1. The final product of the reaction HC = CH + 2HCI \rightarrow will b	1.	The final	product	of the	reaction	HC =	CH:	+ 2HCI	→-will l	be
--	----	-----------	---------	--------	----------	------	-----	--------	----------	----

(1) CH₂CI-CH₂CI

(2) CH₂=CHCI

(3) CH₃CHCI₂

(4) CHCI=CHC

2. Which of the following is amphoteric:

 $(1) \text{ GeO}_2$

(2) CO₂

(3) PbO₂

(4) All same

3. CH₃COOC₅H₁₁ is obtained by :

(1) $C_5H_{11}OH + CH_3COOH$

(2) $C_5H_{11}CH_2OH = HCOOH$

(3) $C_2H_5OH = C_5H_{11}OH$

(4) $(CH_3)_3$ –C-COOH = $C_5H_{11}OH$

4. 5 amp. current is passes through a dry cell for 2 hours. The value of produced electric current will be :

 $(1) 36 \times 10^8 C$

 $(2) 3.6 \times 10^8 \text{ C}$

 $(3) 36 \times 10^4 \text{ C}$

 $(4) 3.6 \times 10^4 \text{ C}$

5. Which of the following statement is false for tranis-1, 2-dichloro ethane :

(1) chlorine atoms are nearer to each other

(2) total nos of bonds are six

(3) free rotation of C=C is possible

(4) none of these

6. Orthouitropnenol is a A;

(1) Lewis base

(2) Lewis acid

(3) 1 and 2

(4) nither 1 nor 2

7. Which of the following shows cistrans isomerism:

(1) CH_3 -C-Br=C- $C1_2$

(2) CH₃-CH=Ch₂

(3) C1-CH=CH-CH₃

 $(4) (CH_3)_2$ -C=CH-C1

8.	Glycine works i			12	(4) none of these
9.	(2) Second is(3) Chlorine	nore reactive the s more reactive	nan second e than first are of different		butane is :
10	. The magnetic m (1) 3.9 B.M.		U		
11	. O-F bond in OF (1) sp ² -2p	F_2 compound (2) sp^3-2p	is formed by t (3) sp ³ -2s	he over (4) sp-	clapping of following orbitals : -2p
12	. The structure o (1) square planne			ear	(4) tetrahedral
13	(1) equal to pent (3) more than pe	ane (2) les	s than hexane	:	
14	. Which of the fo (1) Sb(OH) ₃	0 .	oxide is soluble (3) Fe(OH) ₃		
15	. Which of the fo	llowing differ (2) CO		: (4) Rb)
16	(1) (CH ₃) ₂ C((2) (CH ₃) ₂ C= (3) (CH ₃) ₂ C= (4) none of a	(OH)C1 ₃ =CHCOCH=C =CHCOCH ₃			
17	(1) C ₁₂ H ₁₂ O ₁ (2) H ₂ O (3) CH ₃ COO (4) HI	11	ongest electrol	yte:	
18	(1) O ₂ ²⁻ is dia (2) O ₂ ⁺ is par (3) No is dia (4) He ₂ ⁺ is le	amagnetic ramagnetic			
19	For which of th	e following el (2) CO	ements the qu	u antum (4) C1	nos are $3, 2, 0, +\frac{1}{2}$:
20	. The coordinatio	on nos. of Na ⁺	and C1 ⁻ in Na	aCI are	respectively:

	(1) 6, 6	(2) 4, 6	(3) 6, 8	(4) 8, 8	,		
21.	(2) Ag is eas	sily oxidized in sily oxidized in idizes simultane	comparision w				
22.	Molarity of 200 (1) 32.5 M	0 ml. of 18.25 N (2) 91.25 M	NaOH will b (3) 2.2		(4) 22.8 M		
23.	, ,	n stops	iture is increa	sed :			
24.	(1) equal to (2) equal to (3) all are di (4) none of	cyclopean each other ifferent	alkene and al	kyne is	:		
25.	CF2C1 ₂ is used (1) Anaesthic		(3) Refrigeran	ıt	(4) Antipyretic		
26.	The weight of (1) 1.9 x 10 ⁻²³	carbon atom is		gm	(4) 6.02 gm. X	10^{23} gm.	
27.	The pH of 10⁻⁸ (1) less than 7		s than 6	(3) 8	(4) 7		
28.	(2) CO ₂ does (3) Both do	es not show resonant show resonant show resonant show resonant C ₆ H ₆ show resonant contract the contract that the con	onance nance ance	res			
29.	In which of the (1) Alkane	following com (2) Aldehyde	pound >C=0 (3) Ac		s not present : (4) Ketone		
30.	The mole fracti (1) 0.540	ion of acetone i (2) 0.241	in a solution o (3) 0.254	of 2.8 mo		8.2 mole of CH	C13 will be:
31.	Which of the fo (1) Ne (2) Be	_	nt has high ion (4) O	nization	potential:		
32.	Which of the fo	ollowing has hi (2) HC1	ghest boiling (3) HF	point : (4) HB	r		

	(1) Solid H_2O	(2) Solid CO ₂	(3) Sol	id & Dry H ₂	$_{2}O$ (4) n	one of above	
34.	For the reaction $[D] = 3.8 \times 10^{-6}$ M (3) 2.1×10^{-3} M	M the value of	[A] will be:	uilibrium c	onstant is 1 x 1	0^{-3} . If $[C] = 1.2 x^{10-3}$	M,
35.	Which of the fo	ollowing does n (2) SF ₆ (3) SO ₂	•				
36.	Mustard gas is (1) C ₂ H ₄ & H ₂ S (3) C ₂ H ₄ & S ₂ C	O_4 (2) C_2 F					
37.	The most react (1) Li		(3) F	(4) Pt			
38.	Which of the fo		ghest melting (3) C ₂ H ₆	point : (4) CH ₄			
39.	Which of the fo	0		(4) none of	these		
40.	In which of the (1) C=C	_	_	nd : (4) all same	2		
41.	· · · • •	al in d block s block and diff					
42.	Malachite is a (1) Cu		(3) Ag	(4) Mg			
43.	If the ionization CH ₃ COOh will (1) 1.8 x 10 ⁻⁷	be:			(4) 42.4 x 10	zation of 0.01 M	
44.	If the price of Mole sugar will (1) 7 Rs.	0	•	ees per kg. t	-	f 1 mole NaC1 and 1	
45.	In which of the (1) 2 gm. H ₂	0			olecule : 4 gm. N ₂		
46.	In which of the (1) SbH ₃	following cent (2) NH ₃	eral atom uses (3) PH ₃	sp ² hybrid (4) +CH ₃	orbitals :		

33. The dry ice is:

47.	Which of the fo	ollowing is par	amagnetic :		
	(1) C	(2) CN	$(3) O_2^{-1}$	(4) NO ⁺	
48.	Present atomic	weight scale d	lepends upon :		
	(1) C1-35.5	_		(4) H-1	
49.	C ₃ H ₈ on combu	stion gives CC	O ₂ and H ₂ O. T	e required volume of O2 w	ill be :
	(1) 5 times of C			(3) 2 times (4) 2.5 times	
50.	The oxidation s	state of B in K	BF ₄ is:		
	(1) -3	(2) +2	(3) +3	(4) +4	
51.	The electronic	configuration	of strong elect	onegative element is :	
	$(1) ns^2 np^6$	(2) ns2np4	(3) ns2np3	(4) ns2np5	
52.	The IUPAC na	me of CO2O3 i	s :		
	(1) Cobalt (III) of				
	(3) Cobaltans ox	` ′	` ′		
53.	The most light	weight inert g	as is :		
	(1) Ar	(2) Ne		(4) Kr	
54.	Which of the fo	ollowing eleme	nt forms catio	easily:	
	(1) Sr	(2) Ne	(3) Li	(4) Mg	
55.	Which of the fo	ollowing is the	strongest ioni	compound:	
	(1) LiC1	(2) HC1	(3) CsC1	(4) CH ₃ C1	
56	Which of the fo	ıllowing does r	not forms π bo	ıd·	
	(1) s-s	(2) p-d	(3) p-p	(4) d-d	
57.	CO is isoelectro	onic of :			
	$(1) N_2^+$		(3) CN ⁻	(4) O_2^-	
58.	All s-orbitals h	ave:			
	$(1) n \neq 0, \iota \neq 0$		(3) $n = 0$	(4) $n = 0$, $t = 0$	
59.				the following 6 bond orbit	als are used by B:
	(1) sp2	(2) sp	(3) sp3	(4) none of these	
60.	Which of the fo	_		1: (4) None of these	
61.	In which of the (1) Benzene	following mol (2) Ethene	lecule C-C bor (3) Ethane	d is largest : (4) Ethyne	
62.	The set of four (1) 3, 2, 0 + ½ (3) 4, 1, 0, +½	(2) 4, 2, 0, + $\frac{1}{2}$	2	l will be :	

63. The molecule which has linear structure is :									
(1) NO ₂	(2) SO ₂	(3) CO ₂	(4) OCl ₂						
64. Which of th	e following l	nave not tetrahedr	al geometry :						
(1) NH ₄ ⁺	$(2) BF_4$	(3) SiF_4	(4) SF ₄						
1 2 65. N=C-C-CH	2 in this com	pound bond							
H									
	nd C(2) is fo	rmed by hybrid or	bitals of :						
(1) sp & sp 2	(2) sp &	sp^3 (3) $sp \& sp$	$(4) sp^2 - sp^2$						
66. The dipole	moment of (CCl4 is zero, becaus	se of:						
(1) equal electro	•	C, and Cl							
(2) equal size of									
(3) regular size									
(4) planar struct	ure								
67. The number	er of moles o	f H ₂ at 500 cm.3 vo	lume, 700 mm. press	sure and 300 ⁰ K temperature					
will be:	2								
	$3x_1^{10^{-2}}$ moles								
	10 ⁻³ moles								
	$\times 10^{-2}$ moles								
(4) 2.03	(4) 2.03 x 10 ⁻⁷ moles 68. Which of the following has electronic configuration as 4f ¹⁻¹⁴ 5s ² 5p ⁶ 5d ¹ 6s ² :								
(1) Repr	esentative ele sition elemen nanides	ments	c configuration as 4f	¹⁻¹⁴ 5s ² 5p ⁶ 5d ¹ 6s ² :					
69. The	wave numbe	r of hydrogen ator	n in Lymen series is 8	82, 200 cm. ⁻¹ . The electron					
goes fro									
(1) III or	bit to II (2) II orbit to I	(3) IV orbit to III	(4) none of these					
70 T.A.	! 1	. .							
	en is a polym		(2) Totro fluro other	20 (4) C H					
(1) PVC	(.	2) Tetraffuro emane	(3) Tetra fluro ethan	$(e^{-}(4) C_2 \Pi_4)$					
71 In w	hich of the f	ollowing s characte	ır ic mavimum •						
$(1) C_6 H_6$		2) H_2H_6 (3) C_2							
(1) 00110			(1) 02112						
72. Benz	72. Benzene hexachloride is found by :								
(1) Addi		2) Elimination	(3) Substitution reac	etion (4) All these					
、 /		,	、 /	,					
73. Alka	ne is found l	by:							
(1) Reac	tion by alky l	halide							
(2) Wurt	z reaction								
	nard reagent								
(4) All th	nese								

	74. The first inert gas compound invented was :								
$(1) KrF_6$	$(2) XeF_6$	(3) XeF ₂	(4) $XePtF_6$						
(1) Hund's rule	2) Aufabu's principal 3) Paulis principal								
76. Which of the fo (1) Na ⁺ (2) F 77. The wave char (1) Schrödinger	(3) N ₃ acter of electro	(4) (on was inver	O ₋ ² ited by:	& Germer					
78. The electronic (1) [Ar] 3d ⁵ 4s ³	configuration (2) [Ar]3d ⁴ 4s ²	of Chromiu (3)	m will be : [Ar] 3d ⁵ 4 s ¹	(4) [Ar] $3d^5 4s^0$					
79. In which of the (1) is pentane	following nos. (2) iso-octane			re maximum: (4) all of these					
(1) It is a compound(2) It reacts with Ag	80. Na ₂ S ₂ O ₃ is used in photography because: (1) It is a compound of sulphur (2) It reacts with Ag Br to form sodium silver thisulphate (3) It is an antichlor reagent (4) none of these								
81. Borax is found (1) Punjab		(3)	Utterpradesh	(4) Delhi					
82. Which of the feet (1) it converts into (2) it converts into (3) it is blue gas (4) it is a allotrople	colourless liquic violet black soli	d when cond	ensed						
 83. H₂O and D₂O both have: (1) common chemical properties (2) different physical and chemical properties (3) common physical but different chemical properties (4) common physical properties 									
84. Which of the fo (1) CH ₃	ollowing is not (2) OH	a conjugate	base: (4) none of the	ese					
85. Plaster of paris (1) K (2) Ca	-		_						
86. Benzene → To (1) Anti-mark rule	luene is formed	l by:							

(3) Wurtz reaction(4) Markownikoff's rule									
87. The frequency (1) 7.5 x 0 ² s ⁻¹	of wave of 4000 Å w (2) 75 x 10 ¹⁰ s ⁻¹	ave. Length wi (3) 7.5 x 10 ¹⁴	ill be: $(4) 0.75 \times 10^2 \text{s}^{-1}$						
88. The oxidation (1) +1	no. of C in CO₂ is : (2) +2 (3) +4	4 (4) 0							
(2) neigther oxidizing (3) only reducing a	 strong oxidizing agent and weak reducing agent neigther oxidizing agent nor reducing agent only reducing agent only oxidizing agent 								
90. Which elemen (1) Sc	t have maximum oxid (2) Zn	lation states : (3) B	(4) Mn						
91. Carborundum (1) SiB	is: (2) SiC	(3) SiO ₂	(4) CO ₂						
92. Stainless steel is : (1) Fe, Ni, CO, C (2) Fe, Mg, Ni, C (3) Fe, Cr, Ni, C (4) Fe, Mn, Cr, Ni									
(1) It is most reacti	 93. fluorine is formed by electrolysis of the fused mixture of K and HF because: (1) It is most reactive (2) It is a gas (3) It is strong oxidizing agent (4) It is (F₂) toxic 								
94. Which of the f (1) BI ₃	Collowing Lewis acid i (2) BCI ₃	s strongest : (3) BF ₃ (4) BI	$3r_3$						
95. The colour of the solution of alkali metal in liquid ammonia appears to blue due to: (1) Ammonical metal ion and electron (2) Ammonical electron (3) Ammonical metal ion (4) Metal ion									
96. The solubility product of calcium oxalate is 2.5 x 10-3 mole2/liter-2 . The required minimum concentration of calcium ion to precipitate it will be : $(1) > 5x10^{-2}$ $(2) 5x10^{-2}$ $(3) < 5x10^{-2}$ (4) none of these									
97. Aqueous solut (1) Very week Basi	ion of ferric chloride ic (2) Acidic	is: (3) No	eutral (4) Basic						
98. Which one is electrolyzed in the metallurgy of aluminium: (1) Cryolite and Alumina (2) Alumina (3) Cryolite									

(2) F.C.R.

(4) Bauxite

99. Which of the following gives rod colour precipitate with sodium cupritartaarate:

(1) CH₃COOH

(2) CH₃COCH(3) CH₃COC₂H₅

(4) CH₃CHO

100. Which of the following are present in picric acid:

- (1) –NO₂ group
- (2) –OH and –NO₂ group
- (3) –NO₂ and –COOH groups
- (4) –OH group

ANSWER SHEET

				, ~ , ,						
1.(3)	2.(1)	3.(1)	4.(4)	5.(3)	6.(1)	7.(3)	8.(3)	9.(4)	10.(4)	11.(2)
12.(4)	13.(3)	14.(3)	15.(4)	16.(2)	17.(4)	18.(2)	19.(1)	20.(1)	21.(1)	22.(2)
23.(3)	24.(3)	25.(3)	26.(1)	27.(1)	28.(2)	29.(1)	30.(3)	31.(1)	32.(3)	33.(2)
34.(3)	35.(2)	36.(3)	37.(1)	38.(1)	39.(4)	40.(3)	41.(3)	42.(1)	43.(3)	44.(2)
45.(4)	46.(4)	47.(3)	48.(3)	49.(1)	50.(3)	51.(4)	52.(1)	53.(3)	54.(1)	55.(3)
56.(1)	57.(3)	58.(2)	59.(1)	60.(2)	61.(3)	62.(2)	63.(3)	64.(4)	65.(1)	66.(3)
67.(4)	68.(3)	69.(2)	70.(3)	71.(4)	72.(1)	73.(4)	74.(4)	75.(1)	76.(1)	77.(1)
78.(3)	79.(2)	80.(2)	81.(3)	82.(4)	83.(3)	84.(4)	85.(2)	86.(2)	87.(3)	88.(2)
89.(1)	90.(4)	91.(2)	92.(3)	93.(3)	94.(1)	95.(2)	96.(1)	97.(2)	98.(1)	99.(4)
100.(2)										