CET – MATHEMATICS – 2012

4							
1.	 The length of the sub-tangent, ordinate and the sub-normal are in a) Arithmetico geometric progression 						
	-	netric progression					
	b) A.P.						
	c) H.P						
۸nc	d) G.P.						
2.	s: (d) The maximum value of xe ^{-x} is						
۷.			1				
	a) - <u>1</u>	b) e	c) $\frac{1}{e}$	d) –e			
Ans	(c)						
3.	If [x] is the greatest integer function not greater than x, then						
	11						
	$\int_{Y} [x] dx =$						
	a) 55	b) 45	c) 66	d) 35			
Ans	: (a)		0) 00	,			
4.	If $n \in N$ and $I_n = \int (\log x)^n dx$, then $I_n + nI_{n-1} =$						
	-	- 1					
	a) $\frac{(\log x)^{n}}{n}$	b) $\frac{(\log x)^{n+1}}{n+1}$	c) $x(\log x)^n + c$	d) (log x) ⁿ⁻¹			
Δns	:: (c)	11 + 1					
Ans							
5.	Solution of $e^{\overline{dx}} = x$	when $x = 1$ and $y = 0$ is	S				
	a) $y = x (\log x - 1) + 1$		b) $y = x (\log x - 1) + 4$				
	c) $y = x (\log x - 1)$	+ 3	d) $y = x (\log x + 1) + 1$				
Ans	: (a)						
,	$\int \frac{x^2 - (a + 2)}{a^2 - (a + 2)}$	$\frac{2}{x+a}$ $x \neq 2$ is continue	we at y 2 than the y				
0.	If f(x) = $\begin{cases} \frac{x^2 - (a+2)x + a}{x-2} & x \neq 2 \\ 2 & x = 2 \end{cases}$ is continuous at x = 2, then the value of a is						
		b) – 6	c) 0	d) 1			
۸ns	a) = 1	0) – 0	0	u) i			
	• •	(c) If $\log_2 (9^{x-1} + 7) - \log_2(3^{x-1} + 1) = 2$, then x values are					
		b) 0, 2	c) 0, 1	d) 1, 4			
Ans	: (a)		c) c, .				
8.	lf x – 1 is a factor o	If x - 1 is a factor of $x^5 - 4x^3 + 2x^2 - 3x + k = 0$, then k is					
	a) 3	b) 4	c) -4	d) 2			
Ans	: (b)			-			

9. If A and B have n elements in common, then the number of elements common to A x B and B x A is d) n² a) 0 c) 2n b) n Ans: (d) The 13th term in the expansion of $\left(x^2 + \frac{2}{x}\right)^n$ is independent of x then the sum of the divisors 10. of n is a) 39 b) 36 c) 37 d) 38 Ans: (a) 11. If one of the slopes of the pair of lines $ax^2 + 2hxy + by^2 = 0$ is n times the other thennnn a) $4ab = (n + 1)^2 h$ b) $4(n + 1)^2$ ab = nab c) $4h^2 = (n + 1)^2$ ab d) $4nh^2 = (n + 1)^2 ab$ Ans: (d) 12. If $f(x) = \begin{vmatrix} \sin x & \cos x & \tan x \\ x^3 & x^2 & x \\ 2x & 1 & x \end{vmatrix}$ then $\underset{x \to 0}{Lt} \frac{f(x)}{x^2} =$ b) 0 c) 3 a) 1 d) 2 Ans: (a) 13. The number of solutions of the equation $z^2 + \overline{z} = 0$ where $x \in C$ are b) 1 c) 4 a) 6 d) 5 Ans: (c) 14. The least and the greatest distances of the point (10, 7) from the circle $x^{2} + y^{2} - 4x - 2y - 20 = 0$ are a) 5, 15 b) 10, 5 c) 15, 20 d) 12, 16 Ans: (a) 15. Which of the following is incorrect? If $a \equiv b \pmod{m}$ and x is an integer, then b) $(a + x) \equiv (b + x) \pmod{m}$ a) $(a \div x) \equiv (b \div x) \pmod{m}$ c) $(a - x) \equiv (b - x) \pmod{m}$ d) ax = bx (mod m) Ans: (a) 16. Inverse of a diagonal non-singular matrix is a) diagonal matrix b) scalar matrix c) skew symmetric matrix d) zero matrix Ans: (a) 17. If $ax^4 + bx^3 + cx^2 + dx + e = \begin{vmatrix} x^3 + 3x & x - 1 & x + 3 \\ x + 1 & -2x & x - 4 \\ x - 3 & x + 4 & 3x \end{vmatrix}$, then $e = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2$ a) -1 b) 1 c) 0 d) 2 Ans: (c)

18. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors and \vec{p} , \vec{q} and \vec{r} are vectors defined by $\vec{p} = \frac{\vec{b} \cdot \vec{x} \cdot \vec{c}}{\left[\vec{a} \cdot \vec{b} \cdot \vec{c}\right]}, \quad \vec{q} = \frac{\vec{c} \cdot \vec{x} \cdot \vec{a}}{\left[\vec{a} \cdot \vec{b} \cdot \vec{c}\right]} \text{ and } \vec{r} = \frac{\vec{a} \cdot \vec{x} \cdot \vec{b}}{\left[\vec{a} \cdot \vec{b} \cdot \vec{c}\right]}, \text{ then the value of }$ $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{p} + (\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{q} + (\overrightarrow{c} + \overrightarrow{a}) \cdot \overrightarrow{r} =$ b) () a) 3 c) 1 d) 2 Ans (a) 19. If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 144$ and $|\vec{a}| = 4$, the $|\vec{b}| = 4$ a) 12 b) 16 c) 8 d) 3 Ans (d) 20. Which of the following is false? a) Set of even integers is a group under usual addition b) (N, .) is a group c) (N, +) is a semi-group d) (Z, +) is a group Ans (b) 21. $2 \cos^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2} \right)$ is valid for all values of x satisfying a) $0 \le x \le \frac{1}{\sqrt{2}}$ b) $-1 \le x \le 1$ c) $0 \le x \le 1$ d) $\frac{1}{\sqrt{2}} \le x \le 1$ Ans: (d) If α is a complex number such that $\alpha^2 - \alpha + 1 = 0$, then $\alpha^{2011} =$ 22. c) α^2 b) - α a) 1 d) α Ans: (d) 23. If $\cos \alpha + 2 \cos \beta + \cos \gamma = 0$, $\sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0$ and $\alpha + \beta + \gamma = \pi$, then $\sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma =$ a) 9 b) - 18 c) 0 d) 3 Ans: (c) 24. If the conjugate of (x + iy) (1 - 2i) is 1 + i, then a) $x = -\frac{1}{5}$ b) $x - iy = \frac{1+i}{1-2i}$ c) $x + iy = \frac{1-i}{1-2i}$ d) $x = \frac{1}{5}$ Ans: (c) If the straight line 3x + 4y = k touches the circle $x^2 + y^2 = 16x$, then the value of k is 25. c) -16, - 64 d) -16, 64 a) 16, - 64 b) 16, 64 Ans: (d) The locus of the point of intersection of perpendicular tangents to the ellipse is called 26. a) director circle b) hyperbola c) ellipse d) auxiliary circle Ans: (a)

07								
27.	If m sin $x = \log_e$ a) - 2y	y, then (1 – x²) y – xy′ b) m² y	c) – m ² γ	d) Dy				
Ans	, ,	b) III y	c) – III y	d) 2y				
	ns: (b) dv							
28.	If $y = e^{\log_e[1+x+x^2+]}$, then $\frac{dy}{dx} =$							
	a) $\frac{-1}{(1-x)^2}$	b) $\frac{1}{1}$	c) $\frac{1}{(1-x)^2}$	d) $\frac{-1}{(1+x)^2}$				
		$(1 + x)^2$	(1 – x)²	$(1 + x)^2$				
29.	Length of the subtangent at (x_1, y_1) on $x^n y^m = a^{m+n}$, m, n > 0, is							
	a) $\frac{11}{m} x_1 $	b) $\frac{11}{m} x_1$	c) $\frac{m}{n} x_1 $	d) $\frac{n}{m} y_1 $				
Ans	: (c)							
30.	If a ball is thrown vertically upwards and the height 's' reached in time 't' is given by							
	$s = 22t - 11 t^2$, then the total distance traveled by the ball is							
A	a) 22 units	b) 44 units	c) 33 units	d) 11 units				
Ans 31.	: (a) The sum of two positive numbers is given. If the sum of their cubes is minimum, then							
51.	a) one is thrice the	-	b) they are equal					
	c) one is twice the c		d) they are unequal					
Ans	;; (b)							
30	$\int_{-\pi/4}^{\pi/3} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} c$	lv –						
52.	$\int_{\pi/6} \sin^3 x + \cos^3 x$							
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{12}$				
	8	2	3	12				
	: (d)							
33.	$x \xrightarrow{Lt} 0 \frac{x 2^x - x}{1 - \cos x} =$							
	4			1				
	a) $\frac{1}{2}$	b) 2 log 2	c) log 2	d) $\frac{1}{2}$ log 2				
Ans								
34.	If $\frac{3x+1}{x+1} = -$	$\frac{A}{-1} + \frac{B}{x+3}$, then sin ⁻¹	$\frac{A}{B} =$					
		-1 x + 3						
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{6}$				
Ans	: (d)	L	5	U				
35.	If α , β , γ are the roo	ts of the equation $x^3 + x^3$	$4x + 2 = 0$, then $\alpha^3 + \beta$	$^{3} + \gamma^{3} =$				
	a) – 6	b) 2	c) 6	d) – 2				
Ans		10. 10. 10.	-					
36.	The value of ${}^{10}C_1 + $ a) $2^{10} - 1$	${}^{10}C_2 + {}^{10}C_3 + \dots + {}^{10}C_9$	c) 2 ¹¹	d) 2 ¹⁰ – 2				
Ans		0) Z	() Z	u) z - z				
	~ ~~/							

37.	$p \rightarrow \sim q$ can also be							
	a) ~ q \rightarrow ~ p	b) $p \rightarrow q$	c) ~ p v ~ q	d) $d \rightarrow b$				
Ans:								
38.	If f: R \rightarrow R is defined by f (x) = 2x + 3, then f ⁻¹ (x) a) does not exist because 'f' is not surjective							
	b) is given by $\frac{x-3}{2}$							
	c) is given by $\frac{1}{2x+3}$							
	d) does not exist because 'f' is not injective							
Ans:	(b)							
39.	$\frac{\sin 70^{0} + \cos 40^{0}}{\cos 70^{0} + \sin 40^{0}} =$							
	a) 1	b) $\frac{1}{\sqrt{3}}$	c) $\sqrt{3}$	d) $\frac{1}{2}$				
Ans:	(c)							
40.	The points (11, 9), (2, 1) and (2, -1) are the midpoints of the sides of the triangle. Then the centroid is							
	a) (5, 3)	b) (-5, -3)	c) (5, - 3)	d) (3, 5)				
Ans:	(a)							
41.		point (1, 1) along the li						
	a) (1, -1)	b) (0, 0)	c) (-1, 1)	d) (-1, -1)				
Ans:	(d)							
42.	The number of circles that touch the co-ordinate axes and the line whose slope is -1 and y- intercept is 1, is							
	a) 3	b) 1	c) 4	d) 2				
Ans:	(d)							
43.	If f (x) is an even fu	nction, then f' (x) is						
	a) nothing can be sa	id	b) an odd function					
	c) an even function		d) may be even or may be odd					
Ans:	(b)							
44.	The perimeter of a angle is	The perimeter of a sector is a constant. If its area is to be maximum, then the sectorial angle is						
	a) 2 ^c	b) $\frac{\pi^c}{6}$	c) $\frac{\pi^c}{4}$	d) 4 ^c				
Ans:	(a)							
45.	The last digit of num	ber 7 ⁸⁸⁶ is						
40.	a) 1	b) 9	c) 7	d) 3				
Ans:		~, /	-, -	., .				
	<u></u>							
	5							

46. If (24, 92) = 24 m + 92 n, then (m, n) is c) (4, -1) d) (4, -3) a) (-4, 3) b) (-1, 4) Ans: (c) The characteristic equation of a matrix A is $\lambda^3 - 5\lambda^2 - 3\lambda + 2 = 0$ then |adj(A)|47. d) $\frac{1}{2}$ b) 9 c) 25 a) 4 Ans: (a) 48. If i+j-k and 2i-3j+k are adjacent sides of a parallelogram, then the lengths of its diagonals are a) $\sqrt{21}$, $\sqrt{13}$ b) $\sqrt{3}$, $\sqrt{14}$ c) $\sqrt{13}$, $\sqrt{14}$ d) $\sqrt{21}$, $\sqrt{3}$ Ans: (a) 49. If the volume of the parallelepiped formed by three non-coplanar vectors \vec{a}, \vec{b} and \vec{c} is 4 cubic units, then $\begin{bmatrix} \vec{a} & \vec{x} & \vec{b} & \vec{b} & \vec{x} & \vec{c} & \vec{c} & \vec{x} & \vec{a} \end{bmatrix} =$ a) 8 b) 64 c) 16 d) 4 Ans: (c) 50. Which of the following is a subgroup of the group $G = \{2^n | n \in Z\}$ under multiplication? b) $\{4^n | n \in \mathbb{N}\}$ c) $\{3^n | n \in \mathbb{Z}\}$ d) $\{6^n | n \in \mathbb{Z}\}$ a) $\{4^n | n \in Z\}$ Ans: (b) In the group G = {1, 2, 3, 4, 5, 6} under \otimes_7 , the solution of $4\otimes_7 x = 5$ is 51. b) 3 c) 2 a) 5 d) 4 Ans: (b) The number of real solutions of the equation $\tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2 + x + 1} = \frac{\pi}{2}$ is 52. a) infinitely many b) one c) four d) two Ans: (d) 53. If $\sin 2x = 4 \cos x$, then x =a) $2n\pi \pm \frac{\pi}{2}$, $n \in Z$ b) $n\frac{\pi}{2} \pm \frac{\pi}{4}$, $n \in Z$ c) no value d) $n\pi + (-1)^n \frac{\pi}{4}n \in Z$ Ans: (a) 54. If α and β are different complex numbers with $|\beta| = 1$, then $\left|\frac{\beta - \alpha}{1 - \alpha \beta}\right|$ is equal to b) $\frac{1}{2}$ d) $\frac{1}{3}$ a) 2 c) 1 Ans: (c)

The equations of the two tangents from (-5, -4) to the circle $x^2 + y^2 + 4x + 6y + 8 = 0$ are 55. a) x - 7y = 23, 6x + 13y = 4b) x + 2y + 13 = 0, 2x - y + 6 = 0c) 2x + y + 13 = 0, x - 2y = 6d) 3x + 2y + 23 = 0, 2x - 3y + 4 = 0Ans: (b) 56. If $x = t^2 + 2$ and y = 2t represent the parametric equation of the parabola a) $(x-2)^2 = 4y$ b) $x^2 = 4(y-2)$ c) $(y-2)^2 = 4x$ d) $y^2 = 4(x-2)$ Ans: (d) 57. If x - y = 1 is a tangent to the hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$, the point of contact is c) (3, 4) b) (4, 3) a) (5, 4) d) (2, 1) Ans: (b) 58. If $y = \tan^{-1}\left(\frac{1}{1+x+x^2}\right) + \tan^{-1}\left(\frac{1}{x^2+2x+3}\right) + \tan^{-1}\left(\frac{1}{x^2+5x+7}\right) + \dots$ n terms, then y' (0) is a) $-\frac{n^2}{1+n^2}$ b) $\frac{\pi}{2}$ c) $\frac{2n}{1+n^2}$ d) $\frac{n^2}{1+n^2}$ Ans: (a) If f (x) = sin $[\pi^2] x + cos [-\pi^2] x$ then f' (x) is, here $[\pi^2]$ and $[-\pi^2]$ greatest integer function 59. not greater than its value b) $\sin 9x + \cos 9x$ a) -1 c) 9 cos 9x - 10 sin 10 x d) 0 Ans: (c) The tangent to the curve xy = 25 at any point on it cuts the coordinate axes at A B, then the 60. area of the triangle OAB is a) 100 sq. units b) 50 sq. units c) 25 sq. units d) 75 sq. units Ans: (b)