130.	Var	nish does not co	ntain						
	(1)	pigment				(2)	thinner		
	(3)	dryer				(4)	anti skinning	agent	
131.	Cata	alyst used in oxi	dation	of amn	nonia is				
	(1)	Platinum-Bery	llium			(2)	Platinum-Rho	dium	
	(3)	Cobalt-Molyb	denum			(4)	Platinum-Mo	lybdeni	ım
132.	Flui	ds which show	an appa	arent in	crease in	viscos	ity with time ar	e calle	d
	(1)	rheopectic	(2)	thixot	ropic	(3)	ideal fluids	(4)	newtonian fluids
133.	Ben	noulli's theorem	deals	with the	e law of	conser	vation of		
	(1)	energy				(2)	mass		
	(3)	momentum				(4)	gravity		
134.	Pito	t tube is used to	meası	ıre					
	(1)	local velocity	at a po	int		(2)	volumetric flo	w rate	
	(3)	average veloci	ty			(4)	pressure at a p	oint	
135.	Stok	e (St) is the uni	t of kir	nematic	viscosit	y and o	one stoke is equ	al to	
	(1)	$1 m^2/s$	(2)	1ft ² /s		(3)	1 cm ² /s	(4)	1 mm ² /s
136.	For	laminar flow in	a pipe,	the val	ue of ki	netic er	nergy correction	n factor	r(α) is
	(1)	1	(2)	1.01		(3)	1.33	(4)	2
137.	Whi	ch of the follow	ing equ	ations	is applic	able fo	r the flow of flu	uid thro	ugh packed bed?
		Hagen-Poiseui				(2)			
		Nikuradse equa				(4)	Ergun equation		14

Set Code :	T2
Booklet Code :	A

138.		ch of the following pumps is preferre		
	(1)	Gear pump	(2)	Lobe pump
	(3)	Screw pump	(4)	Centrifugal pump
139.	Min	imum porosity for fluidization is		
	(1)	that corresponding to static bed		•
	(2)	that corresponding to completely fl	uidized	bed
	(3)	the porosity of the bed when true fle		
	(4)	less than that of the static bed		
140	For	turbulent flow in smooth pipe of diar	neter D.	the transition length is taken as
140.		0.05 D (2) 50 D		150 D (4) 0.5 D
141.		e of that factor were increased? temperature difference	(2)	transfer rate by conduction to decrease, if the thermal conductivity
	(3)	area	(4)	thickness
142.	The	rmal conductivity is minimum for		
	(1)	asphalt	(2)	water
	(3)	petroleum coke	(4)	air
143.	. In fo	orced convection, fluid moves under	the influ	nence of
	(1)	changes in fluid pressure produced	by exter	nal work
	(2)	buoyant forces arising from change	es in den	sity
	(3)	elastic forces		*1
	(4)	surface tension forces		
144	. The	Graetz number is associated with		
	(1)	heat transfer by radiation	(2)	heat transfer in laminar flow
	(3)	heat transfer in turbulent flow	(4)	mass transfer operations
			22-A	(CHE)

145	5. Dr	op-wise condens	sation	usually occurs	on				
	(1)	smooth surface	ce		(2)	oily surface	:		
	(3)	coated surfac	e		(4)	glazed surfa	ice		٠
146	5. The	e presence of sm	all am	ounts of non-c	ondensir	ng gas in a con	densing	vapor	
	(1)			rate of conde					
	(2)			e rate of conde					
2.5	(3)	does not affect							
	(4)	increases the	conde	nsing film coe	fficient				
147	. The	heat flux in the	free c	onvection regi	me of no	ool boiling var	ies as th	ie.	
		ΔT^3		ΔT ^{5/4}		ΔT ²		ΔT1/4	
148	, In a	single effect ev	aporat	ion, to evapora	ate 1 lb o	of water from a	a solutio	on calls for	
		1 to 1.3lb of st				1.5 to 2 lb st			
	(3)	2 to 2.5 lb of s	team		(4)	0.5 to 0.8 lb	of steam	n ·	
149.	. The	total emissivity	ofare	eal surface is					
	(1)	less than zero			(2)	greater than	one		
	(3)	equal to one			(4)	•		less than one	
150.	The	units of fouling	factor	are					
	(1)	m ² .K/W	(2)	W/(m ² .K)	(3)	m.K/W	(4)	$m^2 K^4/W$	
151.	Crus	shing efficiency	of a si	ze reduction ec	quipmen	t ranges betwe	en		
	(1)	0.1 to 2%	(2)	10 to 20%	(3)	40 to 50%	(4)	70 to 80%	٠.
152.	Whi	ch of the followi	ng scr	eens has the m	aximum	capacity?			
	(1)	Grizzlies	-			Trommels			
	(3)	Vibrating screen	n		(4)	Stationery sc	reen		
					23-A				(CHE)

Set Code :	T2
Booklet Code :	A

153.	In a	ball mill most of	of the re	ductin is do	one by			1	
	(1)	slow compres	sion		(2)	cutting			
	(3)	attrition			(4)	impact			
154.	In a	rotary-drum fil	ter, the	fractional s	ubmergeno	e of the drum	in the sl	urry is abou	ıt
	(1)	0.03	(2)	0.30	(3)	0.90	(4)	0.15	
155.	Indu	strially, the pro	cess of	sedimentat	ion is cond	lucted on a lar	ge scale	in equipme	nt called
	(1)	sorting classi	fiers		(2)	cyclones			
	(3)	thickeners			(4)	filters			
156.	The	speed, in rpm,	of a con	tinuous rot	ary vacuum	n filter may be			
	(1)	1	(2)	100	(3)	1000	(4)	10000	50
157.	Frot	th flotation is m	nost suit	able for tre	ating				
	(1)	iron ores			(2)	sulphide ore	s		
	(3)	quartzite			. (4)	nitride ores			ia .
158.	The	most efficient	equipm	ent for remo	oval of sub-	micron dust p	articles	form blast f	urnace gas is
	(1)	venturi scrubl	ber		(2)	gravity settli	ng cham	ber	
	(3)	electrostatic	precipit	ator	(4)	cyclone sepa	arator		¥8
159.	Cha	inge of state, e.g	g. freezi	ng, melting	, evaporati	on and conden	sation, i	s an	
	(1)	adiabatic pro	cess		(2)	isobaric pro	cess		
	(3)	isothermal pr	rocess		(4)	isochoric pr	rocess		
160.	Mat	hematical state	ment o	second lav	v of thermo	odynamics is			
	(1)	$\Delta S = 0$	(2)	$\Delta S > 0$	(3)	$\Delta S \le 0$	(4)	$\Delta S \ge 0$	
					24-A				(CHE)

								5	Set Code : T2
								Book	et Code : A
161.	-	variation of heat	of re	action with temp	eratur	e at constant pro	essure	or at co	onstant volume is
	(1)	Kirchoff's law	(2)	Fourier's law	(3)	Laplace law	(4)	Hess	's law
162.	The	principal of refri	gerat	ion is based on					
	(1)	Zeroth law of th	ermo	dynamics	(2)	first law of the	rmody	namic	s
	(3)	second law of the	nermo	odynamics	(4)	thrid law of the	ermody	namio	rs ·
163.	_	as is termed an id w deviation from			gas co	uation PV = RT	. When	do yo	ou expect a gas to
	(1)	At high pressure	es and	low temperatur	es				
	(2)	At low pressure	s and	low temperature	es				
	(3)	At high pressure	es and	high temperatu	res				
	(4)	At low pressure	s and	high temperatur	es				
164.	From		plot	ln k versus 1/T g	ives a:	straight line with	a slop	e of (-	E/R). The units of
	(1)	K	(2)	cal	(3)	cal/K		(4)	K/cal
165.	The	rate constant of a	ny re	action depends of	on				
	(1)	the temperature	of th	e system	(2)	the time of rea	ction		
	(3)	the extent of re-	action	1	(4)	the initial cond	centrat	ion of	the reactants
166.	A ca	talyst is a substar	ice w	hich					
	(1)	increases the eq	uilib	rium concentrati	on of	the product			
	(2)	changes the equ	ilibri	um constant of t	he rea	ction			
	(3)			each equilibrium					
	(4)	supplies energy							

25-A (CHE)

Set Code :	T2
Booklet Code:	A

	of th	ne initial concen	tration	, the orde	r of the			0.00		
	(1)	zero	(2)	one		(3)	two	(4)	three	
168.	The	irreversible rea	ction is	s simply th	he spec	ial ca	se of the re	versible re	action if	
	(1)	the concentrat	ion of t	the reacta	nt at eq	uilibr	ium condit	ions is zero)	7
	(2)	the fractional	conver	sion of the	e reacta	nt at	equilibriun	n condition	s is zero	
	(3)	the equilibrium	n const	ant is zer	0					
	(4)	the equilibrium	n const	ant is one	:					
169.		steady state tem				nall ar	nount of liq	uid evapor	ating into a	large amount
	(1)	dry-bulb temp	erature							
	(2)	dew point						4		
	(3)	wet-bulb temp	erature	:						
	(4)	bubble point								
170.	Rela	ative volatility, o	ι, for a	binary sy	stem					
	(1)	decreases with	increa	ase in pres	ssure	95				
	(2)	increases with	increa	se in pres	sure					
	(3)	increases with	increa	se in temp	perature	e at co	onstant pres	ssure		
	(4)	has no signific	ance in	n distillati	on oper	ration				
171.	At n	ninium reflux ra	tio the	operating	g cost of	f a dis	stillation co	olumn is	F1	
	(1)	maximum	(2)	optimum	n	(3)	minimum	(4)	infinite	
172.	For	all useful liquid	-liquid	extractio	n opera	tions	the selectiv	vity of solv	ent must be	:
	(1)	more than zero				(2)	more than	one		
	(3)	less than one				(4)	less than	or equal to	one	
										(CHE)

Set Code :	T2
Booklet Code :	A

173.	At f	ixed temperature, the solubility of	gases in so	olvent
	(1)	remains constant with change in	pressure	
	(2)	decreases with increase in pressu	ıre	
	(3)	increases with increase in pressu	ire	
	(4)	decreases exponentially with inc	rease in pr	essure
174.	Veg	etable oils are recovered from oil s	seeds by le	aching with
	(1)	hot sulphuric acid	(2)	cold water
	(3)	nitric acid	(4)	hexane
175.	The	ratio of momentum diffusivity to r	nass diffus	sivity is known as
	(1).	Schmidt number	(2)	Sherwood number
	(3)	Lewis number	(4)	Stanton number
176.	Whi	ch one of the cooling tower is mo	st efficient	?
	(1)	Chimney type natural draft coolin	ng tower	
	(2)	Atmospheric circulation type coo	oling tower	r
	(3)	Induced draft cooling tower.		
	(4)	Forced draft cooling tower		
177.	Gran	nular or crystalline material can be	dried in	
	(1)	37.00 to 10.00 to 10	(2)	rotary dryer
	(3)		(4)	screw-conveyor dryer
178.	Swe	nson-Walker crystallizer is a		
	(1)	continuous unit	(2)	batch unit
	(3)	semi-batch unit	(4)	cooling (adiabatic)-cum-evaporation device
179.	Whi	ch one of the following is a static	characteris	stic of instruments?
	(1)	Fidelity (2) Time lag	(3)	Dynamic error (4) Reproducibility

	Set Code :	T2
	Booklet Code:	A

180.	Which of the following is most suitable to measure a temperature of 2000°C?									
	(1)	(1) Ordinary mercury-in-glass thermometer								
	(2)	Platinum resistance thermometer								
	.(3)	Radiation pyrometer								
4	(4)	Constant-volume hydrogen thermometer								
181.	Offset is zero for									
	(1)	P-controller only	(2)	P-D controller only						
	(3)	P- and P-D controllers	(4)	P-I and P-I-D controllers only						
182.	On-off control is a special case of									
	(1)	proportional control	(2)	proportional-integral control						
	(3)	proportional-derivative control	(4)	proportional-integral-derivative control						
183.	Absolute pressure is measured by									
	(1)	a bourdon gauge	(2)	an ancroid barometer						
	(3)	a differential manometer	. (4)	a vacuum gauge						
184.	Resp	Response of a linear control system for a change in set point is called								
	(1)	frequency response	(2)	transient response						
	(3)	servo problem	(4)	regulator problem						
185.	Degree to which an instrument indicates the changes in measured variable withou dynamic error is called									
	(1)	speed of response	(2)	reproducibility of instrument						
	(3)	fidelity	(4)	its static characteristics						
186.	Step response of a first-order system is									
	(1)	under damped	(2)	critically damped						
	(3)	over damped	(4)	undamped						
			28-A	(CHE)						

Set Code :	T2
Booklet Code :	A

						7974			
187.		ar radiation flux							ial to
	(1)	1 cal/cm ²	(2)	1 Btu/ft ²	(3)	1 j/m ²	(4)	1 Btu/in ²	
188.	Cor	version efficie	ncies fo	or silicon cel	ls (i.e., so	olar cells) rang	ge betwe	en	
	(1)	10 and 15%			(2)	30 and 35%	,		
	(3)	90 and 95%			(4)	95% and 99	%		
189.	The	function of a w	vindmil	l is to extract	energy fr	om the wind a	and to pro	oduce	
	(1)	mechanical er			(2)	thermal ene	· · · · · · · · · · · · · · · · · · ·		
	(3)	electrical ene	rgy		(4)	chemical en	377		
190.		maximum pov		lable in the	wind is di	rectly proport	tional to	the velocity o	f the wind
	(1)	1	(2)	2	(3)	3	(4)	4	
191.	Liqu	uefied petroleur	m gas (l	LPG) is a					
	(1)	primary liquio	fuel		(2)	primary gase	eous fuel		
	(3)	secondary gas	seous fu	iel	(4)	secondary li	quid fuel		
192.	Whi	ch of the follow	ving iso	tope is a raw	material	for the produc	ction of F	u ²³⁹ nuclear	fuel?
		U^{238}	(2)	U^{235}	(3)	222	(4)		
193.	The	quality of a goo	od fuel i	is					
	(1)	high calorific			(2)	low cost			
	(3)	easily availabl	e		(4)	no ash		9	
194.	Whi	ch one of the fo	llowin	g is the most	severe ai	r pollutant?			
		SO ₂		NO _X		СО	(4)	CH_4	
	. ,	-2	(=)	X	(-)	363/070			
					29-A			5	(CHE)

Set Code : T2

Booklet Code : A

195.	The	rmal power plants are the major so	urce of	
	(1)	SO ₂ pollutants	(2)	ammonia pollutants
	(3)	NO _X pollutants	(4)	phosgene pollutants
196.	The	fire of electrical equipments can b	e extinguis	shed with the use of
	(1)	soda-acid extinguisher	(2)	carbon dioxide extinguisher
	(3)	foam extinguisher	(4)	antifreeze extinguisher
197.	Fire	is a proper combination of		
	(1)		(2)	fuel and oxygen
	(3)		(4)	oxidizing material and air
		Landles days a don shad oon be up	ed to store	
198.		I ventilated wooden shed can be us		
	(1)	oxidizing materials	(2)	flammable liquids
	(3)	acids	(4)	compressed gases
199.	The	biochemical treatment of sewage	effluents i	s essentially a process of
	(1)		(2)	
	(3)	dehydration	(4)	alkalinization
200.		ich one of the following chemica ution?		t in the form of inorganic impurity in water
	(1)	Proteins (2) Fats	(3)	Salts of metals (4) Carbohydrates