II Semester B.C.A. Examination, Feb./March 2010 MATHEMATICS

Time 3 Hours Max. Marks: 80

Instructions: 1) Answer all questions in Part A, 6 out of 8 questions in Part B, and 3 out of 5 questions in Part C.

- 2) Part A: Questions from 1 to 8 carry 1 mark and 9 to 14 carry 2 marks each.
- 3) Part **B**: **Each** question carries **5** marks.
- 4) Part C: Each question carries 10 marks.

PART – A

- 1. The identity matrix of order three is of the form _____
- 2. Define a semi group.
- 3. The section of a sphere by a plane is _____
- 4. The nth order derivative of Cos(ax + b) is _____
- 5. The Reduction formula for $\int_{0}^{\pi/2} \sin^{m} x \, dx$ is ______
- 6. $\int_{0}^{2} (2x+3)^{5} dx$ _____
- 7. The necessary and sufficient condition for the equation $M(x, y)dx + N(x, y)dy = 0 \text{ to be exact is } \underline{\hspace{1cm}}$
- 8. A square matrix A is said to be singular if |A| =
- 9. If $A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \end{pmatrix}$ then find 3A 2B.

- 10. Differentiate Sin [$Sin^{-1}(x^2)$] w. r. t x
- 11. If $x = at^2$ and y = 2at then find $\frac{d^2y}{dx^2}$
- 12. Evaluate $\int x \tan^{-1} x dx$
- 13. Verify the condition for exact and hence solve $(x + y + \cos x) dx + \sin x dy = 0.$
- 14. If $A = \begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix}$ then find $A^2 5A + 13I$.

1. Find the eigen values of the matrix

$$A = \begin{pmatrix} 5 & 4 & -4 \\ 4 & 5 & -4 \\ -1 & -1 & 2 \end{pmatrix}$$

2. Find 'a' such that the vectors

$$\vec{A} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{C} = 3\hat{i} + a\hat{j} + 5\hat{k}$ are coplanar.

- 3. Find the equation of the plane which passes through the points
 - (2, 1, 1), (9, 0, 6) and perpendicular to the plane 2x + 6y + 6z = 9.
- 4. Find the equation of the sphere whose diameter is the line joining the points (4, 0, -2) and (0, 3, 1).
- 5. Evaluate: $Lt_{x\to \Pi/4}$ (Tanx) Tan2x

6. Evaluate:
$$\int \frac{dx}{5+4\cos x}$$

7. Solve:
$$y-x\frac{dy}{dx} = a\left(y^2 + \frac{dy}{dx}\right)$$

8. Evaluate:
$$\int_{0}^{1} \frac{dx}{1-x+x^2}$$

1. Find the eigen values and eigen vector of the matrix

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{pmatrix}$$

- 2. If $\vec{A} = 2\hat{i} \hat{j} + 3\hat{k}$, $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{C} = 3\hat{i} + \hat{j} \hat{k}$ then find $\vec{A} \cdot (\vec{B} \times \vec{C})$ and $\vec{A} \times (\vec{B} \times \vec{C})$.
- 3. Find the equation of the plane through the points (2, 2, 1),(1, -2, 3) and parallel to the line joining the points (2, 1, -3) and (-1, 5, -8).
- 4. If $y = (\sin^{-1} x)^2$ then P.T $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} n^2y_n = 0$.
- 5. Solve: $(y^2 + 2xy) dx + (2x^2 + 3xy) dy = 0$.
