Set Code : T2 Booklet Code : A

PHYSICS

				PHY	SIC	s			
51.		quantities A and e. The dimension		related by the rela will be	ation /	A/B = m where <i>n</i>	n is line	ear mass density	and A is
	(1)	same as that of	latent	heat	(2)	same as that of	f press	ure	
		same as that of	work		(4)	same as that of	ſmomo	entum	
52.	The	dimensional for	mula c	of capacitance in	terms	of M, L, T and	I is		
		[ML ² T ²] ²]		$[ML^{-2}T^4I^2]$	(3)	[M ⁻¹ L ³ T ³]	(4)	[M ⁻¹ L ⁻² T ⁴ I ²]	
53.				on cosines of a v					
	(1)	l + m + n = 1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1	
54.	The	angle between i	+j and	j+k is					
		0° .		90°	(3)	45°	(4)	60°	
55.	A pa 5 ma	article is moving s ⁻¹ northwards. T	castw he ave	ards with a veloc erage acceleration	city of n in th	f 5 ms ⁻¹ . In 10 se his time is	econds	the velocity ch	anges to
	(1)	$\frac{1}{\sqrt{2}}$ m/s ⁻² towar	ds nor	th-west	(2)	zero			
	(3)	$\frac{1}{2}$ ms ⁻² toward	s north	i	(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towa	ards no	rth-east	с С
<u>.</u> 56.		linear momentu ect?	mofa	particle varies w	ith ti	me t as $p = a + bb$	$t+ct^2$ w	hich of the foll	owing is
	(1)	Force varies w	ith tim	e in a quadratic n	nanne	r.			
	(2) Force is time-dependent.								
	(3)	The velocity o	f the p	article is proport	ional	to time.			
	(4)	The displacem	ent of	the particle is pro-	oport	ional to t.			
57.	A sl m/4	nell of mass m me remains stations	oving ary. Th	with a velocity ventile velocity of the	sudde other	nly explodes int part is			t of mass
			100		123	2.14	(4)	1/3	

(4) 4v/3 (3) 3v/4 (1) v

- 58. The velocity of a freely falling body after 2s is (1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) 19.6 ms^{-1}
- 59. A large number of bullets are fired in all directions with the same speed *u*. The maximum area on the ground on which these bullets will spread is
 - (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$
- 60. The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be

(1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

- 61. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts
 - (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
 - (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
 - (3) In the backward direction on both the front and the rear wheels
 - (4) In the forward direction on both the front and the rear wheels
- 62. In a perfectly inelastic collision, the two bodies
 - (1) strike and explode (2) explode without striking
 - (3) implode and explode (4) combine and move together
- 63. Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is
 - (1) zero (2) pos
 - (3) negative

(2) positive

(4) increasing uniformly with time

11-A

Set Code : T2 Booklet Code : A

- 64. Consider the following two statements:
 - A: Linear momentum of a system of particles is zero.
 - B: Kinetic energy of a system of particles is zero.
 - Then
 - A implies B & B implies A
 A does not imply B & B does not imply A
 - (3) A implies B but B does not imply A (4) A does not imply B but B implies A
- 65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given g = 10 ms⁻²)
 - (1) 4s (2) 5s (3) 8s (4) 10s
- 66. If a spring has time period T, and is cut into n equal parts, then the time period will be
 - (1) $T\sqrt{n}$ (2) $\frac{T}{\sqrt{n}}$ (3) nT (4) T
- 67. When temperature increases, the frequency of a tuning fork
 - (1) increases
 - (2) decreases
 - (3) remains same
 - (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

- (1) $2\pi\sqrt{\alpha}$ (2) $2\pi\alpha$ (3) $\frac{2\pi}{\sqrt{\alpha}}$ (4) $\frac{2\pi}{\alpha}$
- A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be
 - (i) 850 w-m^2 (2) 82.50 w-m^2 (3) 8.250 w-m^2 (4) 0.825 w-m^2

70. To absorb the sound in a hall which of the following are used

- (1) Glasses, stores (2) Carpets, curtains
- (3) Polished surfaces (4) Platforms
- 71. If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is
 (1) 2N
 (2) 3N
 (3) N
 (4) N/6

72. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is

(1) $\frac{1}{2}kT$ (2) kT (3) $\frac{3}{2}kT$ (4) 2kT

73. The amount of heat given to a body which raises its temperature by 1°C

- (1) water equivalent (2) thermal heat capacity
- (3) specific heat (4) temperature gradient
- During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is
 - (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 (4) $\frac{5}{3}$

75. Cladding in the optical fiber is mainly used to

- (1) to protect the fiber from mechanical stresses
- (2) to protect the fiber from corrosion
- (3) to protect the fiber from mechanical strength
- (4) to protect the fiber from electromagnetic guidance

13-A

÷ •

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of I	Phospho	prous atom (At.)	No. 15) is			
	<u>(</u> 1)	3s ² 3p ³	(2)	3s ¹ 3p ³ 3d ¹	(3)	3s ² 3p ² 3d ¹	(4)	3s1 3p2 3d2			
77.	And	element 'A' of A	t.No.I	2 combines with	h an ele	ment 'B' of At.N	0.17.7	The compound formed is			
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4).	ionic AB			
78.	The	The number of neutrons present in the atom of ${}_{56}Ba^{137}$ is									
	(1)	56	(2)	137	(3)	193	(4)	81			
79.	Hyd	Hydrogen bonding in water molecule is responsible for									
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization			
	(3)	increase in its	boiling	g point	(4)	decrease in its	boilin	g point			
80.	In the HCl molecule, the bonding between hydrogen and chlorine is										
	(1)	purely covalen	t (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate			
81.	Potassium metal and potassium ions										
	(1)	both react with	water	-	(2)	have the same	numbe	er of protons			
	(3) both react with chlorine gas					have the same electronic configuration					
82.	stan wate	dard flask. 10 ml	of this solutio	solution were p	ipetted tration of		lask ar loride	made upto 100 ml in a nd made up with distilled solution now is 0.25 M			
83.	Con	centration of a 1	.0 M s	olution of phos	sphoric	acia in water is					
		0.33 N		1.0 N	•	2.0 N	(4)	3.0 N			
84.	Whi	ch of the follow	ing is a	Lewis acid?							
	(1)		~		(2)	Berylium chlor	ide	2			
		(3) Boron trifluoride			(4)	Magnesium oxide					
					14-A	ç					

85.	Whi	ich of the follow	ving co	institutes the con	npone	nts of a buffer s	solution	1?	
	(1)			nd potassium hy					
	(2)	Sodium acetat	te and a	cetic acid					
	(3)	Magnesium su	alphate	and sulphuric ad	cid				
	(4)	•	-	d calcium acetat					
86.	Whi	ich of the follow	ving is	an electrolyte?					
	(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine	
						•			
87.				of the cell, C	d/Cd*2	//Cu ⁺² /Cu given	n that E	$\mathbf{C}^{0} \mathbf{C} \mathbf{d} / \mathbf{C} \mathbf{d}^{+2} = 0.$	44V and
	Eº C	$Cu/Cu^{+2} = (-) 0.3$							
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
				e av en destriction en 1944. Be					
88.	Asc	olution of nicke	l chlori	de was electroly	ysed u	sing Platinum e	lectrod	les. After electr	olysis,
	(1)	nickel will be	deposi	ted on the anode	e (2)	Cl ₂ gas will b	e libera	ted at the catho	de
	(3)	H ₂ gas will be	liberat	ed at the anode	(4)	nickel will be	deposi	ted on the cath	ode
89.	Wh	ich of the follow	ving me	etals will underg	o oxid	lation fastest?			×
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron	
90.	Wh	ich of the follow	ving ca	nnot be used for	the st	erilization of dr	inking	water?	
		Ozone			(2)				
	(3)	Potassium Ch	loride		(4)	Chlorine wate	er		
91.	Aw	ater sample sho	wed it	to contain 1.20 r	ng/litr	e of magnesium	sulpha	ate. Then, its ha	rdness in
		ns of calcium ca			0				
		1.0 ppm		1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm	
92.	Sod	a used in the L-	S proc	ess for softening	g of wa	ter is, Chemica	illy.		
	(1)				(2)		nate de	cahydrate	
	(3)		nate		(4)	sodium hydro	xide (4	0%)	
93.	The	process of cem	entatio	n with zinc pow	deris	known as			
<i>yy</i> .		sherardizing		zincing	(3)		g (4)	electroplating	z
	(1)	sheraruizing	(2)	Lineing	(0)		8 (1)		
					15-A				

94. Carrosion of a metal is fastest in (2) acidulated water (3) distilled water (4) de-ionised water (1) rain-water 95. Which of the following is a thermoset polymer? (2) PVC (1) Polystyrene (4) Urea-formaldehyde resin (3) Polythene 96. Chemically, neoprene is (2) polyacetylene (1) polyvinyl benzene (4) poly-1,3-butadiene (3) polychloroprene 97. Vulcanization involves heating of raw rubber with (2) elemental sulphur (1) selenium element (3) a mixture of Se and elemental sulphur (4) a mixture of selenium and sulphur dioxide 98. Petrol largely contains (1) a mixture of unsaturated hydrocarbons C₅-C₈ (2) a mixture of benzene, toluene and xylene (3) a mixture of saturated hydrocarbons C12 - C14 (4) a mixture of saturated hydrocarbons $C_6 - C_8$ 99. Which of the following gases is largely responsible for acid-rain? (2) CO, & water vapour (1) SO, & NO, (4) N, & CO, (3) CO,&N, 100. BOD stands for (2) Biometric Oxygen Demand (1) Biogenetic Oxygen Demand (4) Biospecific Oxygen Demand (3) Biological Oxygen Demand

16-A

Set Code :	T2
Booklet Code :	A

CHEMICAL ENGINEERING

101	. Th	e property of metals of	r alloys which	describe	s its ability to be	draw	n into wires i	s known as
	(1)	tenacity		(2)				
	(3)	porosity		(4)	malleability			
102	. Sta	inless steel, in addition	n to iron and c	arbon co	ntains			
		aluminium (2)			lead	(4)	chromium	
103	. Wh	ich of the following h	as maximum n	nelting po	oint?			•
		wrought iron		(2)	white cast iron			
	(3)	steel .		(4)				
104	. The	process of protection	of iron by coa	ating with	zinc is called			
	(1)	tempering .		· (2)				
	(3)	nitriding		(4)	smelting			
105.	The	most commonly used	resin for mak	ing reinf	orced plastic is			
	(1)	unsaturated polyeste		(2)				
	(3)	polyurethane			nylon-6			
106.	Pres	ence of manganese in	allov steel im	nroves it				
	(1)			(2)	s cutting ability			
	(3)			(4)		reep re	esistance	
07	Four	unights of mothens						
•	press	al weights of methane a sure exerted by the oxy	ygen is	e mixed u	a empty reactor	at 25°	C. The fract	ion of total
	(1)	1/3 (2)	1/2	(3)	3/2	(4)	$\frac{1}{2} \times \frac{273}{298}$	
				17-Å		t.		(CHE)

Set Code :	T2
Booklet Code :	A

123. Th	e major constituent in black liquor is		
(1)	sodium carbonate	(2)	sodium sulphate
(3)	silica	(4)	iron oxide
124. Co	ntact process for the manufacture of s	ulphuri	c acid yields
(1)	80% H2SO4 only	(2)	98% H ₂ SO ₄ and higher
(3)	95% H ₂ SO ₄ only	(4)	90% H ₂ SO ₄ only
125. The	e constituents of water gas are		
(1)	CO and H ₂ O	(2)	CO2 and N2
(3)	CO and H ₂	(4)	CO and N2
126. The	principal raw materials for the manufa	acture	of soda ash by Solvay process are
(1)	limestone and potassium chloride	(2)	dolomite and sodium hydroxide
(3)	limestone, brine and coal	(4)	coal and caustic soda ·
127. Clir	nker is the mass obtained by heating		
(1)	powdered limestone and clay	(2)	gypsum
(3)	dolomite	(4)	sand, limestone and washing soda
28. Wh	en temporary hard water is boiled, one	of the	substances formed is
(1)	calcium bicarbonate	(2)	calcium sulphate
(3)	hydrogen chloride	(4)	carbon dioxide
29. Nitr	ic acid is manufactured by catalytic ox	idation	of ammonia. This process is called
(1)	Solvay process	(2)	Haber's process
(3)	Ostwald's process	(4)	Bosch process

20-A

.

(CHE)