COMPUTER SCIENCE AND ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on L. the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE. 2.
 - Immediately on opening this Question Paper Booklet, check:
 - Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing (b) the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page 5. is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response 6. Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate :
 - Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for (a) the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- Timings of Test: 10.00 A.M. to 1.00 P.M. 11
- Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, 12 leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet 13. attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.
 - 1-A

(CSE)

(CSE)

Set Code :	T2	
Booklet Code :	Α	

is

Vote: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

.

(4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

 If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

 (1) 3I
 (2) 9I
 (3) 27I
 (4) 81I

 1: If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 (1) 1
 (2) 2
 (3) 3
 (4) 4

 1: If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then later that is the number of all possible matrices with each entry as 0 or 1 if the order of matrices 3×3
 (1) 64
 (2) 268
 (3) 512
 (4) 256

 If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then $|A| =$
 (1) 1
 (2) 2
 (3) 3
 (4) 4

.

Set Code : T2 Booklet Code : A

The solution of a system of linear equations 2x - y + 3z = 9, x + y + z = 6, x - y + z = 2 is 5. (1) x = -1, y = -2, z = -3(2) x = 3, y = 2, z = 1(3) x = 2, y = 1, z = 3(4) x = 1, y = 2, z = 36. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x - ai}$ then A =_____, B =_____ (1) $\frac{1}{2ai}, -\frac{1}{2ai}$ (2) $-\frac{1}{2ai}, \frac{1}{2ai}$ (3) $\frac{1}{ai}, -\frac{1}{ai}$ (4) $-\frac{1}{ai}, \frac{1}{ai}$ 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)^4} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to (1) A, (2) 2A, (3) 4A, (4) 4A, 8. The period of the function $f(x) = |\sin x|$ is (1) π (2) 2π (3) 3π (4) 4π 9. If $A+B=45^\circ$, then $(1-\cot A)$. $(1-\cot B)$ is (1) 1 (2) 0 (3) 2 (4) -1 10. The value of sin 78° + cos 132° is (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (1) $\frac{\sqrt{5}+1}{4}$ (4) $\frac{\sqrt{5}-1}{4}$ 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$ (1) 4 cosA sinB cosC (2) 4 sinA cosB sinC (3) 4 cosA cosB cosC (4) 4 sinA sinB sinC 12. The principal solution of Tanx = 0 is (1) $x = n\pi, n \in \mathbb{Z}$ (2) x=0 (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$ (4) $x = n\pi + \alpha, n \in \mathbb{Z}$ 4-A

Set Code :	T2
Booklet Code :	Α

			0				Set Cod Booklet Cod	
13.	The value of Tan-	(2) + Ta	n-1 (3) is					
	(1) $\frac{\pi}{4}$	(2)	$\frac{\pi}{2}$	(3)	$\frac{\pi}{3}$	(4)	$\frac{3\pi}{4}$	
14	If the sides of a rig	oht angle	triangle are i	n A.P., th	en the ratio of	its side	s is	
14.	(1) 1:2:3		2:3:4		3:4:5		4:5:6	
15.	The value of $r.r_1$.	r,.r, is						
		(2)	Δ-2	(3)	Δ^{-3}	(4)	Δ^4	
16.	$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$	а 1				1		
	(1) $\frac{1}{r}$	(2)	$\frac{1}{2r}$	(3)	$\frac{1}{R}$	(4)	$\frac{1}{\Delta}$	
17	If a=6, b=5, c=9,	then the	value of angl	e A is	÷		6 ⁸	
	(1) $\cos^{-1}(2/9)$			(3)	cos-1 (7/9)	(4)	cos-1 (1/3)	
18	The polar form of	compley	number 1-i	is				3 X
10.	(1) $\sqrt{2} e^{-i\pi/4}$				$\sqrt{2} e^{i\pi/2}$	(4)	$\sqrt{2} e^{-i\pi/2}$	
19.	If 1, ω , ω^2 be the α (1) ω	cube root (2)	s of unity, the ω^2	en the val (3)	ue of $2^{\omega^3} \cdot 2^{\omega^5} $	2 [∞] is (4)	0	
20.	The intercept mad	le on X-a	axis by the cir	cle $x^2 + y^2$	+2gx+2fy+c =	0 is		
	(1) $\sqrt{g^2-c}$						$2.\sqrt{f^2-c}$	
21.	If one end of the diameter is	diameter	of the circle	$x^{2}+y^{2}-5x$	-8y+13 = 0 is	(2, 7), t	hen the other e	end of
	(1) $(3, 1)$	(2)	(1, 3)	(3)	(-3, -1)	(4)	(-1, -3)	

Set Code : Booklet Code : 22. The radius of the circle $\sqrt{1+m^2(x^2+y^2)}-2cx-2mcy=0$ is (2) 4c (1) 2c(3) c/2 (4) c 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are (1) $x = a \sec\theta, y = b \tan\theta$ (2) $x = b \sin\theta, y = a \cos\theta$ (3) $x = a \cos\theta, y = b \sin\theta$ (4) $x = a \operatorname{cosec} \theta, y = b \operatorname{cot} \theta$ 24. The equation of the directrix of the parabola $2x^2 = -7y$ is (4) 8x-7=0(3) 7y+8=0 (1) 8y+7=0(2) 8y-7=025. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is (2) $c^2 = a^2m^2 - b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m^2$ (1) c = a/m26. $Lt = \frac{\sqrt{5x-4} - \sqrt{x}}{x-1}$ is (2) 2 (3) 4 (1) 3 (4) 1 27. $\log i =$ (2) $\pi/4$ (3) $i\pi/2$ (4) $i\pi/4$ (1) $\pi/2$ 28. $\frac{d}{dr}[\log_7 X] =$ (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^e$ (4) $\frac{1}{x} \log_7^e$ 29. $\frac{d}{dx}[2\cosh x] =$ (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x - e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x - e^{-x}$

30.	$\frac{d}{dx}\left[\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] =$			
	(1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$	(3)	$\frac{2}{1+x^2}$ (4)	$\frac{-2}{1+x^2}$
18				
31.	If $x = at^2$, $y = 2at$, then $\frac{dy}{dx} = \frac{1}{2}$	а 5 д		•
	(1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$	(3)	$\sqrt{\frac{a}{x}}$ (4)	$\sqrt{\frac{x}{y}}$
		_		
32.	The derivative of e^x with respect t	o√x is		1 (L)
	(1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$	e ^x (3)	$\frac{e^x}{2\sqrt{x}} \qquad (4)$	$\sqrt{x}.e^x$
	The equation of the normal to the	$curve y = 5r^4 at$	the point (1, 5) is	
33.	(1) $x + 20y = 99$ (2) $x + 20$	0y = 101 (3)	x - 20y = 99 (4)	x-20y=101
34.	The angle between the curves $y^2 =$	$= 4x \text{ and } x^2 + y^2$	= 5 is	
4.º A	(1) $\frac{\pi}{4}$ (2) $\tan^{-1}($	(3)	tan ⁻¹ (3) (4)	tan ⁻¹ (4)
	a ³ , a ³ ,			11 - 8 5 13
35.	If $u = x^3 y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$			15
	(1) $6(x^{3}+y^{3})$ (2) $6x^{3}$	y ³ (3)	6x ³ (4)	6 <i>y</i> ³
				9
36.	$\int \csc x dx =$			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	(1) $\log(\operatorname{cosec} x + \cot x) + C$		$\log(\cot x/2) + C$	
	(3) $\log(\tan x/2) + C$	(4)	$-\operatorname{cosec} x.\operatorname{cot} x + C$	
		7- A		

.

Set Code :	T2		
Booklet Code :	A		

Bet Code :
$$\boxed{12}$$

Booklet Code :
$$\boxed{A}$$
37.
$$\int_{0}^{\frac{\pi}{2}} \cos^{11} x \, dx = \left(1\right) \frac{256}{693} (2) \frac{256\pi}{693} (3) \frac{\pi}{4} (4) \frac{128}{693}$$
38.
$$\int f^{4}(x) [f(x)]^{p} \, dx = \left(1\right) \frac{[f(x)]^{p-1}}{n-1} + C (2) \frac{[f(x)]^{p-1}}{n+1} + C (3) n[f(x)]^{p-1} + C (4) (n+1)[f(x)]^{p-1} + C$$
39.
$$\int \frac{dx}{(x+7)\sqrt{x+6}} = \left(1\right) 7an^{-1}(\sqrt{x+6}) + C (2) 27an^{-1}(\sqrt{x+6}) + C$$
(3) $Tan^{-1}(x+7) + C (4) 27an^{-1}(x+7) + C$
40.
$$\int \tan^{-1} x \, dx = \left(1\right) x Tan^{-1}x + \frac{1}{2} \log(1 + x^{2}) + C (2) \frac{1}{1 + x^{2}} + C$$
(3) $x^{2} Tan^{-1}x + C (4) x Tan^{-1}x - \log\sqrt{1 + x^{2}} + C$
41.
$$\int \frac{dx}{1 + e^{-x}} = \left(1\right) \log(1 + e^{x}) + C (2) \log(1 + e^{x}) + C (4) e^{x} + C$$
42.
$$\int \frac{\frac{\pi}{2}}{\frac{\pi}{2}} \sin|x| \, dx = \left(1\right) 0 (2) 1 (3) 2 (4) - 1$$

Set Com Booklet Code : Set Code : T2 A

43. Area under the curve
$$f(x) = \sin x \ln [0, \pi]$$
 is
(1) 4 sq. units (2) 2 sq. units (3) 6 sq. units (4) 8 sq. units
44. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - 3y = x$ is
(1) 1 (2) 4 (3) 3 (4) 2
45. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = a \frac{d^2y}{dx^2}$ is
(1) 4 (2) 2 (3) 1 (4) 3
46. The family of straight lines passing through the origin is represented by the differential equation
(1) $ydx + xdy = 0$ (2) $xdy - ydx = 0$ (3) $xdx + ydy = 0$ (4) $xdx - ydy = 0$
47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
(1) Homogeneous (2) Exact (3) Linear (4) Legender
48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} - 2xy$ is
(1) $ye^{-x^2} = x + c$ (2) $ye^x = x + c$ (3) $ye^{x^2} = x + c$ (4) $y = x + c$
49. The complementary function of $(D^3 + D^2 + D + 1)y = 10$ is
(1) $C_1 \cos x + C_2 \sin x + C_4 e^{-x}$ (2) $C_1 \cos x + C_2 \sin x + C_4 e^x$
(3) $C_1 + C_2 \cos x + C_3 \sin x$ (4) $(C_1 + C_2 x + C_3 x^2)e^x$
50. Particular Integral of $(D-1)^4 y = e^x$ is
(1) $x^4 e^x$ (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

.

.

.