Set Code :	T2
Booklet Code :	A

								Set Code : T2 Booklet Code : A	
115	The	sum of the mor	ment of	inertias abou	it any two	orthogonal axes	s is		
		always consta			(2)	always zero			
		always one			(4)	always linear		K (2	
116.	Stra	in energy in tor	rsion of ty and (a shaft per ur G as modulus	nit volume	e is given by cor	sideri	ing 'q' as shear stress, E	
			(2)			q/4G	(4)	q/4E	
117.	The	maximum shea	ar stress	in a thin tube	e is				
	(1)	equal to avera	age shea	ar stress	(2)	twice the avera	ige she	ear stress	
	(3) half the average shear stress					one third of av	erage	shear stress	
118.	Mac	aulay's method	is used	for calculati	on of whi	ch quantity			
	(1)	bending mom	ent		(2)	shear force			
	(3)	slope and def	lection		(4)	stresses			
119.	Alo	ng the neutral a	xis of si	imply suppor	ted beam		10		
	(1)	fibers do not	undergo	strain	(2)	fibers undergo minimum strain			
	(3)	fibers underg	o maxir	num strain	(4)	fibers undergo	minin	num stress	
120.	The	area under stre	ss strai	n curve repre	sents				
	(1)	work done	(2)	ductility	(3)	strain energy	(4)	residual stress	
121.	The	maximum defl	ection o	of a cantilever				nent (M) at its free end is	
	(1)	M1 ² /3EI	(2)	MI ² /4EI	(3)	MI ² /6EI	(4)	MI ² /2EI	
122.	The	shape of kern a	area of a	a rectangular	section is				
	(1)	rectangle	(2)	square	(3)	rhombus	(4)	parallelogram	
123.	Pola	r modulus of a	section	is a measure	e of streng	gth of section in			
	(1)	bending	(2)	shear	(3)	torsion	(4)	axial compression	
					10.4			(CVL)	

Set Code :	T2
Booklet Code :	A

124	. Th	ck cylind	ers are	analys	sed on the b	asis of						
	(1)	maxim	um sho	ar stre	ss theory	(2)	Lame's th	neory				
	(3)	Poisson	's the	ory		(4)	Rankine'	s theory				
125	. Wh	en one en	d of a	fixed b	eam deflec	ts by 'δ' the	n the bend	ing momen	t at deflec	ted end is		
						(3)						
126	. The	flexural i	rigidity	ofah	inged end i	s						
		infinity			zero		two	(4)	one			
127.	. Buc	kling load	d can b	e great	ter than crus	shing load it	f					
	(1)	column	is a sh	ort col	umn	(2)	column h	as both end	s fixed			
	(3)	column	is a lo	ng one		(4)	column b	column both ends hinged				
128.	For	a column	of leng	gth 'L'	having one	end fixed a	nd other en	d free, the	equivalent	length is		
		2L		(2)		(3)			$L/\sqrt{2}$			
129.	The the o	ratio of co	ripplin inged,	g load is	s of a colun	nn having b	oth the end	s fixed and	the colum	nn whose both		
	(1)	1.0		(2)	2.0	(3)	3.0	(4)	4.0			
130.	The grav	maximum ity 's' is	heigh	tofan	nasonry dan	ı of a triangu	lar section	whose base	width is 'l	o' and specific		
	(1)	$b\sqrt{s}$		(2)	b.s	(3)	$\sqrt{b}.\sqrt{s}$	(4)	$s\sqrt{b}$			
131.	The	failure we	dge de	velops	when a ret	aining wall				77		
	(1)	moves a	way fro	om the	backfill	-						
	(2)	moves to	wards	backfi	ill							
	(3)	sink dow	nward:	s								
	(4)	stresses	equally	by ve	rtical and h	orizontal fo	orces					
						20-A				(CVL)		

Set Code :	
Booklet Code :	A

								Set Co Booklet Co	_
132 T	he lateral ea	rth pre	ssure o	n a retaining wa	11				22
(1				e soil retained					
(2				epth of the soil					
(3				uare of the dep	th of th	ne soil			
100				ternal friction of					
133. N	fodulus of r	apture	of con	crete is a measu	re of				
) flexura				(2)	direct tensile s	trengtl	n	
	3) compre				(4)	both flexural &	tensi	le strength	
134. T	he fineness	modul	us of fi	ne aggregate is	in the	range of			
	1) 2.0 to 3			3.5 to 5.0		5.0 to 7.0	(4)	7.0 to 10.0)
135. F	or making a	good	concret	e, aggregate sho	ould be	in		10	
(l) saturate	ed cond	lition		(2)	surface dry co			
(:	3) bone dr	y cond	ition		(4)	semi saturated	condi	tion	
136. F	or reinforce	d cem	ent con	crete the slump	shoul	d be			
(1) 0 to 5 c	m	(2)	2.5 to 7.5 cm	(3)	7.5 to 10 cm	(4)	5 to 12.5	cm
137. T	he ratio of	tensile	to com	pressive streng	th of c	oncrete is			
	1) 0.025			0.04		0.1	(4)	0.4	.+
138. E	Design mix o	concre	te is pro	eferred over nor	ninal r	nix concrete bec	cause		
	1) strengti				(2)	cement conter	nt of la	ter is more	
(former at site	(4)	strength of lat	er is le	ess	
139. V	Which of the	follov	ving do	es not cause un	soundr	ness in cement			
	1) free lin			*	(2)	magnesia			
(calciun	n sulph	ate		(4)	silica			
					21-A				3

Set Code :	T2
Booklet Code :	A

140	. The	partial safety	factor fo	or steel as p	er IS 456-2	000 is taken	n as		
	(1)	1.15	(2)	1.25	(3)	1.50	(4)	1.75	
	,								
141.		orking stress		he factor of	f safety is a	pplied on			
	(1)	ultimate str	ess		(2)	yield stress	S		
	(3)	stress at ela	stic limit		(4)	breaking st	tress		
142.	Ina	RCC column	if ties are	e not provi	ded, the col	umn is likely	v to		
	(1)	fail by buckl			(2)	fail by crus			
	(3)	behave like	-		(4)	fail by tors	_		
	(3)	benave fixe	a ocam		(4)	ian by tors	ion		
143.	Tod	lesign a colun	nn, one sh	ould norm	ally start by	assuming th	he area of	steel as	
	(1)	1%	(2)	0.15%	(3)	0.5%	(4)	0.75%	
144.	Whi	ch of the follo	owing is g	generally n	ot designed	for shear			
	(1)	a slab			(2)	a cantilever	r beam		
	(3)	a footing			(4)	a beam			
145.	The	maximum she	ear stress	in a beam o	of rectangul	ar section is	given by	12	
	(1)	1.25 times th	ne averag	e	(2)	1.5 times th	ne average		
	(3)	1.75 times th	ne averag	e	(4)	2.0 times th	ne average		
146	The	radius of a ba	r band to	6 b	le aboutdui	, at ha lass that			
140.				тоги а поо					
		twice the dia			(2)	thrice the d			
	(3)	four times th	ie diamet	er	(4)	five times t	he diamet	er	100
147	Incre	ease in finene	ee madul	is of aggre	gate indicat	ac.			
	(1)	fine grading	33 moduli	is or aggre	(2)		dina		
						coarser grad			
	(3)	gap grading			(4)	mixed gradi	ing		
					22-A				(CVL)

Set Code :	T2
Booklet Code :	A

148. In s	slab.	the minimum	reinfo	orcement prov	ided is (for Fe 250 Gi	rade)			
(1)		10% of its gro			(2)	0.12% of its	gross sec			
(3)		15% of its gro			(4)	0.18% of its gross sectional area				
149. Th	e dia	meter of longi	tudin	al bars of a col	umn sho	uld never be	less than	1212111111		
(1)) 6	mm	(2)	8 mm	(3)	10 mm	(4)	12 mm		
		mn is regarded	1.	a a a a lumn if	the ratio	of its effect	ive length	and latera	l dimensio	
150. A	colu ceed	mn is regarded s	as ic	ong colullii ii	the ratio	or its crieet				
(1)			(2)	12	(3)	20	(4)	25		
(1)	, .		` '		4	+				
151. Th	ne sh	ear reinforcem	ent ir	RCC is provi	ded to re	esist				
(1)		ertical shear			(2)	horizontal s	hear			
(3)	,	iagonal compr	essio	n	(4)	diagonal ter	nsion			
(-	,	T. I								
152. Th	ne ma	aximum ratio o	fspa	n to depth of a	slab sim	ple supported	d and span	ning in two	direction,	
		aximum ratio o		n to depth of a	slab sim	ple supported	d and span (4)	ning in two	direction,	
	ne ma				slab sim	ple supported	d and span (4)	ning in two	direction,	
(1) 2	15	(2)	30	(3)	35	(4)	ning in two	direction,	
(1 153. If) 2	5 crete grade is N	(2) 4-201	30	(3)	35	(4)	ning in two 40 13.33	direction,	
(1 153. If) 2	5 crete grade is N	(2) 4-201	30 then what wou	(3)	35 modular rat	(4) io	40	direction,	
(1 153. If) 2	crete grade is N	(2) (1-20) (2)	30 then what wou 9.08	(3) ald be the (3)	35 e modular rat 12	(4) io (4)	40	direction,	
(1 153. If (1 154. Fe) 2 cone) 7 or sta	erete grade is N 2.08 airs spanning h	(2) 4-20 (2) (2)	30 then what wou 9.08	(3) ald be the (3)	35 e modular rat 12	(4) io (4)	13.33	direction	
(1 153. If (1 154. Fe) 2 cone) 7 or sta	crete grade is N	(2) 4-20 (2) (2)	30 then what wou 9.08 ntally the mini	(3) ald be the (3)	35 e modular rat 12 iist provided	(4) io (4)	13.33	direction,	
(1 153. If (1 154. Fo) 2 cone) 7 or sta	erete grade is N 2.08 airs spanning h	(2) (4-20) (2) orizo (2)	then what wou 9.08 ntally the mini 6 cm	(3) ald be the (3) mum wa (3)	modular rat 12 hist provided 10 cm	(4) io (4) is (4)	13.33 12 cm		
(1 153. If (1 154. Fo (1 155. If	cone () 7 or sta	crete grade is N 7.08 hirs spanning h 4 cm	(2) (2) (2) orizo (2)	then what wou 9.08 ntally the mini 6 cm	(3) ald be the (3) amum wa (3)	modular rat 12 hist provided 10 cm	(4) io (4) is (4)	13.33 12 cm		
(1 153. If (1 154. Fo (1 155. If	cone () 7 or sta	erete grade is N 2.08 airs spanning h	(2) (2) (2) orizo (2)	then what wou 9.08 ntally the mini 6 cm	(3) ald be the (3) amum wa (3)	modular rat 12 hist provided 10 cm	(4) io (4) is (4)	13.33 12 cm		
(1 153. If (1 154. Fo (1 155. If) 2 concern () 7 c	erete grade is N 2.08 airs spanning h 4 cm ad R are tread a 2R + T = 60	(2) (2) (2) orizo (2) and ris (2)	30 then what wou 9.08 ntally the mini 6 cm se respectively R + 2T = 60	(3) ald be the (3) amum wa (3) a of a stail	modular rat 12 iist provided 10 cm ir, then $2R + T = 3$	(4) io (4) is (4)	13.33 12 cm		
(1 153. If (1 154. Fo (1 155. If (1) 2 2 concern () 7 7 2 concern ()	crete grade is N 7.08 hirs spanning h 4 cm	(2) (2) (2) orizo (2) and ris (2) f an a	30 then what wou 9.08 ntally the mini 6 cm se respectively R + 2T = 60	(3) ald be the (3) amum wa (3) a of a stain (3) and s	modular rat 12 iist provided 10 cm ir, then $2R + T = 3$	(4) io (4) is (4)	13.33 12 cm		

								Set Code : T2		
								Booklet Code : A		
157.	Wal	king over the area	and o	bserving its ma	in featu	res and bounda	ries, is k	known as survey.		
	(1)	Topographical	(2)	Cadastral	(3)	City	(4)	Reconnaissance		
158.		sum of the exter e number of its s		gles of a closed	traver	se is equal to _		Right angles, where n		
	(1)	(2n - 4)	(2)	(2n + 4)	(3)	(4n - 2)	(4)	(4n + 2)		
159.	Ifth	e whole circle be	earing	of a line is 270	°, then	its bearing in q	uadran	tal system is		
	(1)	90°W	(2)	90°E	(3)	180°W	(4)	180°E		
160.		ne which passes the cross hair, is o			ntre of	the objective a	nd also	through the intersection		
	(1)	Line of collima	ntion		(2)	Axis of teleso	cope			
	(3)	Horizontal axis			(4)	Trunion axis				
161.		L. of a B.M. is 20	00.00	m, back sight is	1.525	m and foresight	is 3.28	5 m, R.L. of the forward		
	(1)	198.460m	(2)	201.760m	(3)	198.240m	(4)	201.525m		
162.	In tr	apezoidal formu	la of a	areas, the line jo	ining t	he ends of the	ordinate	es is assumed		
	(1)	semi circular	(2)	straight	(3)	parabolic	(4)	circular		
163.	1 Ac	ere is equal to								
	(1)	43560 sq.ft	(2)	34560 sq.ft	(3)	54360 sq.ft	(4)	64350 sq.ft		
164.	Ifa	tacheometer is fi	tted w	ith anallatic ler	ıs					
	(1)	Additive consta	ant is	100, multiplying	g const	ant is 0				
	(2)	Additive consta	ant is	0, multiplying c	onstan	t is 100				
	(3)	Both additive c	onsta	nt and multiplyi	ng con	stant are 100				
	(4)	Both additive c	onsta	nt and multiplyi	ng cons	stant are 50				

24-A

(CVL)

								Set Code :]	Γ2 Α
165.	One	S.I. unit of vi	scosity is	equal to					
	(1)	10 poises	(2)	981 poise	s (3)	9.81 Ns/m ²	(4)	10 kg.sec/m ²	
166.	8 m	of oil (sp.Gr.	= 0.8) he	ad is equal	to the follo	wing water hea	nd		
	(1)	10 m		8 m		6.4 m	(4)	l m	
167.		ertical triangu nward. The de				ide in the free s	surface	of a liquid. Its verte	x is
	(1)	0.8 h	(2)	0.75 h	(3)	0.5 h	(4)	h/3	
168.	The (1) (2) (3) (4)	equation of co is valid for in expresses th relates the do relates the m	ncompre e relation ensity va	ssible fluids between n riations alor	nass and ar		tion		
169.	Flow (1) (2) (3) (4)		pward flow throu	ow through igh a conve igh a diverg	a uniform rging pipe ing pipe w	vertical line with horizontal ith a horizontal		u v	
170.	Diff	erential mano	meters a	re used for	measuring				
	(1)	velocity of f	luid at a p	point					

(2) pressure of fluid at a point

(4) difference of pressure between two points

(3) discharge of fluid

							S	et Code : T2
							Bookle	et Code : A
171.	The	pressure at ver	na-contra	acta of an extern	al mou	thpiece is		
	(1)	always less th	nan satur	ation vapor pres	sure o	fliquid		
	(2)	inversely pro	portiona	l to square of co	oeffici	ent of contract	tion	
	(3)	always greate	er than at	mospheric press	sure			
	(4)	a function of	the head	l over the mouth	piece			
172. 173. 174.	AV-	notch is consi	dered to	be a better notel	h beca	use		
	(1)	its C _d is prac	tically ur	niform over a wi	ide ran	ge of heads		
	(2)	-		contraction of				
	(3)	It keeps the h	ead with	in a reasonable	limit e	ven for large d	ischarges	
	(4)	Its C _d is sma	ller					
173.		error of 1 mm i 3m the percen			ureme	nt of head over		otch. If the head
	(1)	0.5	(2)	0.6	(3)	1.0	(4) 1.5	
174.	The	Hagen-Poiseu	ille equa	tion gives				
	(1)	head loss in laminar flow						
	(2)	boundary shear stress in laminar flow						
	(3)	shear stress of	distributi	on in any pipe f	low			
	(4)	velocity dist	ribution	in any pipe flow				
175.	The	loss of head d	ue to fric	ction in turbulen	t flow	through a circ	ular pipe	
	(1)	varies as cub			(2)			average velocity
	(3)			erage velocity	(4)	is directly pro	oportional to a	verage velocity
176.	Lan	ninar flow thro	ugh a pi	pe, the velocity of	listrib	ation curve is		
	(1)	logarithmic	2850	and the statement of		parabolic		
	(3)	elliptical			(4)	hyperbolic		

26-A

(CVL)

177. For the most economical trapezoidal section of an open channel

- (1) depth of flow = twice base width
- (2) depth of flow = hydraulic radius
- (3) sloping side = half the top width
- (4) sloping side = base width

178. Froude's number is defined as the ratio of

- (1) Inertia force to viscous force
- (2) Inertia force to elastic force
- (3) Inertia force to pressure force
- (4) Inertia force to gravity force

179. The critical velocity for a flow of q m3 width of a wide rectangular channel is given by

$$(1) \quad \left(\frac{q^2}{g}\right)^{\frac{1}{3}}$$

(2)
$$(q^2g)^{\frac{1}{3}}$$

(3)
$$\left(\frac{g}{q^2}\right)^{\frac{1}{3}}$$

(4)
$$(qg)^{\frac{1}{2}}$$

180. The function of scroll case of a reaction turbine is to

- (1) Guide the water to the runner at appropriate angle
- (2) Guide the water smoothly to the tailrace
- (3) Distribute the water evenly around the wheel
- (4) Reduce the eddy and shock losses

181. The runner blades of a Kaplan turbine are

- (1) More curved than propeller blades
- (2) More curved than pelton blades
- (3) More curved than Francis blades
- (4) Less curved than Francis blades

182. When the speed of a centrifugal pump is constant

- (1) Shaft power decreases with increase of Q
- (2) H_m decreases with increase of Q
- (3) Q increases with increase of H_m
- (4) Q is independent of H_m

(CVL)

Set Code :	
Booklet Code :	A

183.	The	optical square is based on the pr	rinciple of op	tical				
	(1)	reflection	(2)	refraction				
	(3)	double reflection	(4)	double refraction				
184.	A re	servoir provided at the intake he	ad works fro	m which water enters the penstocks is				
	(1)	power canal (2) tail rack	(3)	fore bay (4) trash rack				
185.	Con	sumptive use is :						
	(1)	water used up in plant metabol	ism					
	(2) sum of evapo-transpiration and amount used up in plant metabolism							
	(3)	sum of evapo-transpiration and	d infiltration	losses				
	(4)	combined use of surface and g	round water	resources				
(184. A (185. C) (185. C) (186. T) (186. T) (187. T) m (188. O) (188. O) (188. O) (188. O)	The	head under which a centrifugal	oump works i	s called				
	(1)			pressure head				
	(3)	suction head	(4)	manometric head				
187.		volume of water that can be exerial is known as	stracted by fo	orce of gravity from a unit volume of aquifer				
	(1)	specific capacity	(2)	specific yield				
	(3)	specific retention	(4)	specific storage				
188.	One	cumec day is equal to						
	(1)	8.64 hectare metres	(2)	86.4 hectare metres				
	(3)	864 hectare metres	(4)	0.864 hectare metres				
189.	Lace	ey considered channel section						
	(1)	Rectangular (2) Trapezo	idal (3)	Semi elliptical (4) Elliptical				

				Set Code : T2
				Booklet Code : A
190	Lanc	d is said to be water logged when		
170.	(1)	Gravity drainage is ceased	(2)	Permanent wilting point is reached
	(3)	Salinity of soil increases	(4)	Capillary fringe reaches root zone of plants
191.	Hyd	raulic jump occurs when the flow c	hanges fro	om
	(1)	super critical to sub critical	(2)	
	(3)	critical to turbulent	(4)	laminar to turbulent
192.	Stre	ams that contribute to the ground w	ater are c	alled
	(1)	Effluent streams	(2)	Ground water stream
	(3)	Influent streams	(4)	Perennial stream
193.	Rati	ional method correlates		
	(1)	Run off coefficient with intensity	of rainfa	II .
	(2)	Run off co efficient with drainage	e area	
	(3)	Drainage area with intensity of ra	infall	
	(4)	Intensity of rainfall with run off		
194	. The	example of multiple Arch type But	tress dam	in India is
	(1)	Mir-Alam dam	(2)	Khadakwasla Dam
	(3)	Idikki dam	(4)	Koyna dam
195	. Sur	charge storage of reservoir is the ve	olume of	water stored between
	(1)			
	(2)	Maximum pool level and minimu	ım pool le	vel
	(3)	Minimum pool level and normal	pool level	I

(CVL)

(4) Normal pool level and revert bed level

Set Code :	T2
Booklet Code :	A

	Seepage endangers the stability of an earth dam built on pervious foundation because of piping which depends on							
(1	1) height of dam		(2)	quantity of seepage flow				
(3	3)	value of exit gradient	(4)	total reservoir storage capacity				
197. Ir	nve	rted filter for providing foundation d	rainage l	nas				
(1	1)	multi layers of soil particles of san	ne perme	cability				
(2	2)	multi layers in which permeability	increase	s from top to bottom				
(3	3)	multi layers in which permeability	increase	s from bottom to top				
(4	4)	only one layer of soil		20				
198. G	Grav	vity dams transfer load to foundation	by					
(1	1)	Arch action	(2)	Cantilever action				
(3	3)	Both arch and cantilever action	(4)	Cohesion .				
199. A	ch	ute spill way is generally provided w	ith	**				
(1	1)	A weir	(2)	A barrage				
(3	3)	Concrete gravity dam	(4)	An earth dam				
200. T	he	function of surge tank is to						
(1	1)	avoid flow in reverse direction						
(2	2)	smoothen the flow						
- (3	3)	act as a reservoir for emergency co	ndition					
(4	(4) relieve the pipe line of excessive pressure transients							
			30-A		(CVI			