Register Number

MATHEMATICS — Paper II

Time Allowed : $2\frac{1}{2}$ Hours]

[Maximum Marks: 100

PART - I

SECTION - A

- Answer all the questions. (i)
- Choose the correct answer from the given alternatives: $20 \times 1 = 20$ (ii)

1. If
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, then A is

square matrix

2) diagonal matrix

3) unit matrix

4) rectangular matrix.

2. If
$$A = \begin{pmatrix} 0 & 2 \\ -1 & 5 \end{pmatrix}$$
, then $A - I_2$ is

1)
$$\begin{pmatrix} 0 & 2 \\ -1 & 5 \end{pmatrix}$$
 2) $\begin{pmatrix} -1 & 2 \\ -1 & 4 \end{pmatrix}$

$$2) \quad \begin{pmatrix} -1 & 2 \\ -1 & 4 \end{pmatrix}$$

3)
$$\begin{pmatrix} -1 & -2 \\ -1 & 4 \end{pmatrix}$$
 4) 4) $\begin{pmatrix} 0 & -2 \\ 1 & -5 \end{pmatrix}$.

4)
$$\begin{pmatrix} 0 & -2 \\ 1 & -5 \end{pmatrix}$$
.

	If the order of the matrix A is $p \times m$ and order of the matrix I	$3 \times A$ is $n \times m$,
	then the order of the matrix B is	

1)	n	×	n
4)	P	^	11

2) $m \times p$

3) $m \times n$

4) $n \times p$.

4. If two circles touch externally, the number of common tangents that can be drawn are

1) 2

2) 4

3) 3

4) 5.

5. Two chords AB and CD of a circle intersect internally at P. If AP = 4 cm, PB = 3 cm, PC = 1.5 cm, then CD is

1) 8 cm

2) 10.5 cm

3) 12 cm

4) 9.5 cm.

6. In the figure, θ is

1) 60°

2) 45°

3) 30°

4) 15°.

7. A vertical stick 12 m long casts a shadow 8 m long on the ground. At the same time a tower casts the shadow 40 m long on the ground. Then the height of the tower is

1) 50 m

2) 55 m

3) 60 m

4) 65 m.

In triangles ABC and DEF, $\angle A = \angle E$ and $\angle B = \angle F$. Then AB: AC is DE: EF 2) DE: DF 1) DF: EF. EF: ED 3) If the slope of the line joining (-6, 13) and (3, α) is $-\frac{1}{3}$ then the value of α 9. is - 10 2) 1) 5 10. 3) - 5 The angle between the lines x = y and $\sqrt{3} x - y = 0$ is 2) 30° 15° . 1) 90°. 60° 4) 3) If A is a point on the Y-axis whose ordinate is 4 and B is a point on the X-axis whose abscissa is 3, then the equation of the line AB is 4x + 3y = 122) 3x + 4y = 121) 3x - y + 12 = 0. 4) 3x - 4y = 03) The y-intercept of the line x - y = 0 is . 1) 3) The value of p, given that the line $\frac{y}{2} = x - p$ passes through the point (-4, 4) is

2)

4)

1)

3)

- 6

3.

85	518		4	
14	l. sir	$n^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 90^\circ$	= 1	in triangles ABS and DEF, Z A = z
	1)	90	2)	45
	3)	46	4)	45.5.
15	$\frac{\sqrt{1}}{200}$	$\frac{-\sin^2\theta}{\sin\theta} =$		
	1)	cot θ	2)	$\frac{\sin \theta}{2}$
	3)	tan θ		$\frac{1+\sin\theta}{\sin^2\theta}.$
16.	. 2 ($\sin^2 60^\circ + \cos^2 30^\circ$) – $(\sin^2 48)$	5° + c	os 2 45°) is
	1)	3	2)	2 continues and observation
	3)	1 908 (8	4)	0.
17.	A tı	rekker before climbing a mounta	in fin	ds the height of the mountain from
	poir	nt 20 km from it. He finds the an	gle of	elevation to be 30°. The height of the
	mou	intain is look and the base of the land	de de	ordwielde Predit on though et a st
*	1)	$\frac{20\sqrt{3}}{3}$ km	2)	20√3 km
	3)	20 km	4)	30 km.
18.	If ta	an θ + cot θ = 2, then the value of	f tan	$^{2}\theta + \cot^{2}\theta$ is
	1)	0	2)	e. Tem y-intercept of the line x = 1 =
	3)	2 0 10	4)	4.
19.	The	standard deviation is the		. of the variance.
	1)	cube	2)	square
		square root	4)	cube root.
20.	The I	probability of getting 3 heads or 3	tails	in tossing 3 coins is
	1)	$\frac{1}{8}$	2)	$\frac{1}{4}$
	3)	3 8	4)	$\frac{1}{2}$.

 $\frac{1}{2}$.

SECTION - B

Answer any ten questions:

 $10 \times 2 = 20$

21. Find Y, given
$$\begin{pmatrix} -3 & -2 & 4 \\ 5 & -6 & -3 \end{pmatrix} - 2Y = \begin{pmatrix} -5 & 4 & 6 \\ 3 & -4 & 5 \end{pmatrix}$$
.

22. Solve
$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
.

- 23. The sides of \triangle PQR are 8 cm, 10 cm and 12 cm. Three circles are drawn with centres P, Q and R such that each one touching the other two externally. Determine the radii of the circles.
- 24. If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.
- 25. \triangle ABC and \triangle DEF are similar, the area of \triangle ABC is 9 sq.cm and that of \triangle DEF is 16 sq.cm. If EF = 4.2 cm, find BC.
- 26. A triangle has vertices at A (3, 4), B (1, 2) and C (5, 6). Find the slope of the median through A.
- 27. Find the equation of the line having an inclination 60° with the positive direction of *X*-axis and passing through the point (4, 2).
- 28. Show that the straight lines 7x y + 6 = 0 and 3x + 21y + 11 = 0 are perpendicular to each other.
- 29. Find the equation of the line passing through (3, -4) and making equal intercepts on the axes.

- 30. Prove that $\frac{1 + \cos \theta \sin^2 \theta}{\sin \theta (1 + \cos \theta)} = \cot \theta.$
- 31. If $A = 30^{\circ}$, verify that $\cos 2A = \frac{1 \tan^2 A}{1 + \tan^2 A}$.
- 32. If $x = a \sec \theta$ and $y = b \tan \theta$, find the value of $b^2 x^2 a^2 y^2$.
- 33. A tree 12 m high is broken by the wind in such a way that its top touches the ground and makes an angle $\frac{\pi}{4}$ radians with the ground. At what height from the bottom of the tree is broken by the wind?
- 34. The sum of the squares of the deviations from the mean of 6 variables is 54. Find the variance.
- 35. A number is selected at random from 1 to 100. Find the probability that it is not a square number.

PART - II

SECTION - C

Answer any two questions:

 $2 \times 5 = 10$

- 36. State and prove SAS similarity on triangles.
- 37. L be a point on the side QR of A PQR. If LM, LN are drawn parallel to PR and QP meeting QP, PR at M, N respectively, MN meets produced QR in T. Prove that $LT^2 = RT \times QT$.
- 38. D is the mid-point of side BC of \triangle ABC. DP bisects \angle ADB meeting AB at P and DQ bisects \angle ADC meeting AC at Q. Prove that $PQ \mid |BC$.

SECTION - D

Answer any three questions:

$$3 \times 5 = 15$$

39. If
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
, show that $A^2 - 7A + 10I_3 = 0$.

40. Verify that
$$(AB)^T = B^T A^T$$
 if $A = \begin{pmatrix} 2 & 3 & -1 \\ 4 & 1 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -2 \\ 3 & -3 \\ 2 & 6 \end{pmatrix}$.

41. Find the standard deviation and variance for the following data:

x :	10	15	18	20	25
f:	3	2	5	8	2

42. A number is selected at random from 40 to 80. Find the probability that it is divisible by 6 or 9.

SECTION - E

Answer any two questions:

$$2 \times 5 = 10$$

43. Show that
$$2 \left(\sin^6 \theta + \cos^6 \theta \right) - 3 \left(\sin^4 \theta + \cos^4 \theta \right) + 1 = 0$$
.

44. If $\csc \phi = \sqrt{2}$, show that

$$\frac{2\sin^2\phi + 3\cot^2\phi}{4\left(\tan^2\phi - \cos^2\phi\right)} = 2.$$

45. From the top of a building 60 m high the angle of depression of the top and the bottom of a tower are observed to be 30° and 60°. Find the height of the tower.

SECTION - F

Answer any three questions:

 $3 \times 5 = 15$

- 46. Find the area of the quadrilateral *ABCD* whose vertices are A(3,4), B(-1,6), C(-3,-4) and D(6,1).
- 47. Write down the equation of the line AB through (3, 2), perpendicular to the line 3x 2y + 5 = 0. AB meets the X-axis at A and the Y-axis at B. Calculate the area of triangle OAB, where O is the origin.
- 48. Find the equation of the line passing through the point of intersection of the lines 2x + y 3 = 0 and 5x + y 6 = 0 and perpendicular to the line joining the points (1, 2) and (2, 1).
- 49. Find the orthocentre of the triangle ABC whose vertices are

A(-2, 1), B(-1, -4) and C(0, -5).

PART - III

SECTION - G

Answer any one question:

 $1 \times 10 = 10$

- 50. Draw a circle of radius 3.6 cm. Take a point P on it. Without using the centre of the circle, draw a tangent to the circle at the point P.
- 51. Construct a \triangle ABC such that AB = 5.6 cm, $m \angle C = 60^{\circ}$ and median through the vertex C is 4 cm.