								Set Code	e : T2
								Booklet Code	e : A
114.	The	atomic number o	f an el	ement is equal	to				
	(1)	Number of prot	ons pl	us the number	of elect	rons			
	(2)	The number of	proton	s plus the numl	oer of n	eutrons	**		
	(3)	The number of	proton	s in the atom					
	(4)	The number of	neutro	ns in the atom				E.	
115.	Folio	owing are the app	olicati	ons of biophysi	cs exce	pt one			
	(1)	Protein-metal in	nterac	tion					
	(2)	Development o	f vacc	ines					
	(3)	Drug discovery	and de	evelopment				•	
	(4)	Creating transge	enic ar	nimals and plan	ts		Ş	** #	
116.	Whi	ch of the followi	ng are	all present in a	nimal o	ells?			
	(1)	Mitochondria,					Ÿ		
	(2)	Chloroplasts, cy			. 19				
	(3)	Nucleus, cell m				oplasm			
	(4)	Vacuole, cell m							
117	The	first light micros	cone v	was discovered	by				
117,	(1)	Louis Pasteur	cope	vas aisco varca	(2)	Antonie Fo	n leeuwen	hock	
		Kary Mullis	e:			Joseph Lis			
118.	A sa Rela	ample of cells is ative to the cell,	placed the so	l in a salt solut ultion is proba	ion. Th bly	e cells shrin	k and the	membrane is	distorted.
25		isotonic		hypotonic		osmotic	(4)	hypertonic	
119.	Phonatu	spholipids have are of the molecu	hydroj	philic and hydr described by th	ophobie term	c areas with	nin the sar	ne molecule.	This dual
	(1)			electrostatic		polar	(4)	non-polar	
	19				19-A				(BT)
	52								

Set Code:	T2
Booklet Code :	A

120	120. Which of the following are not true about cell theory?								
	(1) All living things are made of cells								
	(2) All cells come from pre-exisiting biotic component								
	(3) All cells come from a pre-existing abiotic component								
	(4)	Cells performs	all fi	unctions of the	life	=			¥
								,	
121.	Mer	idel's idea that pa	airs o	f characters sep	arate du	iring gamete for	matio	n is called the l	aw of
	(1)	Particulate inhe	eritan	ce	(2)	Dominance			
	(3)	Segregation	74		(4)	Independent as	ssortm	ent	
						•			
122.		nt is the most correct rf plant?	nmor	outcome in th	e F2 ge	neration of a cr	oss be	tween a tall pl	ant and a
		1 tall : 1 dwarf			(2)	3 tall : 1dwarf			
	(3)	1 tall : 2 mediu	m:1	dwarf	(4)			•	•
	` '				. ,		¥		
123.	A hu	ıman female has		pairs of	autoson	nes and sex chro	omoso	me complemer	nt of
						22, XY		22, XX	
124.	A rep	plicated chromos	some	consists of two	very lo	ng strands of ide	entica	l chromosomal	material
	(1)	Telomeres	(2)	Chromatids	(3)	Centromers	(4)	Genes	40
		E.			` '				
125.	DNA	synthesis occur	s dur	ing the	phase o	of the cell cycle.			
		Gap 1 (G1)				S	(4)	Mitosis	
126.	X-ina	activation can be	used	to identify indi-	viduals	who are			
	(1)	homozygous un		·-	(2)	heterozygous			
	(3)	homozygous aff				missing X-link	ed gen	es	
					. ,		_		

								S	et Code : T2
				3.				Bookl	et Code : A
127.		half of daughter all sons are nor half of sons are	on-car rs are nal ar norm	rier) female and a normal and half ond all daughters a	a hem of son are car emoph	ophilac male? s are haemophili rriers nilic; all daughter	c		results of mating
128.	Whi	ch of the followi	ng ge	netic conditions	is not	sex-linked?			
	(1)	Ichthyosis	(2)	Colorblindness	(3)	Sickle-cell aner	nia	(4)	Haemophilia
129.	29. Can a male be a carrier for a sex-linked disease? (1) yes, if the trait is recessive (2) yes, if the male's father and mother were carriers (3) no, males have only a single copy of sex-linked genes (4) no, males have two copies of sex-linked genes								
130.	Histo	ones are found in	1				2.15	~ ~ ~	
	(1)	Nucleoi	(2)	Cytoplasm	(3)	Cisternae	(4)	Mito	chondria .
131.		at is the process ogens? high pressure proboiling			(2) (4)	at high temper Pasteurization irradiation	atures	s to de	stroy foodborne
132	Whi	ch of the following	no is s	a micronutrient?					
194.	(1)	Carbon	(2)	Manganese	(3)	Potassium	(4)	Magn	esium

(2) halophiles (3) alkaliphiles (4) thermophiles

133. Marine microbes are typically____

(1) acidophiles

Set Code :	T2
Booklet Code :	A

134	. To v	vhich kingdom do	the c	yanobacteria bel	ong?			
	(1)	Fungi	(2)	Eubacteria	(3)	Protista	(4)	Plantae
	\$2							
135.	Whi	ich of the following	ng wa	s the first widely	used	antiseptic and dis	sinfec	tant?
	(1)	Chlorine	(2)	Phenol	(3)	Iodine	(4)	Alcohol
126	C		41.		•			
130.		opreservation is a	meun	log used for pres	-			*
	(1)	freezing at 0°C		10000	(2)	O		700 G
	(3)	freezing in fiqui	id nitr	ogen at -196°C	(4)	freezing in liqui	ıd nitr	ogen at -50°C
137	One	of method is an i	ndire	ct measurement	of mi	croorganisms		
,		pour plate metho		et measurement	(2)	Turbidity metho	A.	<u>.</u>
	(3)					esta reador		9
	(3)	Streat plate met	iiou		(4)	Microscopic me	euroa	
138.	Whi	ch of the followir	ng obt	ain energy from	the o	xidation of inorga	anic o	r organic chemicals?
		Chemotroph		Lithotroph	(3)		(4)	Phototroph
						ži.		
139.	The	average time requ	iired	for a freshly divi	ded c	ell to divide into t	wo da	aughter cells is called
	(1)	exponential flow	v rate		(2)	generation time		
	(3)	division time			(4)	growth rate		
1.40		·					1 5	
140.			etely	dependant on atr				is organism is a(n)
	(1)	Osmotolerant	-			Facultative anaer		 U
	(3)	aerotolerant ana	erobe		(4)	Obligate aerobes	S	
141	In th	a Airlift hiarans	on ma:-	vina is assamali	ah a d 1	·		
141.		e Air lift bioreact	or HH2	xing is accomplis				
	(1)	Agitator			(2)	Air from sparger		
	(3)	Baffle			(4)	Draught tube		

		9		Set Code: T2					
				Booklet Code : A					
142.	Mair	n functions of baffles in a bioreactor is							
	(1)	To prevent a vortex	•						
	(2)	To increase aeration							
	(3)	To reduce interfacial area of oxygen tr	ansfe	r					
	(4)	To reduce aeration rate							
143.		ptimize the bioreactor system, which probic fermentation?	one o	f the following system is least important for					
	(1)	Culture agitation to maintain oxygen s	upply						
	(2)	Restriction of entry of contaminating organisms							
	(3)	Control of parameters like pH and tem	perat	ture					
	(4)	Maintenance of constant culture volum	ne	·					
144.	In la	rge scale fermentation the preferred mo	ethod	of sterilization is					
	(1)	Chemical method	(2)	Radiation					
	(3)	Filtration	(4)	Heat					
145.	Fort	turbine aeration agitaion unit the power	consi	umption					
	(1)	Is same for gassed and ungassed syste	ms						
	(2)	Increase with decreasing turbine diam	eter						
	(3)	Decreasing with decreasing turbine di	amete	er					
	(4)	Is smaller for gassed system than for t	ıngas	sed systems					
146.	Incr	easing the stirrer speed improves the va	lue o	f					
	(1)	Reynolds number	(2)	Power number					
	(3)	Mixing time	(4)	$K_{L}A$					
147.	A ba	atch reactor is characterized by							
	(1)	Constant Residence Time							
	(2)	Variation in extent of reaction and pro	perti	es of the reaction mixture with time					
	(3)	Variation in reactor volume							

(4) Very low conversion

		1					Set Code : T2
				15		Book	det Code : A
148.		th one of the follwiir actor?	ng pieces of infor	mation c	annot be obtained	l from a co	omputer controlled
	(1)	Dissolved oxygen			Substrate concer		
	(3)	Molecular mass of	end product	(4)	Rate of Biosynth	nesis of th	e end metabolite
149.	Cher	nostat can be opera ecycle is used.	ted at dilution ra	ate	than the sp	ecific gro	wth rate when the
	(1)	Higher	ě	(2)	Lower		
	(3)	Uncertain	3	(4)	Equal to specific	e growth r	rate
150.	Plug	-flow reactor is char	racterized by		8		
	(1)	High capacity		(2)	Presence of axia		
	(3)	Presence of lateral	mixing	(4)	Constant compo	sition and	l temperature
151.	. DN	A double helix is ide	ntified by				
	(1)	Mendal		(2)	Jacob and Mono		E
	(3)	John C.Kendrew		(4)	Watson and Cric	ck	
152	. A n	ucleoside molecule	consists of	-2			
	(1)	Chemical base + s	ugar & phospha	te molecı	ıle	•	
	(2)	Chemical base & p	phosphate molec	cule			
	(3)	Chemical base + s	ugar molecule		aya.		
	(4)	sugar & phosphate	e molecule				
153	. Oka	zaki fragments cons	sists of		N	/A>	ONT A
	(1)		2) RNA	(3)	RNA & DNA	(4) t-R	NA
154	. Phe	nylketonuria an inb	orn error of pher	nylalanin	e metabolism is d	lue to	
	(1)	Excess of Phenyla	alanine hydroxyl	ase	2		
	(2)	Excess of Phenyla	alanine transfera	se			
	(3)	Lack or reduced le	evels of Phenyla	lanine hy	droxylase		
	(4)	Excess of Phenyla	alanine				·=-

Set Code :	
Booklet Code:	A

155.	Phen	nylketonuria disease is inherited as an		•
	(1)	Autosomal recessive	(2)	Autosomal dominant
	(3)	Co-dominance	(4)	Dominant
156.	Muta	ations effect is called silent m	utatio	ns.
	(1)			with multi (4) without apparent
157.	The	synthesis of the single strand of messen	ger R	NA on the DNA is known as
	(1)		(2)	
	(3)		(4)	transcription
158.		eak attractive force acting over only very	short	distances, resulting from attraction of induced
		van der Waals force	(2)	hydrogen bonds
	, ,	electrostatic force	(4)	hydrophobic and hydrophilic forces
159.	A m	utation occurring in any cell that is not	destii	ned to become a germ cell is called as
		Germ line mutation	(2)	12/21 C C C C C C C C C C C C C C C C C C C
	(3)	12	(4)	somatic mutation
160.		chromosome state in which each type ays represented twice is	of chi	comosome except for the sex chromosomes is
		Diploid state	(2)	haploid state
	(3)	multiploid state	(4)	uniploidy state
161	Toti	potency refers to		
	(1)	Ability of single cell to undergo Apor	otosis	
	(2)	Ability of single cells to divide & diff		iate
	(3)	Ability of single cell to stay undivided		
	(4)	Ability of single cell to mutate		

Set Code :[T2
Booklet Code :	A

162	. Call	lus is				
	(1)	A Differentiated mass of cells	(2)	An Undifferentiated mass of cells		
	(3)	A dead mass of cells	(4)	An organ of a plant		
163	BAI	P is a	ä.	<u>.</u>		
	(1)	Auxin (2) Cytokinin	(3)	Gibberellin (4) Ethylene		
164.	In ir	vitro culture, Excess of Cytokinin so	upply	results in		
	(1)	Shoot formation	(2)	Embryo formation		
	(3)	Root formation	(4)	Flower induction		
165.	Mac	erozyme is				
	(1)	An enzyme mix used for cutting DNA	k.			
20	(2) An enzyme mix used to fuse plasmids in plants					
	(3)	An enzyme mix used to isolate protop	olast	* v		
	(4)	An enzyme mix used to join DNA				
166.	Viru	s free plants can be obtained from	ė			
	(1)	Callus culture	(2)	Meristem culture		
	(3)	Root culture	(4)	Anther culture		
167.	Viab	ility of protoplasts can be assessed by				
	(1)	FDA	(2)	Safranine		
	(3)	Acetocaramine	(4)	Eosin		
168.	Cybr	rids are				
	(1)	Cytoplasmic bridges	(2)	Cytoplasmic hybrids		
	(3)	Protoplasmic bridges		Protoplasmic connections		

					9	Set Code : T2
					Book	let Code : A
169.	Plan	t Transformation refers to				
	(1)	Transfer of plant from in vitro to gre	en hou	ise		
	(2)	Transfer of plant from green house to	o field			
20	(3)	Transfer of foreign gene into plant				
0	(4)	Transfer of foreign protein in plant			*	
170.	Ti pl	asmid contains				· .
	(1)	RDNA (2) TDNA	(3)	RRNA	(4)	TRNA
171.	Agre	obacterium rhizogenes mediated trans	forma	tion leads to formation	of	•
	(1)	crown gall tumor	(2)	haploids		
	(3)	new flowers	(4)	hairy roots		¥
172.	Ace	tosyringone is	40			
	(1)	A secretory hormone	(2)	A secretory Enzyme		
	(3)	A secretory sugar	(4)	A phenolic exudate		
173.	Subo	culturing of freshly isolated cells in cu	ıltures	is called as		
	(1)	primary culture	(2)	passages		
	(3)	tertiary culture	(4)	cell cultures		
174	Δ се	ll which has length more than twice its	width	could be termed as		
177,	(1)	Epithelial	(2)	3T3 cells		
	(3)	Mesenchymal cells	(4)	fibroblastic		
•	(3)	Mesenchymai cens	(4)	Horomasue		
175.	Seru	m protect trypsinised cells from prote	olysis	by		
	(1)	proteast inhibitors	(2)	lipases		*
¥	(3)	lyases	(4)	Hydrolysis		e

27-A

(BT)

Set Code :	T2
Booklet Code :	A

176.	RPN	/II 1640 stands for					
	(1)	Roswell park memor	ial Institute				
	(2)	Rockwell Park Memo	orial Institute				
	(3)	Rapid Prototyping an	d Mammal Insti	tute			e e
	(4)	Rosewood prototypin	g and manufact	uring i	nstitute		-
177.	The	cells that require attacl	nment for growt	h is kn	own as		
	(1)	Dependent cells		(2)	Anchorage Dep	pende	nt cells
	(3)	Independent cells		(4)	Anchorage Inde	epend	ent cells
178.	The	first attempt of organ c	ulture was done	using		0.2	· ·
##	(1)-	Raft method (2)	Grid method	(3)	Agar gel	(4)	Plasma clot
179.	Whi	ch of the following is n	ot the advantage	es of o	rgan culture?		
	(1)	The development of	foetal organs in	vitro i	s comparable to	that in	vivo
	(2)	Provide information of	on patterns of gr	rowth,	differentiation a	ınd de	velopment
	(3)	Organ cultures may re	eplace whole an	imals i	n experimentation	on	
	(4)	Organ cultures can be	maintained onl	y for f	ew months		
180.		process of using glass lope is known as	micropipette (0).5 to :	5 micrometer) to	inser	t DNA into the nuclear
	(1)	Shot gun		(2)	Microinjection	Ĺ	
	(3)	Electroporation		(4)	Gene gun		u.
181.	Тура	n blue will be					
	(1)	Uptake by living cells		(2)	uptake by death	cells	
	(3)	Partial uptake by living	ng cells	(4)	exclude by dea	th cell	S
182.		can be used to in	ncrease the visco	osity o	f the medium.		a.
20	(1)	β-mercapto ethanol		(2)	carboxyl methy	/l cell	ulose
5)	(3)	glutathione		(4)	lamanin	8	
	34		j	28-A			(BT)

Set Code :[T2
Booklet Code :	A

183.	The	first bioinformat	ics da	tabase was crea	ated by					
	(1)	Richard Durbin	(2)	Dayhoff	(3)	Michael j.Dunn	(4)	D.Pearson		
		9	^	•			1.3			
184.	84. The translated genes of genomes that encode proteins are referred to as									
	(1)	Introns			(2)	Codons			2	
	(3)	The open readir	ng fran	ne	(4)	Pseudogenes			EE.	
185.	The	identification of	drugs	through genon	nic stud	y				
	(1)	Genomics	_	-	(2)	2 10 100 100 100 1	cs			
	(3)	Pharmacogenoi	nics		(4)	Pharmacogenet	ics	ei	e e	
	(5)	×			` /					
186.	An e	example of Homo	ology	and similarity t	ool					
		BLAST		EMBOSS		RASMOL	(4)	EMBL		
	(•)		(-)							
187.	One	of the following	is a p	rimary nucleoti	de data	base				
	(1)	PDB	(2)	Gen Bank		Swiss Prot	(4)	Gen Scan		
	(1)	, 55	(-)							
188.	Whi	ch of the followi	ng lev	els of protein s	tructur	e is often stabiliz	ed by	S-S bonds?		
¥	(1)	Tertiary structu		1071	(2)	Primary structu				
	(3)	Secondary struc			(4)	Super secondary structure				
		·				য			2	
189.	The	level of polypept	ide fo	lding in which	the prin	nary sequence co	ils arc	ound itself, stab	ilized by	
-1		larly spaced hydi								
	(1)	Beta sheet	(2)	Motif	(3)	Alpha helix	(4)	Beta turn		
				72						
190.	The	following databa	ises ar	e based on prot	ein sec					
	(1)	Blocks and mot	if		(2)	SCOP and CAT				
	(3)	PDB and NCBI			(4)	DDBJ and SWIS	SSPR	OT		
	T33.1.		a .m:	no ATC!		Ÿ				
191.		A complement of		9	(2)	ATCC ATC	(4)	CTAGGTA		
	(1)	TACCTAG	(2)	CUAGGUA	(3)	ATGGATC	(4)	CIAGGIA		
					29-A				(BT)	

Set Code:	T2
Booklet Code:	A

192.	192. How many Open Reading frames do you expect from a DNA SEQUENCE?								2		
	(1)	1	(2)	4		(3)	6	(4)	3		
193.		amate synthetase		70		matio	n of gluramine fi	rom g	lutam	ate and a	mmonia
-	(1)	ligases	(2)	trans	ferases	(3)	oxidoreductases	8	(4)	isomeras	ses
194.	. The covalent backbone of a peptide involves by a peptide bond.					the carbon of each				iino acid f	ollowed
	(1)	Aromatic	(2)	α- ca	irbon	(3)	β- carbon	(4)	aliph	atic	
195.	Non-	-covalent bonds	an be	brok	en by						
		Extreme pH and				(2)	formic acid				
	(3)	hydrazine				(4)		t			řř.
196.	The 1	The type of secondary structure abundant in globular proteins is									
	(1)	antiparallel β -sl	neets			(2)	parallel β- sheet	s	•		
	(3)	α - helics				(4)	turns		3)		
197.	The	enzyme used for	the ly	sis of	bacterial c	ell wa	all is		2		D.
51	(1)	pectinase	(2)	cellu	lase	(3)	lysozyme	(4)	penio	illinase	
198.	Clari	fication of fruit j	uices	is do	ne using _						
	(1)	glucose isomera	ise	(2)	invertase	(3)	pectinase	(4)	amyl	ase	
199.	Whic	ch among the foll	owing	g is No	OT a covale	ent mo	odification for en	zyme	entraj	oment?	
	(1)	Diazotization				(2)	transesterification	on		is a	=
	(3)	alkylation		111		(4)	peptide bond for	matic	n		191
200.	Repla	acement of inacti	vated	or un	wanted enz	zyme l	by reversible imn	nobili	zation	is possib	le in
	(1)	Entrapment				(2)	diazotization				
	(3)	ionic binding				(4)	microencapsulat	ion			