| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : |           |

(4) [M-1L-2]14[2]

## PHYSICS

51. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is

(1) l+m+n=1 (2)  $l^2+m^2+n^2=1$  (3)  $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$  (4) lmn=1

same as that of pressure

(3) [M-1L3T3]]

(3) 45°

(4) same as that of momentum

force. The dimensions of B will be (1) same as that of latent heat

The dimensional formula of capacitance in terms of M, L, T and I is

(2) [ML-2T4P]

5 ms-1 northwards. The average acceleration in this time is

53. If l, m and n are the direction cosines of a vector, then

(3) same as that of work

The angle between i+j and j+k is

(1) [ML<sup>2</sup>T<sup>2</sup>I<sup>2</sup>]

(1) 0°

|     | (1) | $\frac{1}{\sqrt{2}}$ ms <sup>-2</sup> towards north-west        |            | (2)     | zero                                                      |
|-----|-----|-----------------------------------------------------------------|------------|---------|-----------------------------------------------------------|
|     | (3) | $\frac{1}{2}$ ms <sup>-2</sup> towards north                    | ž.         | (4)     | $\frac{1}{\sqrt{2}}$ ms <sup>-2</sup> towards north-east  |
| 56. |     | linear momentum of a particle                                   | e varies   | with ti | me $t$ as $p = a+bt+ct^2$ which of the following is       |
|     | (1) | Force varies with time in a qu                                  | uadratic   | manne   | r.                                                        |
|     | (2) | Force is time-dependent.                                        |            |         | 48 1                                                      |
|     | (3) | The velocity of the particle i                                  | is propor  | tional  | to time.                                                  |
|     | (4) | The displacement of the part                                    | ticle is p | roporti | onal to t.                                                |
| 57. |     | nell of mass m moving with a v<br>remains stationary. The veloc |            |         | nly explodes into two pieces. One part of mass<br>part is |
|     | (1) | v (2) 2v                                                        |            | (3)     | 3v/4 (4) $4v/3$                                           |

10-A

55. A particle is moving eastwards with a velocity of 5 ms-1. In 10 seconds the velocity changes to

| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | A         |

| 58.   | The velocity | of a freely | falling      | body af    | ter 2s | is |
|-------|--------------|-------------|--------------|------------|--------|----|
| 20.00 |              | OI WALCOLLY | A CALLES AND | CANALY CIT | 161 43 | 13 |

- (1) 9.8 ms<sup>-1</sup>

- (3) 18.6 ms<sup>-1</sup> (4) 19.6 ms<sup>-1</sup>

- (1)  $\frac{\pi u^2}{g^2}$  (2)  $\frac{\pi u^4}{g^2}$  (3)  $\frac{\pi u^2}{g^4}$  (4)  $\frac{\pi u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

- (2)  $\frac{v^2}{\mu g}$  (3)  $\frac{v^2}{4\mu g}$  (4)  $\frac{v}{2\mu g}$

When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

- (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
- (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
- (3) In the backward direction on both the front and the rear wheels
- (4) In the forward direction on both the front and the rear wheels

In a perfectly inelastic collision, the two bodies

(1) strike and explode

explode without striking

(3) implode and explode

(4) combine and move together

63. Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is

(1) zero

(2) positive

(3) negative

(4) increasing uniformly with time

| Set Code :     |   |
|----------------|---|
| Booklet Code : | A |

| 64. ( | Consider | the | following | g two | statements: |
|-------|----------|-----|-----------|-------|-------------|
|-------|----------|-----|-----------|-------|-------------|

Linear momentum of a system of particles is zero.

Kinetic energy of a system of particles is zero.

Then

(1) A implies B & B implies A

(2) A does not imply B & B does not imply A

(3) A implies B but B does not imply A

(4) A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given  $g = 10 \text{ ms}^{-2}$ )

(1) 4s

(2) 5s

(3) 8s

(4) 10s

66. If a spring has time period T, and is cut into n equal parts, then the time period will be

(1)  $T\sqrt{n}$  (2)  $\frac{T}{\sqrt{n}}$ 

(3) nT

(4) T

67. When temperature increases, the frequency of a tuning fork

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by  $\frac{d^2x}{dv^2} + \alpha x = 0$ , its time period is

(1)  $2\pi\sqrt{\alpha}$ 

(2) 2πα

(3)  $\frac{2\pi}{\sqrt{\alpha}}$  (4)  $\frac{2\pi}{\alpha}$ 

69. A cinema hall has volume of 7500 m3. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be

(1) 850 w-m<sup>2</sup>

(2) 82.50 w-m<sup>2</sup>

(3) 8.250 w-m<sup>2</sup>

(4) 0.825 w-m<sup>2</sup>

| Set Code :     |   |
|----------------|---|
| Booklet Code : | A |

| 70. | To a                                                                                                                                                 | bsorb the sou   | nd in a ha  | II which      | ch of the follo | owi  | ng are used   |               |               |               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|---------------|-----------------|------|---------------|---------------|---------------|---------------|
|     | (1)                                                                                                                                                  | Glasses, sto    |             |               |                 | 2)   |               | ırtains       |               |               |
|     | (3)                                                                                                                                                  | Polished sur    | rfaces      |               | (               | 4)   | Platforms     |               |               |               |
| 71  | IfN                                                                                                                                                  | represents av   | agadro's    | numbe         | r, then the nu  | ıml  | er of molec   | ules in 6 gr  | n of hydrog   | gen at NTP is |
|     |                                                                                                                                                      | 2N              |             |               | (               |      |               | (4)           |               |               |
| 72. | The                                                                                                                                                  | mean transla    | tional kin  | etic en       | ergy of a per   | rfec | t gas moleci  | ule at the to | emperature    | TK is         |
|     |                                                                                                                                                      | $\frac{1}{2}kT$ |             |               |                 |      |               |               |               |               |
| 73  | The                                                                                                                                                  | amount of he    | at given t  | o a bo        | dy which rais   | ses  | its temperate | ure by 1°C    |               |               |
| 15. | (1) water equiva                                                                                                                                     |                 |             |               | (               | 2)   | thermal he    |               |               |               |
|     | (3)                                                                                                                                                  | •               |             |               | (               | 4)   | temperatur    | re gradient   |               |               |
| 74. | During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio $Cp/Cv$ for gas is |                 |             |               |                 |      |               |               |               |               |
|     | (1)                                                                                                                                                  | $\frac{3}{2}$   | (2)         | $\frac{4}{3}$ | (               | 3)   | 2             | (4)           | $\frac{5}{3}$ |               |
| 75. | Cla                                                                                                                                                  | dding in the o  | ptical fib  | er is m       | ainly used to   | )    |               |               |               |               |
|     | (1)                                                                                                                                                  | to protect th   | ne fiber fi | rom m         | echanical str   | ess  | es            |               |               |               |
|     | (2)                                                                                                                                                  | to protect th   | he fiber f  | rom co        | orrosion        |      |               |               |               |               |
|     | (3)                                                                                                                                                  | to protect th   | ne fiber fi | om mo         | echanical str   | eng  | gth           |               |               |               |
|     | (4)                                                                                                                                                  |                 |             |               | ectromagnet     |      |               |               |               |               |
|     |                                                                                                                                                      |                 |             |               |                 |      |               |               |               |               |

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | A  |

## CHEMISTRY

| 76. | The                                     | valency electro                 | nic co  | nfiguration of P      | hospho  | rous atom (At.)                                 | No. 15  | ) is                   |         |        |
|-----|-----------------------------------------|---------------------------------|---------|-----------------------|---------|-------------------------------------------------|---------|------------------------|---------|--------|
|     | (1)                                     | 3s <sup>2</sup> 3p <sup>3</sup> | (2)     | 3s1 3p3 3d1           | (3)     | 3s <sup>2</sup> 3p <sup>2</sup> 3d <sup>1</sup> | (4)     | 3s' 3p <sup>2</sup> 3c | 12      |        |
| 77. | Ane                                     | element 'A' of A                | t.No.12 | 2 combines with       | an ele  | nent 'B' of At.N                                | o.17.7  | The compou             | and for | med is |
|     | (1)                                     | covalent AB                     | (2)     | ionic AB <sub>2</sub> | (3)     | covalent AB <sub>2</sub>                        | (4)     | ionic AB               |         |        |
| 78. | The                                     | number of neut                  | rons p  | resent in the ato     | m of se | Ba <sup>137</sup> is                            |         |                        |         |        |
|     | (1)                                     | 56                              | (2)     | 137                   | (3)     | 193                                             | (4)     | 81                     |         |        |
| 79. | Hyd                                     | rogen bonding                   | in wate | er molecule is re     | esponsi | ble for                                         |         |                        |         |        |
|     | (1) decrease in its freezing point      |                                 |         |                       |         | increase in its                                 | degree  | of ionizat             | ion     |        |
|     | (3)                                     | increase in its                 | boiling | g point               | (4)     | decrease in its                                 | boilin  | g point                |         |        |
| 80. | In th                                   | e HCl molecule                  | , the b | onding between        | hydro   | gen and chlorine                                | eis     |                        |         |        |
|     | (1)                                     | purely covaler                  | ıt (2)  | purely ionic          | (3)     | polar covalent                                  | (4)     | complex                | coordir | nate   |
| 81. | Pota                                    | ssium metal an                  | d potas | sium ions             |         |                                                 |         |                        |         |        |
|     | (1) both react with water               |                                 |         |                       |         | have the same number of protons                 |         |                        |         |        |
|     | (3) both react with chlorine gas        |                                 |         |                       | (4)     | have the same electronic configuration          |         |                        |         |        |
| 82. | stane                                   | dard flask. 10 ml               | ofthis  | solution were p       | ipetted | water and the so<br>out into another            | flask a | nd made up             | with di |        |
|     | (1)                                     | 0.1 M                           | (2)     | 1.0 M                 | (3)     | 0.5 M                                           | (4)     | 0.25 M                 |         |        |
| 83. | Con                                     | centration of a                 | 1.0 M s | solution of phos      | sphoric | acid in water is                                |         |                        |         |        |
|     | (1)                                     | 0.33 N                          | (2)     | 1.0 N                 | (3)     | 2.0 N                                           | (4)     | 3.0 N                  |         |        |
| 84. | Which of the following is a Lewis acid? |                                 |         |                       |         |                                                 |         |                        |         |        |
|     | (1)                                     | Ammonia                         |         |                       | (2)     | Berylium chlo                                   | ride    |                        |         |        |
|     | (3)                                     | Boron trifluor                  | ide     |                       | (4)     | Magnesium ox                                    | ide     |                        |         |        |
|     |                                         |                                 |         |                       | 14.4    |                                                 |         |                        |         |        |

| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | A         |

| 85. | Whi                                                                            | ch of the follow                          | ving co  | nstitutes the com                    | pone     | nts of a buffer s            | olution  | ?             |               |  |  |
|-----|--------------------------------------------------------------------------------|-------------------------------------------|----------|--------------------------------------|----------|------------------------------|----------|---------------|---------------|--|--|
|     | (1)                                                                            | Potassium chl                             | oride a  | nd potassium hyd                     | lroxid   | le .                         |          |               |               |  |  |
|     | (2)                                                                            | Sodium acetat                             | e and a  | cetic acid                           |          |                              |          |               |               |  |  |
|     | (3)                                                                            | Magnesium su                              | Iphate   | and sulphuric aci                    | d        |                              |          |               |               |  |  |
|     | (4)                                                                            | *                                         | ide and  | d calcium acetate                    |          |                              |          |               |               |  |  |
| 86. | Whi                                                                            | ch of the follow                          | ving is  | an electrolyte?                      |          |                              |          |               |               |  |  |
|     |                                                                                | Acetic acid                               | (2)      |                                      | (3)      | Urea                         | (4)      | Pyridine      |               |  |  |
| 87. |                                                                                | culate the Stand<br>$u/Cu^{+2} = (-) 0.3$ |          | of the cell, Cd                      | /Cd+2    | //Cu <sup>+2</sup> /Cu giver | n that E | O Cd/Cd+2     | = 0.44V and   |  |  |
|     |                                                                                | (-) 1.0 V                                 | (2)      | 1.0 V                                | (3)      | (-) 0.78 V                   | (4)      | 0.78 V        |               |  |  |
| 88. | A so                                                                           | olution of nicke                          | l chlori | de was electroly                     | sed us   | sing Platinum e              | lectrod  | es. After el  | ectrolysis,   |  |  |
|     | (1)                                                                            | nickel will be                            | deposi   | ted on the anode                     | (2)      | Cl, gas will be              | e libera | ted at the ca | thode         |  |  |
|     | (3)                                                                            | H <sub>2</sub> gas will be                | liberat  | ed at the anode                      | (4)      | nickel will be               | deposi   | ted on the c  | athode        |  |  |
| 89. | Whi                                                                            | ch of the follow                          | ving me  | etals will undergo                   | oxid     | ation fastest?               |          |               |               |  |  |
|     |                                                                                | Cu                                        | (2)      |                                      |          | Zinc                         | (4)      | Iron          |               |  |  |
| 90. | Which of the following cannot be used for the sterilization of drinking water? |                                           |          |                                      |          |                              |          |               |               |  |  |
|     | (1)                                                                            | Ozone                                     |          |                                      | (2)      | Calcium Oxyo                 | chloride | •             |               |  |  |
|     | (3)                                                                            | Potassium Ch                              | loride   |                                      | (4)      | Chlorine water               | er       |               |               |  |  |
| 91. |                                                                                | ater sample sho                           |          | to contain 1.20 m<br>e equivalent is | g/litr   | e of magnesium               | sulpha   | te. Then, it  | s hardness in |  |  |
|     | (1)                                                                            | 1.0 ppm                                   | (2)      | 1.20 ppm                             | (3)      | 0.60 ppm                     | (4)      | 2.40 ppm      |               |  |  |
| 92. | Sod                                                                            | a used in the L-                          | S proce  | ess for softening                    | of wa    | ter is, Chemica              | lly.     |               |               |  |  |
|     | (1)                                                                            | sodium bicarb                             | onate    |                                      | (2)      |                              |          |               |               |  |  |
|     | (3)                                                                            | sodium carbon                             | nate     |                                      | (4)      | sodium hydro                 | xide (4  | 0%)           |               |  |  |
| 93. | The                                                                            | process of cem                            | entatio  | n with zinc powd                     | ler is l | known as                     |          |               |               |  |  |
|     |                                                                                | sherardizing                              | (2)      | zincing                              | (3)      |                              | g (4)    | electropla    | ting          |  |  |

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | A  |

|      | -                                                                  |                                    |           |                 |      |                                  |        |                  |  |  |
|------|--------------------------------------------------------------------|------------------------------------|-----------|-----------------|------|----------------------------------|--------|------------------|--|--|
| 94.  | Ca                                                                 | Carrosion of a metal is fastest in |           |                 |      |                                  |        |                  |  |  |
|      | (1)                                                                | rain-water                         | (2)       | acidulated wate | r(3) | distilled water                  | (4)    | de-ionised water |  |  |
| 95.  | Wh                                                                 | ich of the follow                  | wing is a | thermoset poly  | mer? |                                  |        |                  |  |  |
|      | (1)                                                                | Polystyrene                        | +         |                 | (2)  | PVC                              |        |                  |  |  |
|      | (3)                                                                | Polythene                          |           |                 | (4)  | Urea-formaldel                   | ıyde r | esin             |  |  |
| 96.  | Chemically, neoprene is                                            |                                    |           |                 |      |                                  |        |                  |  |  |
|      | (1)                                                                | polyvinyl benzene                  |           |                 |      | ) polyacetylene                  |        |                  |  |  |
|      | (3) polychloroprene                                                |                                    |           |                 | (4)  |                                  |        |                  |  |  |
| 97.  | Vulcanization involves heating of raw rubber with                  |                                    |           |                 |      |                                  |        |                  |  |  |
|      | (1)                                                                | selenium elem                      | nent      |                 | (2)  | elemental sulphi                 | ur     |                  |  |  |
| vii. | (3)                                                                |                                    |           |                 |      |                                  |        |                  |  |  |
| 98.  | Petr                                                               | ol largely conta                   | ins       |                 |      |                                  |        | •                |  |  |
|      | (1)                                                                |                                    |           | d hydrocarbons  | C    | C.                               |        |                  |  |  |
|      | (2)                                                                |                                    |           |                 |      |                                  |        |                  |  |  |
|      | (3)                                                                |                                    |           |                 |      |                                  |        |                  |  |  |
|      | (4)                                                                |                                    |           | ydrocarbons C   |      | • •                              |        |                  |  |  |
| 99.  | Which of the following gases is largely responsible for acid-rain? |                                    |           |                 |      |                                  |        |                  |  |  |
|      | (1)                                                                | SO2 & NO2                          |           |                 | (2)  | CO, & water vap                  | our    |                  |  |  |
|      | (3)                                                                | CO <sub>2</sub> & N <sub>2</sub>   |           |                 |      | N <sub>2</sub> & CO <sub>2</sub> |        |                  |  |  |
| 100. | BOD                                                                | stands for                         |           | 9               |      |                                  |        |                  |  |  |
|      | (1)                                                                | Biogenetic Oxy                     | gen Den   | nand            | (2)  | Biometric Oxyge                  | n Der  | nand             |  |  |
|      | (3)                                                                | Biological Oxy                     | gen Dem   | and             | (4)  | Biospecific Oxyg                 |        |                  |  |  |

| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | A         |

## CERAMIC TECHNOLOGY

| 101. | wni | ch of the follow   | ing is  | not a member o   | Beac   | n Sand Mineral   | Sí       |                 |
|------|-----|--------------------|---------|------------------|--------|------------------|----------|-----------------|
|      | (1) | Zircon             |         |                  | (2)    | Sillimanite      |          |                 |
|      | (3) | Andalusite         |         |                  | (4)    | Rutile           |          | **              |
| 102. | The | presence of Wa     | llastor | ite in a cerami  | c comp | osition leads to | :        |                 |
|      | (1) | Low moisture       | expans  | sion             | (2)    | Reduced dryir    | ig and i | iring shrinkage |
|      | (3) | High Green an      | d fired | strength         | (4)    | All of the above | ve       |                 |
| 103. | The | crystal structure  | of Ba   | ddeleyite is:    |        |                  |          |                 |
|      | (1) | Monoclinic         |         |                  | (2)    | Cubic            |          |                 |
|      | (3) | Tetragonal         |         |                  | (4)    | Orthorhombic     | ;        |                 |
| 104. | The | Fuller's earth is  |         | 14               |        |                  |          |                 |
|      | (1) | Kaolinite          |         |                  | (2)    | Montmorrilor     | nite     |                 |
|      | (3) | Mica               |         |                  | (4)    | Diatomaceous     | earth    |                 |
| 105. | Lim | e stone is used in | n the n | nanufacture of   |        |                  |          | ·               |
|      | (1) | cement             |         |                  | (2)    | Silica Refract   | ory      |                 |
|      | (3) | Soda-Lime-Sil      | ica Gl  | ass              | (4)    | All of the above | ve       |                 |
| 106. | Whi | ch of the follow   | ing rav | v material is To | xic?   |                  |          |                 |
|      |     | Pyrophillite       | -       | Asbestos         |        | Vermiculite      | (4)      | Chlorite        |
| 107. | Mus | kovite is also kn  | own a   | s                |        |                  |          |                 |
|      |     | White Mica         | (2)     |                  | (3)    | Red Mica         | (4)      | Brown Mica      |
|      | (,) | into irried        | (-)     |                  | (-)    |                  | ( )      |                 |

| 108. | 3. What is the position of Andhra Pradesh in mineral wealth? |                                                                  |        |                     |     |                                                                     |     |                  |  |  |
|------|--------------------------------------------------------------|------------------------------------------------------------------|--------|---------------------|-----|---------------------------------------------------------------------|-----|------------------|--|--|
|      | (1)                                                          | 1                                                                | (2)    | 3                   | (3) | 2                                                                   | (4) | 10               |  |  |
| 109. | Rajr                                                         | nahal is associate                                               | d wit  | h which mineral     | l?  |                                                                     |     |                  |  |  |
|      | (1)                                                          | China Clay                                                       | (2)    | Ball Clay           | (3) | Pyrophillite                                                        | (4) | Vermiculite      |  |  |
| 110. | Pota                                                         | sh Feldspar is als                                               | so kno | own as              |     |                                                                     |     |                  |  |  |
|      | (1)                                                          | Orthoclase                                                       | (2)    | Plagioclase         | (3) | Pegmatite                                                           | (4) | Soda Feldspar    |  |  |
| 111. | Che                                                          | mical formula of                                                 | Fluor  | rspar is            |     |                                                                     |     |                  |  |  |
|      | (1)                                                          | CaF <sub>2</sub>                                                 | (2)    | Ca SiF <sub>2</sub> | (3) | CaCl <sub>2</sub>                                                   | (4) | SiO <sub>2</sub> |  |  |
| 112. | Larg                                                         | Largest Bauxite deposits are available in which District of A.P. |        |                     |     |                                                                     |     |                  |  |  |
|      | (1)                                                          | Visakhapatnam                                                    | (2)    | Krishna             | (3) | Nellore                                                             | (4) | Chittoor         |  |  |
| 113. | Which of the following is used as a Binder?                  |                                                                  |        |                     |     |                                                                     |     |                  |  |  |
|      | (1)                                                          | Dextrin                                                          |        |                     | (2) | Colex                                                               |     |                  |  |  |
|      | (3)                                                          | Starch                                                           |        |                     |     | All of the above                                                    |     |                  |  |  |
|      |                                                              |                                                                  |        |                     | •   |                                                                     |     |                  |  |  |
| 114. | Which of the following statements is wrong?                  |                                                                  |        |                     |     |                                                                     |     |                  |  |  |
|      | (1)                                                          | Formula of Talc                                                  | 18     |                     |     |                                                                     |     |                  |  |  |
|      | (2) Hardness of talc is 1 in Moh's scale of hardness         |                                                                  |        |                     |     |                                                                     |     |                  |  |  |
|      | (3)                                                          |                                                                  |        |                     |     |                                                                     |     |                  |  |  |
|      | (4)                                                          | None of the abo                                                  | ve     |                     |     |                                                                     |     |                  |  |  |
| 115. | Mole                                                         | ecular formula of                                                | Kao    | linite is           |     | 4                                                                   |     |                  |  |  |
|      | (1)                                                          | Al <sub>2</sub> O <sub>3</sub> .2SiO <sub>2</sub> .2H            | O,     |                     | (2) | Al <sub>2</sub> O <sub>3</sub> .4SiO <sub>2</sub> .H <sub>2</sub> O | 0   |                  |  |  |
|      | (3)                                                          | Al <sub>2</sub> O <sub>3</sub> .SiO <sub>2</sub> .               |        |                     | (4) | 3Al <sub>2</sub> O <sub>3</sub> .2SiO <sub>2</sub>                  |     |                  |  |  |