? B. Be	С. В	D. C	
113. The oxidation state A 3 to $+ 5$	es of phosphorus vary fro B 1 to + 1	om C 3 to + 3	D 5 to + 1	
A 5 to + 5 B 1 to + 1 114. The molecular velocity of any gas is A. proportional to the absolute temperature C. proportional to the square root of the absolute temperature 115. Which of the following is an endothermic reaction? A. $2H_2$ + $O_2 \rightarrow$ $2H_2O$ C. $2NaOH$ D. C_2H_5OH + $H_2SO_4 \rightarrow$ + $3O_2 \rightarrow$ Na_2SO_4 $2CO_2$ +		B. proportional to the settemperatureD. independent of the a	-	

 $+2H_2O$ $3H_2O$

116. A solution of sodium sulphate in water is electrolysed between inert electrodes. The product at the cathode and anode are respectively A. H₂, O₂ D. O₂, SO₂ B. O₂, H₂ $C. H_2, Na$ 117. Bauxite mineral containing iron as impurity is purified by B. Electrolytic process C. Hoope's process A. Baever's process D. Serpeck's process 118. Butter of tin is represented by A. SnCl₂.3H₂O B. SnCl₂.5H₂O C. SnCl₂.6H₂O D. SnCl₂.8H₂O 119. Which group activates the benzene ring towards electrophilic substitution? A. bezo group B. amino group C. acetyl group D. carbyl group 120. Phenol is less acidic than A. ethanol B. propenol C. p-nitrophenol D. none of the above 121. The lines 3x - 4y + 4 = 0 and 6x - 8y - 7 = 0are tangents of the same circle. The radius of this circle is **B**. 1/4 C. 3/4 A. 1/2 D. 2 122. The three dice are thrown simultaneously, then the probability of getting a score of 7 is C. 1/36 D. none of the above A. 1/6 B. 5/216 123. Set A has 3 elements and set B has 4 elements. This number of injections (one to one mapping) that can defined from A to B is A. 24 D. none of the above **B**. 144 C. 12 124. If θ is the angle between vectors a and b and | a x b | = | a.b |, then θ is equal to A. 0° **B**. 180° C. 135° D. 45° 125. The number $\log_{20} 3$ lies in A. (3/4, 4/5) B. (1/3, 1/2) C. (1/2, 3/4) D. (1/4, 1/3) 126. For $x_1, x_2, y_1, y_2 \in \mathbb{R}$, if $0 < x_1 < x_2, y_1 = y_2$ and $z_1 = x_1 + i y_1, z_2 = x_2 + i y_2$ and $z_3 = 1/2(z_1 + i y_2)$ z_2), then z_1 , z_2 , and z_3 satisfy C. $|z_1| < |z_2| < |z_3|$ D. $|z_1| = |z_2| = |z_3|$ A. $|z_1| < |z_3| < |z_2|$ B. $|z_1| > |z_2| > |z_3|$ 127. The complex number which satisfies the equation $z + \sqrt{2} |z + 1| + i = 0$ is B. -2 - i A. 2 - i C. 2 + iD. -2 + i

128. The equation of the line with slope -3/2 and which is concurrent with lines 4x + 3y - 7 = 0 and 8x + 5y - 1 = 0 is

A. $2y - 3x - 2 = 0$	B. $3x + 2y - 2 = 0$	C. $3x + 2y - 63 = 0$	D. none of the above
----------------------	----------------------	-----------------------	----------------------

129. The parabola $y^2 = 4ax$ passes through the point (2, -6), then the length of its latus rectum is A. 9 B. 16 C. 18 D. 6

130. The equation of the conic with focus at (1, -1) directrix along x - y + 1 = 0 and with eccentricity $\sqrt{2}$ is

A. xy = 1B. 2xy + 4x - 4y - 1 = 0 C. $x^2 - y^2$ D. 2xy - 4x + 4y + 1 = 0

131. If the radical axis of the circles $x^2 - y^2 + 2gx + 2fy + c = 0$ and $2x^2 + 2y^2 + 3x + 8y + 2c = 0$ touches the circle $x^2 + y^2 + 2x + 2y + 1 = 0$, then A. g = 3/4 or f = 2 B. $g \neq 3/4$ and f = 2 C. g = 3/4 or $f \neq 2$ D. none of the above

132. If $\tan \theta + \sec \theta = \sqrt{3}$, $\theta < \pi$, then θ is equal to or least positive value of θ is A. $5\pi/6$ B. $2\pi/3$ C. $\pi/6$ D. $\pi/3$ 133. The roots of the equation $4x^2 + 2\sqrt{5x} + 1 =$ 0 are A. $\cos 18^\circ$, B. $\sin 18^\circ$, C. $\sin 18^\circ$, D. $\sin 36^\circ$, $\cos 36^\circ$ $\cos 18^\circ$ $\cos 36^\circ$ $\sin 18^\circ$

134. From the bottom of a pole of height h, the angle of elevation of the top of a tower is α . The pole subtends an angle β at the top of a tower. The height of the tower is

A. $[h \sin \alpha \sin(\alpha - \beta)]/\sin \beta$ B. $[h \sin \alpha \cos(\alpha + \beta)]/\sin \beta$ C. $[h \sin \alpha \cos(\alpha - \beta)]/\cos \beta$ D. $[h \sin \alpha \sin(\alpha + \beta)]/\cos \beta$

135. If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$, then the value of $\cos(\theta + \pi/4)$ is A. $2/\sqrt{2}$ B. $1/\sqrt{2}$ C. $-1/\sqrt{2}$ D. $1/2/\sqrt{2}$

136. If $4 \le x \le 9$, then A. $(x - 4) (x - 9) \le 0$ B. $(x - 4) (x - 9) \ge 0$ C. (x - 4) (x - 9) < 0 D. (x - 4) (x - 9) > 0

137. The circle $x^2 + y^2 + 4x - 7y + 12 = 0$ cuts an intercept on y-axis equal to A. 7 B. 4 C. 3 D. 1

138. If α and β are the roots of the equation $x^2 - p(x + 1) - q = 0$, then the value of $[(α^2 + 2α + 1)/(α^2 + 2αv + q)] + [(β^2 + 2β + 1)/(β^2 + 2β + q)]$ is A. 1 B. 0 C. 3 D. 2 139. For $x \in R$, if $mx^2 - 9mx + 5m + 1 > 0$, then m lies in the interval A. [-61/4, B. [4/61, C. [0, 4/61] D. - [-4/61, 0] 0]

140. If a, b, c are positive real numbers, then the number of real roots of the equation $ax^2 + b x + c = 0$ is						
A. 0	B. 2	C. 4	D. none of the above			
141. If $a^{x} = b^{y} = c^{z}$ and A. G.P.	a, b, c are in G.P., then y B. A.P.	x, y, z are C. H.P.	D. none of the above			
142. Let $\cos x = b$. For A. $\sqrt{3/2}$	what b do the roots of th B. 1/2	ne equation form an A.P. C1	? D. none of the above			
143. Coefficient of x ⁴ i A. 5/24	n the expansion of (1 - 3 B. 4/25	x - x ²)/e ^x is C. 24/25	D. 25/24			
A. 6 145. In a steamer, there and there are cows, how	0, 5) = C (11, r), then r e B. 5 e are stalls for 12 animals rses, and calves (not less to be shipped. The total ch the shipload can be	C. 4	D. 3			
A. ${}^{12}C_3$ B. ${}^{12}P_3$	C. 3 ¹² D. 12 ³					
146. The coefficient of A. $2^{n}/2!$	x^n in the binomial expanses B. n + 1	nsion of (1 - x) ⁻² is C. n	D. 2n			
147. The largest coefficient A. ${}^{24}C_{13}$	cient in the expansion of B. ${}^{24}C_{11}$	$(1 + x)^{24}$ is C. ${}^{24}C_{24}$	D. ²⁴ C ₁₂			
148. The sum of first n A. 7/16	terms of two A.P. are 31 B. 8/15	n + 8, 7n + 15, then the r C. 4/9	atio of their 12th term is D. 3/7			
$ \begin{array}{c} 149. \\ \text{If A} \\ = \end{array} \begin{bmatrix} 12 \\ 21 \end{bmatrix} \text{, then Adequal to} $	j. A is					
A. $\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$]					
B. $\begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}$]					

150. If a, b, c are different, then the value of x satisfying the determinant

$$\begin{vmatrix} 0 & x^{2} - x^{3} - \\ x^{2} + a & b \\ a & 0 & x^{2} + \\ a & 0 & c \\ x^{4} + \\ b & x - c & 0 \end{vmatrix} = 0 \text{ is }$$

151. If the system of equations x = a(y + z), y = b(z + x), z = c(x + y) (a, b, $c \neq -1$) has a non-zero solution, then the value of [a/(1 + a)] + [b/(1 + b)] + [c/(1 + c)] is A. -1 B. 0 C. 1 D. 2

152. Two lines with direction cosines $< l_1, m_1, n_1 > and < l_2, m_2, n_2 > are at right angles if$ B. $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$ A. $l_1 l_2 + m_1 m_2 + n_1 n_2 = 1$ D. $l_1 = l_2$, $m_1 = m_2$, $n_1 = n_2$ C. $l_1/l_2 = m_1/m_2 = n_1/n_2$ 153. Given the line L : [(x - 1)/3] = [(y + 1)/2] =[(z - 3)/-1] and the plane $\pi : x - 2y = 0$. Of the following assertions, the only one that is always true is A. L is A. L is perpendicular $\stackrel{B. L lies in}{_}$ $\stackrel{C. L is}{_}$ parallel to D. none of the above π to π π 154. Quartile deviation for a frequency distribution A. $Q = 1/4 (Q_2 - Q_1)$ B. $Q = 1/3 (Q_3 - Q_1)$ C. $Q = 1/2 (Q_3 - Q_1)$ D. $Q = (Q_3 - Q_1)$

155. For a symmetrical distribution, $Q_1 = 20$ and $Q_3 = 40$. The value of 50th percentile is A. 20 B. 30 C. 40 D. none of the above

156. The area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

A9			В.	-15/4			C. 1	5/4		D. 17/4
157. A ra X:	andom 0	n variat 1	ole X h 2	as the	follov 4	wing pr 5	obabil 6	ity dist 7	ribution: 8	
p(X = x):	a	3a	2 5a	7a	ч 9а	11a	13a		17a	
then the A . 7/81	value	of a is	B . :	5/81			C. 2	/81		D. 1/81
158. Dial forgets th these are probabili	ne last differ	two di ent, di	one nu gits re aled at	mber, memt rando	oering om. Tł	only th ne				
A. 1/90	B.	1/100	C.	1/45		none o above				
159. Thread them is	ee ide	ntical o	lice ar	e rolle	ed. The	e proba	bility t	hat the	same num	ber will appear on each of
A. 1/18			B. 3	3/28			C. 1	/36		D. 1/6
160. The A. 5	value	e of n ∈	I for B. 4		the fu	inction	f(x) = C. 3		/[sin(x/n)]]	has 4π as its period is D. 2
161. Lt x →		osx)/x	is equ	al to						
A. 0	_		В.	1			C. α	D		D. none of the above
162. Lt $x \rightarrow$		1 + x)]	$/x^2$ is e	equal t	0					
A. 1/2 163. For		irve x =	B. $= t^2 - 1$		² - t. ta	angent i	C. 0			D. 1/4
parallel to	o x-ax	is whe	re	-		-				
A. $t = 1/\gamma$										
164. The A. K > 3		ion f(x		³ - 9x K < 3	$^{2} + 9x$	+ 3 is 1		$\frac{1}{2} \leq 3$	y increasing	g in each interval, then D. none of the above
165. The A. 5/6	area	of the r	egion B.		led by	the cur	rve y = C. 1		between x	= 0 and x = 1 is D. 1/6
166. If	$\int_{0}^{1} f(x)$	() dx =	1, j	x f(x	() dx =	a, J	$x^2 f(x)$	dx =	a^2 , then \int_0^1	$(a - x)^2 f(x) dx$ equals D. none of the above
A. 4a ²			В.	0			C. 2	a^2		D. none of the above

167. The area between the curve y = 1 - |x| and x-axis is A. 1/3 **B**. 2 C. 1/2 D. 1 168. The equations ax + by + c = 0 and dx + ey + f = 0 represents the same straight line if and only if A. a/d = b/eB. c = fC. a/d = b/e = c/fD. a = d, b = e, c = f169. If a + b + c = 0, |a| = 3, |b| = 5, |c| = 7, then the angle between a and b is C. 5π/3 A. $\pi/6$ B. $2\pi/3$ D. π/3 170. The differential coefficient of log tan x is A. $2 \sec^3 2x$ B. $2 \operatorname{cosec}^3 2x$ C. 2 sec x D. 2 cosec x 171. The differential coefficient of $f(\log x)$ where $f(x) = \log x$ is C. $(x \log x)^{-1}$ A. $x/(\log x)$ B. $(\log x)/x$ D. none of the above 172. The number of solutions of the equation $\tan x + \sec x = 2 \cos x$ lying in the interval $[0, 2\pi]$ is A. 0 **B**. 1 C. 2 D. 3 173. In a triangle ABC, the angle B is greater than the angle A. If the values of the angles A and B satisfy the equation $3 \sin x - 4 \sin^3 x - k = 0, 0 < k < 1$, then the value of C is Α. π/3 B. $\pi/2$ C. $2\pi/3$ D. $5\pi/6$ 174. If one root of $5x^2 + 13x + k = 0$ is reciprocal of the other, then A. k = 0C. k = 1/6B. k = 5D. k = 6175. The number of quadratic equations, which are unchanged by squaring their roots is D. none of C. 6 A. 2 **B**. 4 the above 176. If $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ represents a pair of straight lines, then the value of λ is A. 1 B. 4 D. 2 C. 3 177. If each element of a determinant of third order with value A is multiplied by 3, then the value of newly formed determinant is A. 3A B. 9A C. 27A D. none of the above 178. If A, B, and C are non-empty set subsets of the sets, then $(A - B) \cup (B - A)$ equals A. $(A \cap B) \cup (A \cup B)$ B. $(A \cup B) - (A \cap B)$ C. A - $(A \cap B)$ D. $(A \cup B)$ - B

179. A and B are two independent events. The probability that both A and B occur is 1/6 and the probability that neither of them occurs is 1/3. The probability of the occurence of the event A is

A. 2/3	B. 5/6	C. 1/2	D. none of the above
180. The numb	er of divisors of 9600 in	cluding 1 and 9600 is	
A. 60	B. 58	C. 48	D. 46