CET - PHYSICS - 2012

- A block kept on a rough surface starts sliding when the inclination of the surface is 'θ' with respect to the horizontal. The coefficient of static friction between the block and the surface is
 - a) $\tan \theta$ b) $\cos \theta$ c) $\sec \theta$ d) $\sin \theta$

Ans: (a)

2. Two bodies of masses m_1 and m_2 are acted upon by a constant force F for a time t. They start from rest and acquire kinetic energies E_1 and E_2 respectively. Then $\frac{E_1}{E_2}$ is

a)
$$\frac{m_2}{m_1}$$
 b) 1 c) $\frac{\sqrt{m_1m_2}}{m_1 + m_2}$ d) $\frac{m_1}{m_2}$

Ans: (a)

3. The X and Y components of a force F acting at 30⁰ to x-axis are respectively

a) $\frac{F}{2}$, $\frac{\sqrt{3}}{2}$ F b) $\frac{\sqrt{3}}{2}$ F, $\frac{1}{2}$ F c) F, $\frac{F}{\sqrt{2}}$ d) $\frac{F}{\sqrt{2}}$, F

Ans: (b)

4. Spheres of iron and lead having same mass are completely immersed in water. Density of lead is more than that of iron. Apparent loss of weight is W_1 for iron sphere and W_2 for lead sphere. Then $\frac{W_1}{W_2}$ is

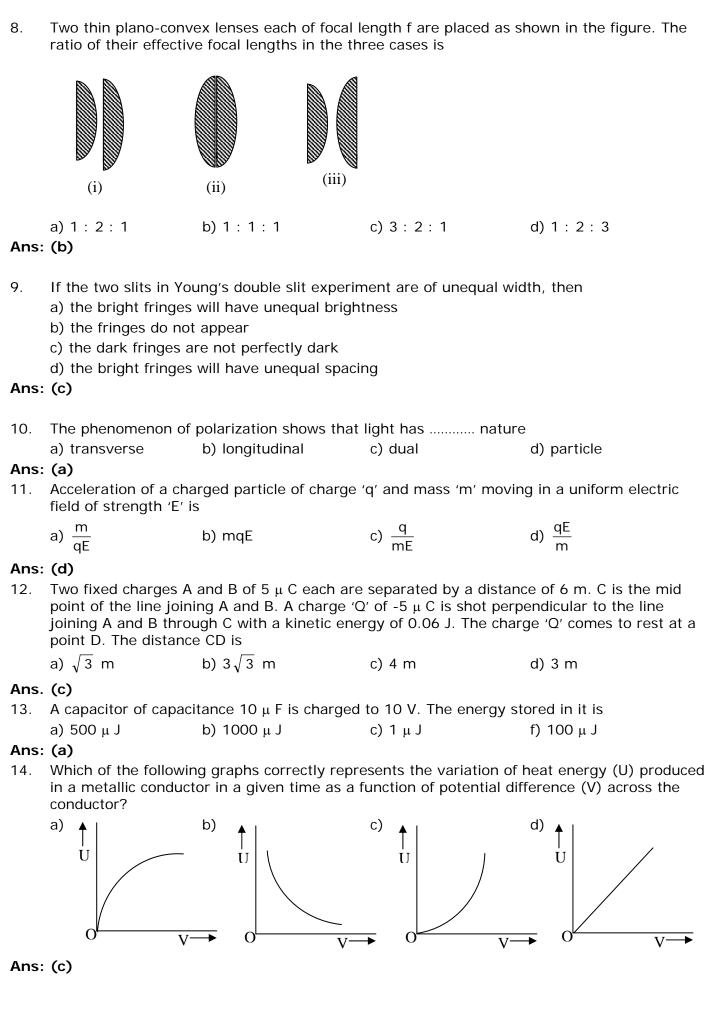
a) between 0 and 1 b) = 0 c) > 1 d) = 1

Ans: (c)

5. A hot body is allowed to cool. The surrounding temperature is constant at 30° C. The body takes time t_1 to cool from 90° C to 89° C and time t_2 to cool from 60° C to 59.5° C. Then,

a)
$$t_2 = \frac{t_1}{2}$$
 b) $t_2 = 4t_1$ c) $t_2 = t_1$ d) $t_2 = 2t_1$

Ans: (c)


6. A particle executes SHM with amplitude 0.2 m and time period 24 s. The time required for it to move from the mean position to a point 0.1 m from the mean position is

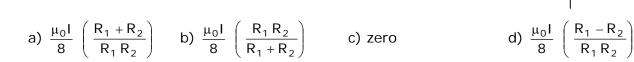
a) 3 s	b) 8 s	c) 12 s	d) 2 s
s: (d)			

```
Ans: (d)
```

- 7. White light is incident normally on a glass slab. Inside the glass slab,
 - a) violet light travels faster then other colours
 - b) yellow light travels faster than other colours
 - c) all colours travel with the same speed
 - d) red light travels faster than other colours

Ans: (d)

A current of 2 A is passing through a metal wire of cross sectional area 2 x 10⁶ m². If the 15. number density of free electrons in the wire is 5 x 10^{26} m⁻³, the drift speed of electrons is (given $e = 1.6 \times 10^{-19} C$)


a)
$$\frac{1}{40}$$
 ms⁻¹ b) $\frac{1}{80}$ ms⁻¹ c) $\frac{1}{32}$ ms⁻¹ d) $\frac{1}{16}$ ms⁻¹

Ans: (b)

- 16. Magnetic field at a distance r from an infinitely long straight conductor carrying a steady current varies as
 - b) $\frac{1}{r^{3}}$ c) $\frac{1}{\sqrt{r}}$ d) $\frac{1}{r^2}$ a) 1

Ans: (a)

In the loop shown, the magnetic induction at the point 'O' is 17.

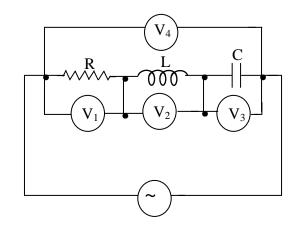
Ans: (a)

An α -particle and a proton moving with the same kinetic energy enter a region of uniform 18. magnetic field at right angles to the field. The ratio of the radii of the paths of α -particle to that of the proton is c) 1 : 8 d) 1 : 1

a) 1 : 2 b) 1 : 4

Ans: (d)

Direction of current induced in a wire moving in a magnetic field is found using 19.


a) Fleming's right hand rule

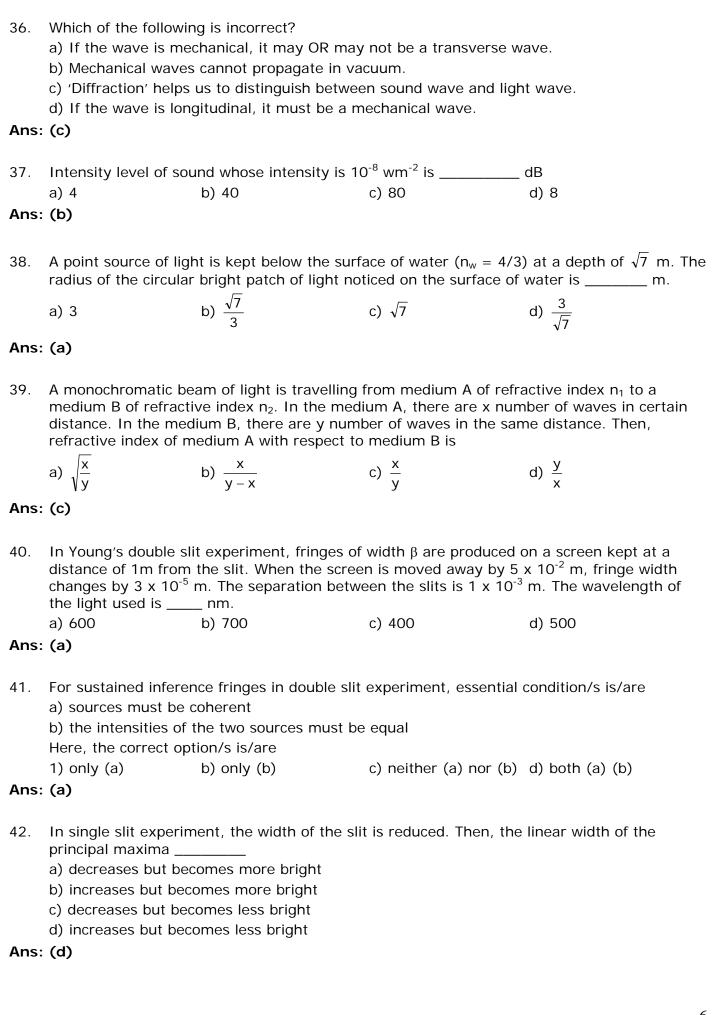
- b) Ampere's rule
- c) Right hand clasp rule

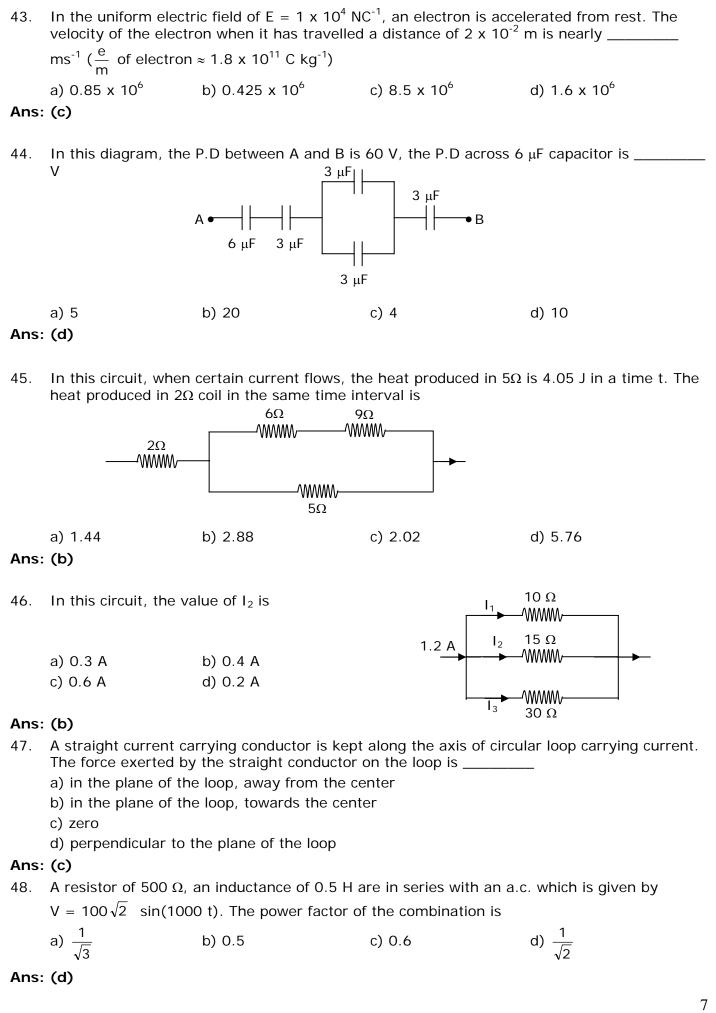
- d) Fleming's left hand rule

Ans: (a)

An ideal resistance R, ideal inductance L, ideal capacitance C and AC volt meters $V_1 - V_2$, V_3 20. and V₄ are connected to an AC source as shown. At resonance,

a) reading in V_1 = reading in V_2 c) reading in V_2 = reading in V_3


b) reading in V_2 = reading in V_4 d) reading in V_3 = reading in V_1


 \mathbf{R}_2

0

21.							
	X-rays, gamma rays and microwaves traveling in vacuum have						
		a) same frequency but different velocities		-			
_		ime veloc	ity and s	ame frequency	d) same wav	elengths but different velocitie	es
	s: (b)						
22.	If n is the orbit number of the electron in a hydrogen atom, the correct statement among the following is					ng	
		-		•	e electron transition	from $n = \infty$ to $n = 1$.	
	b) electron energy is zero for $n = 1$						
		ectron en					
	-	ectron er	nergy inci	reases as n incre	eases		
Ans:							
23.		-		-	is due to Atom		
_	-	uminium	b) Xenon	c) Chromium	d) Oxygen	
Ans:	•••		o 64				
24.					s (given $R_0 = 1.2 \text{ x}^2$		
	a) 1.	2	C) 7.7	c) 9.6	d) 4.8	
Ans:	(d)						
25.	ln a	radioactiv	vo docav	an element $-X'$	A omits four a particl	es, three β-particles and eight	+
25.			-		-	the resulting final nucleus are	
	-	•				13 d) Z – 11, A – 16	0
Ans:		0,11		, 2 0, 1 10	0) 2 0, 11		
26.	For a	a transiste	or, $\beta = 10$	00. The value of	αis		
	a) 0.		-) 100	c) 0.01	d) 1.01	
Ans:	(a)						
27.	The	following	truth tab	le with A and B	as inputs in for	. gate.	
		Α	В	Output			
		A 1	B 0	Output 1			
		1	0	1			
		1 1 0	0 1 1	1 0 1			
		1	0 1	1 0			
	a) O	1 1 0 0	0 1 1 0	1 0 1 0	c) NOR	d) AND	
Δns·	a) O	1 1 0 0	0 1 1 0	1 0 1	c) NOR	d) AND	
Ans:		1 1 0 0	0 1 1 0	1 0 1 0	c) NOR	d) AND	
Ans : 28.	(b)	1 1 0 0	0 1 1 0	1 0 1 0			1
	" (b)	1 1 0 0	0 1 0 b	1 0 1 0		d) AND of mass 'm'. The momentum	1
	(b) 'n' pl gaine	1 1 0 0 R hotons of ed by the	0 1 0 body is	1 0 1 0) XOR gth 'λ' are abso	rbed by a black body	of mass 'm'. The momentum	1
	" (b)	1 1 0 0 R hotons of ed by the	0 1 0 b	1 0 1 0) XOR gth 'λ' are abso			١
	(b) 'n' pl gaine a) <u>m</u>	1 1 0 0 R hotons of ed by the	0 1 0 body is	1 0 1 0) XOR gth 'λ' are abso	rbed by a black body	of mass 'm'. The momentum	١
28.	(b) 'n' pl gaine a) <u>m</u> : (c)	$\frac{1}{0}$ 0 R hotons of ed by the $\frac{1}{\lambda}$	0 1 0 k wavelen body is k	$\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{\lambda'}$ $\frac{1}{\lambda'}$ $\frac{1}{m\lambda}$	rbed by a black body c) nh λ	of mass 'm'. The momentum d) $\frac{h}{m\lambda}$	
28.	(b) (n' pl gaine a) <u>m</u> (c) A rac	$\frac{1}{0}$ 0 R hotons of ed by the hotons λ	0 1 0 body is body is	$\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{\lambda' \text{ are abso}}$ $\frac{1}{m\lambda}$ $\frac{nh}{m\lambda}$ $\frac{nh}{m\lambda}$	rbed by a black body c) $\frac{nh}{\lambda}$ ling energy 'E ₁ '. It er	of mass 'm'. The momentum	
28. Ans:	(b) (n' pl gaine a) <u>m</u> (c) A rac nucle	$\frac{1}{0}$ 0 R hotons of ed by the hotons λ dioactive eus has s	0 1 0 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{\lambda' \text{ are abso}}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$	rbed by a black body c) $\frac{nh}{\lambda}$ ling energy 'E ₁ '. It er $_2$ '. Then	of mass 'm'. The momentum d) $\frac{h}{m\lambda}$ nits an α -particle. The resultir	
28. Ans: 29.	 (b) 'n' pl gaine a) ^m (c) A rac nucle a) E₂ 	$\frac{1}{0}$ 0 R hotons of ed by the hotons λ dioactive eus has s	0 1 0 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{\lambda' \text{ are abso}}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$	rbed by a black body c) $\frac{nh}{\lambda}$ ling energy 'E ₁ '. It er	of mass 'm'. The momentum d) $\frac{h}{m\lambda}$ nits an α -particle. The resultir	
28. Ans:	 (b) 'n' pl gaine a) ^m (c) A rac nucle a) E₂ 	$\frac{1}{0}$ 0 R hotons of ed by the hotons λ dioactive eus has s	0 1 0 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{\lambda' \text{ are abso}}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$	rbed by a black body c) $\frac{nh}{\lambda}$ ling energy 'E ₁ '. It er $_2$ '. Then	of mass 'm'. The momentum d) $\frac{h}{m\lambda}$ nits an α -particle. The resultir	
28. Ans: 29.	 (b) 'n' pl gaine a) ^m (c) A rac nucle a) E₂ 	$\frac{1}{0}$ 0 R hotons of ed by the hotons λ dioactive eus has s	0 1 0 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{\lambda' \text{ are abso}}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$ $\frac{1}{m\lambda}$	rbed by a black body c) $\frac{nh}{\lambda}$ ling energy 'E ₁ '. It er $_2$ '. Then	of mass 'm'. The momentum d) $\frac{h}{m\lambda}$ nits an α -particle. The resultir	

The dimensional formula of physical quantity is M^a L^b T^c. Then that physical quantity is 30. a) force if a = 1, b = 1, c = 2b) angular frequency if a = 0, b = 0, c = -1c) spring constant if a = 1, b = -1, c = -2d) surface tension if a = 1, b = 1, c = -2Ans: (b) A person throws balls into air vertically upward in regular intervals of time of one second. 31. The next ball is thrown when the velocity of the ball thrown earlier becomes zero. The height (Assume , $g = 10 \text{ ms}^{-2}$) to which the balls rise is a) 10 m b) 7.5 m c) 20 m d) 5 m Ans: (d) The circular motion of a particle with constant speed is 32. a) SHM but not periodic b) periodic and also SHM c) neither periodic nor SHM d) periodic but not SHM Ans: (d) A planet moving around sun sweeps area A_1 in 2 days, A_2 in 3 days and A_3 in 6 days. Then 33. the relation between A₁, A₂ and A₃ is Sun A_1 a) $2 A_1 = 3 A_2 = 6 A_3$ b) $3 A_1 = 2 A_2 = 6 A_3$ d) $3 A_1 = 2 A_2 = A_3$ c) 6 $A_1 = 3 A_2 = 2 A_3$ Ans: (d) 34. A, B and C are the three identical conductors but made from different materials. They are kept in contact as shown. A B C 100°C • • 0°C Their thermal conductivities are K, 2K and $\frac{K}{2}$. The free end of A is at 100°C and the free end of C is at 0°C. During steady state, the temperature of the junction of A and B is nearly _____°C. a) 29 b) 63 c) 37 d) 71 Ans: (d) One mole of an ideal gas is taken from A to B, from B to C and then back to A. The variation 35. of its volume with temperature for that change is as shown. Its pressure at A is P₀, volume is V_0 . Then, the internal energy a) at C is less than at B b) at B is more than at A c) at A and B are equal d) at A is more than at B Ans: (c)

49. Ans : 50.	 Pick our the WRONG statement. a) When an electron is shot at right angles to the electric field, it traces a parabolic path. b) An electron moving in the direction of the electric field gains K.E c) An electron at rest experiences no force in the magnetic field d) The gain in the K.E of the electron moving at right angles to the magnetic field is zero (b) A proton and an alpha particle are accelerated under the same potential difference. The ratio of de-Broglie wavelengths of the proton and the alpha particle is 				
	a) $\frac{1}{\sqrt{8}}$	b) 1	c) 2	d) √8	
Ans	(d)				
51.	Spectrum of sunligh a) Line absorption s c) Continuous absor	pectrum	b) Continuous emission spectrum d) Band emission spectrum		
Ans	(a)				
52.	In hydrogen atom, electron excites from ground state to higher energy state and its orbit velocity is reduced to $\frac{1}{3}$ rd of its initial value. The radius of the orbit in the ground state is. The radius of the orbit in that higher energy state is				
Ans	a) 3 R a (c)	b) 27 R	c) 9 R	d) 2 R	
53.	Decay constants of two radio-active samples A and B are 15x and 3x respectively. The have equal number of initial nuclei. The ratio of the number of nuclei left in A and B after time $\frac{1}{6x}$ is				
Ans	a) e ²	b) e ⁻¹	c) e ⁻²	d) e	
54.	specific binding ener	ng reaction/s energy is r	8.5 MeV, 8 MeV and 7 M	20 respectively. The MeV respectively. Then, in	
Ans	(d)				
55.	a) Germanium decreb) Germanium increc) Germanium incre	ium are cooled from roo eases, copper decreases ases, copper decreases ases, copper increases eases, copper increases	•	K. Then the resistance of	
Ans	(b)			0	

56.		ticle in the Baryon grou				
	a) Proton	b) lamda particle	c) sigma particle	d) neutron		
Ans	: (a)					
57.	Frequencies of light incident on a system of scattering particles are in the ratio 1 : 2. Then, the intensity of scattered light in a particular direction is					
	a) 1 : 2	b) 1 : 8	c) 1 : 16	d) 1 : 4		
Ans	: (c)					
58.	The ratio of the magnetic dipole moment to the angular momentum of the electron in the 1^{st} orbit of hydrogen atom is					
	a)	b) $\frac{2m}{e}$	c) <u>m</u>	d) $\frac{e}{2m}$		
Ans	: (d)					
59.	Milk is an example f	or				
	a) foam	b) elastic gel	c) emulsion	d) inelastic gel		
Ans	: (c)					
60.	A body of mass 'm' is travelling with a velocity 'u'. When a constant retarding force 'F' is applied, it comes to rest after travelling a distance ' s_1 '. If the initial velocity is '2u', with the same force 'F', the distance travelled it comes to rest is ' s_2 '. Then					
	a) $s_2 = \frac{s_1}{2}$	b) $s_2 = s_1$	c) $s_2 = 4s_1$	d) $s_2 = 2s_1$		
Ans	: (c)					