Set Code :	12
Booklet Code :	A

PHYSICS

51.		o quantities A and ce. The dimensio		related by the rel	ation	A/B = m where	m is line	ear mass densi	ty and A is
	(1)	same as that of	latent	heat	(2)	same as that o	f press	ure	
	(3)	same as that of	work		(4)	same as that o	fmom	entum	
52.	The	dimensional for	mula o	of capacitance in	terms	of M, L, T and	I is		
	(1)	$[ML^2T^2I^2]$	(2)	$\left[\mathrm{ML}^{-2}\mathrm{T}^{4}\mathrm{I}^{2}\right]$	(3)	$[M^{-1}L^3T^3I]$	(4)	$[M^{-1}L^{-2}T^4I^2]$	
53.	If I,	m and n are the	directi	on cosines of a v	ector,	then			
9	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1	
54.	The	angle between i-	+j and	j+k is					
	(1)	0° .	(2)	90°	(3)	45°	(4)	60°	
55.	_			ards with a velocerage acceleration	-		econds	the velocity c	hanges to
		1				5		9 9 9	
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	ds nor	th-west	(2)	zero	1.4		
	(3)	$\frac{1}{2}$ ms ⁻² toward	s north	<u>.</u>	(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towa	rds nor	th-east	,
56.	The		m of a	particle varies w	ith tir	ne t as p = a + bt	+ct2 w	hich of the fol	lowing is
			th time	e in a quadratic m	anne	r.			
	0.00	Force is time-d		Cont. 10					12

(1) v

(2) 2v

(3) The velocity of the particle is proportional to time.(4) The displacement of the particle is proportional to t.

(3) 3v/4

(4) 4v/3

Set Code :	T2
Booklet Code :	A

58.	The	velocity of a	freely fal	ling body af	ter 2s is				
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	
59.		rge number of				with the same	e speed u	. The maxim	num area on
		16							
ē	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$	
60.	The the c	minimum sto	pping dis friction b	tance for a coetween the	ar of mass tyres and t	m, moving wi he road is μ, ν	th a spee will be	d v along a le	evel road, if
		,, ²		v ²		v^2		ν	
	(1)	ν 2μg	(2)	μg	(3)	$\frac{v^2}{4\mu g}$	(4)	2μg	
				41 - C	- C Calation	avarated by	the group	nd on the tw	o wheels is
61.	Whe	that it acts				excreted by	15		
	(1)	In the backy	vard direc	tion on the f	front wheel	and in the for	ward dir	ection on the	rear wheel
	(2)	In the forwa	ırd directi	on on the fro	ont wheel a	nd in the back	ward dir		
	(3)	In the backy	ward direc	ction on both	the front	and the rear w	heels		12
	(4)	In the forward	ard directi	on on both t	the front ar	d the rear wh	eels		
62.	In a	perfectly ine	lastic coll	ision, the tv	vo bodies				
	(1)	strike and ex	xplode		(2)	explode with	out strik	ing	
	(3)	implode and	10 Day 20 May 1		(4)	combine and	l move to	gether	
*				9 85058					on than the
63.		ler the action er is	of a const	tant force, a	particle is	experiencing	a consta	nt accelerati	on, then the
	•	zero			(2)	positive			
	. ,	negative			(4)	increasing u	niformly	with time	
			10					19.	

		8				Set Co	de: T2
		W 050				Booklet Co	ode : A
64.	Cor	nsider the following two statements:					
	A:	Linear momentum of a system of par	rticles	is zero.			
	B:	Kinetic energy of a system of particl	es is z	ero.			
	The	n					
	(1)	A implies B & B implies A	(2)	A does not im	ply B &	B does not	imply A
	(3)	A implies B but B does not imply A	(4)	A does not im	ply B bu	t B implies	A
65.	An heig	engine develops 10 kW of power. How ght of 40 m? (Given g = 10 ms ⁻²)	v mucl	n time will it ta	ke to lif	a mass of	200 kg to a
20	(1)	4s (2) 5s	(3)	8s	(4)	10s	
66.		spring has time period T, and is cut into	n equ	al parts, then th	e time p	eriod will b	e
	(1)	$T\sqrt{n}$ (2) $\frac{T}{\sqrt{n}}$	(3)	nΤ	(4)	Т .	
67.	Whe	en temperature increases, the frequency	ofati	uning fork			
٠	(1)	increases	orati	uning fork			
	(2)	decreases					
	(3)	remains same		((*))			
	(4)	increases or decreases depending on t	the ma	terials			

A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds.
 The total absorption in the hall should be

(2) $2\pi\alpha$ (3) $\frac{2\pi}{\sqrt{\alpha}}$ (4) $\frac{2\pi}{\alpha}$

(1) 850 w-m²

(1) $2\pi\sqrt{\alpha}$

(2) 82.50 w-m²

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

(3) 8.250 w-m²

(4) 0.825 w-m²

										9		t Code :	1
70.	To al	sorb th	e sour	d in	a ha	ll which	of the fe	ollowi	ng are use	d			
	(1)	Glasse						(2)	Carpets,	curtains			
	(3)	Polish			S			(4)	Platform	s	8		
71.	IfN	represe	nts ava	igadi	ro's i	number,	then the	numb	er of mole	ecules in 6 gr	n of hy	drogen at N	I
	(1)				(2)			(3)	N	(4)	N/6		
72.	The	mean tr	anslat	iona	l kin	etic ene	gy of a	perfec	t gas mole	ecule at the to	empera	ture T K is	
	(1)	$\frac{1}{2}kT$	8	- 6	(2)	kT		(3)	$\frac{3}{2}kT$	(4)	2kT		
73	The	amoun	of he	at giv	ven t	o a body	which	raises	its temper	ature by 1°C			
15.	(1)	water				•		(2)		heat capacity	,	W	
	(3)	specif					155	(4)	tempera	ture gradient			
74.	Dur	ing an a	ndiaba nperat	tic p	roce: The	ss, the pratio Cp	ressure /Cv for	of a ga gas is	s is found	to be propo	rtional	to the cube	: (
	(1)	$\frac{3}{2}$			(2)	$\frac{4}{3}$		(3)	2	(4)	3		
75.	Cla	dding ir	the o	ptica	al fib	er is mai	nly use	d to	ж.				
	(1)	to pro	tect th	e fil	ber f	rom med	chanical	stress	ses				
	(2)	to pro	tect th	ne fil	ber f	rom cor	rosion						
	(3)	to pro	tect th	e fit	ber fi	rom med	hanical	streng	gth				
	(4)	to pro	tect th	e fit	ber f	rom elec	tromag	netic g	guidance				

Set Code :	T2
Booklet Code :	A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of	Phospho	orous atom (At.)	No. 15) is
	(1)	$3s^2 3p^3$	(2)	3s1 3p3 3d1	(3)	3s ² 3p ² 3d ¹	(4)	3s1 3p2 3d2
77.	And	element 'A' of A	t.No.12	2 combines wit	h an ele	ment 'B' of At.N	o.17.	The compound formed is
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB
78.	The	number of neut	rons p	resent in the ato	om of se	Ba ¹³⁷ is		
	(1)	56	(2)	137	(3)	193	(4)	81
79.	Hyd	rogen bonding	in wate	r molecule is r	esponsi	ble for		
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization
	(3)	increase in its	boiling	g point	(4)	decrease in its	boilin	g point
80.	In th	e HCl molecule	the be	onding between	n hydro:	gen and chlorine	is	•
		purely covalen				polar covalent		complex coordinate
81.	Pota	ssium metal and	d potas	sium ions				
	(1)	both react with	water		(2)	have the same	numbe	er of protons
	(3)	both react with	chlor	ine gas	(4)	have the same	electro	onic configuration
82.	stand	dard flask. 10 ml	of this	solution were p	oipetted o		lask ar	made upto 100 ml in a nd made up with distilled solution now is
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M
83.	Con	centration of a 1	.0 M s	olution of pho	sphoric	acid in water is		
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N
84.	Whi	ch of the follow	ing is a	Lewis acid?				
	(1)	Ammonia			(2)	Berylium chlor	ride	
	(3)	Boron trifluori	ide		(4)	Magnesium ox	ide	
					14-A			

Set Code :	T2
Booklet Code :	

				Set Code :
			Bookl	et Code :
85.	Which of the following constitutes the con	nponen	ts of a buffer solution?	
	 Potassium chloride and potassium hy 	droxide	:	
	(2) Sodium acetate and acetic acid	.: 4		
	(3) Magnesium sulphate and sulphuric ac(4) Calcium chloride and calcium acetate	e e		
	(4) Calcium chloride and calcium acetato		(F)	
86.	Which of the following is an electrolyte?			
	(1) Acetic acid (2) Glucose	(3)	Urea (4) Pyric	dine
		1/0 3+2/	(Cu+2/Cu given that E ⁰ Cd/	$Cd^{+2} = 0.44$
87.	Calculate the Standard emf of the cell, C	a/Ca -/	/Cu /Cu given mai E Cu	
	$E^0 \text{ Cu/Cu}^{+2} = (-) 0.34 \text{ V}.$ (1) (-) 1.0 V (2) 1.0 V	(3)	(-) 0.78 V (4) 0.78	V
88.	A solution of nickel chloride was electrol	ysed us	ing Platinum electrodes. Af	ter electroly
	(1) nickel will be deposited on the anod	e (2)	Cl. gas will be liberated at	the camoue
	(3) H ₂ gas will be liberated at the anode	(4)	nickel will be deposited on	the cathod
	Which of the following metals will under	go ovid	ation fastest?	
89.		(3)	Zinc (4) Iron	
	(1)		ii.	16.6
90.	Which of the following cannot be used fo	r the ste	rilization of drinking water	?
	(1) Ozone	(2)	Calcium Oxychloride	8
	(3) Potassium Chloride	(4)	Chlorine water	
	A water sample showed it to contain 1.20	ma/litr	e of magnesium sulphate. Th	nen, its hard
91.	terms of calcium carbonate equivalent is			
	(1) 1.0 ppm (2) 1.20 ppm	(3)	0.60 ppm (4) 2.40) ppm
	.,	23000000		
	Soda used in the L-S process for softening	ig of wa	iter is, Chemically.	Irate
92.	(1) sodium bicarbonate	(2)	(400/)	nate
92.	(2) andium carbonate	(4)	Sociuli liyatoxide (4070)	
92.	(3) sodium carbonate			
	• • • • • • • • • • • • • • • • • • • •	wder is	known as	
	The process of cementation with zinc pov (1) sherardizing (2) zincing	wder is	known as metal cladding (4) elec	ctroplating

Set Code :	T2
Booklet Code :	

					*			
							Set C	ode : T
						Bo	oklet C	ode : A
94.	Car	rosion of a metal is fas	test in					
5.10	(1)			ater (3)	distilled water	(4) de	e-ionised	water
95.	Wh	ich of the following is	a thermoset po	olymer?				
	(1)	Polystyrene		(2)	PVC			
	(3)	Polythene		(4)	Urea-formaldeh	yde resi	n	
0.0	01	7						
96.		emically, neoprene is	15			7.0		
	(1)	polyvinyl benzene		(2)	polyacetylene	×		
	(3)	polychloroprene		(4)	poly-1,3-butadie	ene		
97.	Vul	canization involves heat	ing of raw rub	ber with				
	(1)	selenium element		(2)	elemental sulphi	nr		
	(3)	a mixture of Se and el	emental sulph				d sulphu	r dioxide
			-				• 1	* /25/5/65
98.	Petr	ol largely contains	72					12
	(1)	a mixture of unsaturat	ed hydrocarbo	ons Cs-	C _s			
6	(2)	a mixture of benzene,	toluene and x	ylene	-			
	(3)	a mixture of saturated	hydrocarbons	C, - C	14		8	
	(4)							(5
						+		
99.	Whi	ch of the following gas	es is largely re	esponsib	ole for acid-rain?			51
	(1)	SO ₂ & NO ₂		(2)	CO, & water vap	our		2
i.	(3)	CO ₂ & N ₂		(4)	N ₂ & CO ₂			
*			127				1	
100.	BOD	stands for						
	(1)	Biogenetic Oxygen De	mand	(2)	Biometric Oxyge	n Dema	nd :	
	(3)	Biological Oxygen De	mand	(4)	Biospecific Oxyg	gen Dem	and	
			× 20			3.7	¥2	
	(4)	G.		16-A	#1" #1			
		*						

Set Code : T2

Booklet Code : A

COMPUTER SCIENCE AND ENGINEERING

101	. Wh	ich of the follow	ving is	the first integr	rated log	ic family?			
	(1)	ECL	(2)	TTL	(3)	RIL	(4)	MOS	
102	. Wh	at is the approxi	mate w	orst-case nois	e margin	in TTL logi	c circuit?		
		400 mV		1 V	(3)		(4)		
103	. Wh	ich of the follow	ing is	the fastest inte	grated lo	ogic family?			
	(1)			TTL.	(3)		(4)	CMOS	
104	Wh	en is that the NA	ND lo	gic gate can fu	nction as	a NOT logi	c gate?		
	(1)	One input is se				One input is		, G	
	(3)	Inputs are left	open		(4)	Inputs are c			3
105.	Wha	at logic function i	s prod	uced when an i	nverter i	s added to each	ch input a	nd the output of a	an AND
	(1)	NAND	(2)	XOR	(3)	OR	(4)	NOR	
106.	Wha	at is the simplifie	d form	of the given I	Boolean	expression:	(X+Y+)	XY)(X+Z)?	
		X+Y+Z		XY+YZ		X + YZ		XZ+Y	
107.	Give	the effective co	mbina	tion for a Mas	ter slave	flip-flop:	•	20 00 0	
	(1)	An SR flip-flop				An SR flip-f	lop and a	T flip-flop	
	(3)	A T flip-flop an	d a D f	flip-flop		Two T flip-fl	_	•	
108.	How	many flip-flops	are rec	quired to divid	e the inp	ut frequency	by 64?		
	(1)		(2)		(3)			7	
09.	Whic	ch is the first mic	cropro	cessor introdu	ced by th	ne Intel Corp	oration?		
				4004	(3)	-		8080	
10.	The 8	8086 microproce	essor h	as a	bit	data bus and	a	bit address bu	ıs.
				8, 16		16, 16	(4)	16, 20	
+					17-A				(CSE)

Set Code :	T2
Booklet Code :	A

111	111. 8086 has a		b	ytes queue.					
,	(1)	4	(2)	6	(3)	8	(4)	16	
112	. The	e registers wh	ich are u	sed for the ac	idress c	alculations in	based in	dexed addressing	g mode
	are								
1 %	(1)	BP & SI	(2)	BP & DI	(3)	BX & SI	(4)	BX/BP & SI/DI	*
113.	Wh	ich of the follo	owing ins	struction is us	ed for u	nconditional j	ump?		
	(1)	JMP		JUMP		JZ	(4)	GO	
114.	Hov	w is the imple	mentation	n of the contro	ol section	on of Intel 808	6 micror	processor done?	
	(1)	Using micro	programi	ming			- merop	rocessor done:	
	(2)	Using nanop							
	(3)	- 1980 an area and 1985.			nming a	and Hard-wire	d designs	-	
	(4)			trol in a rando			a designs		
	- 0								
115.	Hov	many conditi	ional flag	s are available	in 804	86?		2	
	(1)	6	(2)	8	(3)	. 10	· (4)	16	
116.	Wha	t address instr	uctions a	re used by a S	tack?			E.,	
	(1)	Zero	(2)	One	(3)	Two	. (4)	Three	
117.	Whi	ch is the addre	ssing mo	de where the	operand	l is specified w	ishin sh	:t	
17.65	(1)	Direct		Indirect					
112	(-)	Direct	(2)	manect	(3)	Immediate	(4)	Register	
18.	EDR	AM indicates							
	(1)	Extended DR			(2)	Enhanced DR	AM		
	(3)	Electronic DF			(4)	Electrical DR			
	,	154		14	(.)	·	CALVI		
19.	Whic	h of the follow	ving mate	hes better wit	h DMA	I/O?			
		High Speed R			(2)	Printer	× :	*	
((3)	ALU		12	(4)	Disk			
				8	. ,	-000 1 ⁻⁰ -000 0		8	