PAPER -3

Questions Q1. to Q20. carry one mark each.

Q1. If -1, 2, 3 are the eigen values of a square matrix **A** then the eigen values of **A**² are

(A) -1,2,3 (C) 1,2,3 (D) None of these

Q2. If $z = xyf\left(\frac{y}{x}\right)$, then $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$ is equal to

(A) <i>z</i>	(B) $2z$
(C) xz	(D) <i>yz</i>

Q3. The *z*-transform of $x[n] = \delta[n+k], k > 0$ is

(A)
$$z^{-k}$$
, $z \neq 0$
(B) z^{k} , $z \neq 0$
(C) z^{-k} , all z
(D) z^{k} , all z

Q4. The fourier series of the signal shown in fig Q4 is

Q5. In the circuit of fig Q5 the value of C_{eq} is

(A) 10 F (C) 1 F (D) 0.1 F Q6. The current in a 10 mH inductor is $i(t) = 2\sin 377t$ A. The voltage across inductor is

- (A) $-7.54\cos 377t$ V
- (B) 7.54cos 377t V
- (C) 0.53 cos 377 t V
- (D) -0.53 cos 377 t V
- **Q7.** Consider the following two statements
 - S_1 : The dielectric isolation method is superior to junction isolation method.
 - \boldsymbol{S}_2 : The beam lead isolation method is inferior to junction isolation method.

The true statements is (are)

- (A) S_1 , S_2 (B) only S_1 (C) only S_2 (D) Neither S_1 nor S_2
- **Q8.** For the circuit shown in fig. Q8, the minimum number and the maximum number of isolation regions are respectively

- (A) 2, 6 (B) 3, 6
- (C) 2, 4 (D) 3, 4
- **Q9.** In the circuit of fig Q9 the value of $A_v = \frac{v_o}{v_i}$ is

(A) -10 (B) 10

(C) 13.46 (D) -13.46

- **Q10.** The essential block of a phase lock loop (PLL) are phase detector, amplifier,
 - (A) high pass filter and crystal controlled oscillator
 - (B) low pass filter and crystal controlled oscillator
 - (C) high pass filter and voltage controlled oscillator
 - (D) low pass filter and voltage controlled oscillator
- **Q11.** A 4 bit modulo–6 ripple counter uses JK flip-flop. If the propagation delay of each FF is 50 ns, the maximum clock frequency that can be used is equal to
 - (A) 5 MHz(B) 10 MHz(C) 4 MHz(D) 20 MHz
- Q12. A certain 8-bit successive-approximation convertor has 2.65 V full scale. The conversion time for $V_A = 1.5$ V is 75 µs. The conversion time for $V_A = 2$ V would be
 - (A) 75 μs
 (B) 100 μs
 (C) 225 μs
 (D) None of the above
- **Q13.** Consider the following signal

 $x(t) = \cos \pi t + 2\cos 3\pi t + 3\cos 5\pi t$, $y(t) = \sin t + 6\cos 2\pi t$, $z(t) = \sin 3t\cos 4t$

Periodic signal are

- (A) x(t) and y(t) (B) y(t) and z(t)
- (C) x(t) and z(t) (D) All
- **Q14.** The energy of signal $A\delta[n]$ is
 - (A) A^2 (B) $\frac{A^2}{2}$
 - (C) $\frac{A^2}{4}$ (D) 0

Q15. The correct sequence of steps needed to improve system stability is

- (A) reduce gain, use negative feedback, insert derivative action
- (B) reduce gain, insert derivative action, use negative feedback
- (C) insert derivative action, use negative feedback, reduce gain
- (D) use negative feedback, reduce gain, insert derivative action.

- (A) damping decreases and setting time decreases
- (B) damping increases and setting time increases
- (C) damping decreases and setting time increases
- (D) damping increases and setting time decreases
- Q17. Assertion (A): The channel capacity of an infinite bandwidth channel is finite. Reason (R): Signal power is limited but noise power is not.

Choose correct option:

- (A) Both A and R individually true and R is the correct explanation of A.
- (B) Both A and R individually true and but R is not the correct explanation of A.
- (C) A is true but R is false
- (D) A is false
- Q18. Consider the List I (coding technique in digital communication system)and List II (purpose)

List I	List II
P. Huffman Code	1. Elimination of redundancy
Q. Error correcting code	2. Reduces bit rate
R. NRZ coding	3. Adapts the transmitted signal to the line
S. Delta Modulation	4. Channel coding

The correct match is

	Р	Q	R	S
(A)	1	2	3	4
(B)	3	4	1	2
(C)	1	4	3	2
(D)	3	2	1	4

Q19. Indicate which one of the following will not exist in a rectangular resonant cavity.

(A) TE_{110}	(B) <i>TE</i> ₀₁₁
(C) <i>TM</i> ₁₁₀	(D) <i>TM</i> ₁₁₁

Q20. An antenna has directivity of 100 and operates at 150 MHz. The maximum effective aperture is

(A) $31.8 \mathrm{m}^2$	(B) $62.4 \mathrm{m}^2$
(C) $26.4 \mathrm{m}^2$	(D) $13.2 \mathrm{m}^2$

Q21. The system of equation x - 2y + z = 0, 2x - y + 3z = 0, $\lambda x + y - z = 0$ has the trivial solution as the only solution, if λ is

$(A) \lambda \neq \frac{-4}{5}$	(B) $\lambda = \frac{4}{3}$
(C) $\lambda \neq 2$	(D) None of these
$f(x) = 2x^3 - 15x^2 + 36x + 1$ is increasing in th	e interval
(A)]2,3[(B)] −∞, 3 [
(C)] $-\infty$, 2 [\cup] 3, ∞	(D) None of these

Q22.

Q23. $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz \text{ is equal to}$ (A) 4
(B) -4
(C) 0
(D) None of these

Q24. Let $(y - c)^2 = cx$ be the primitive of the differential equation

$$4x\left(\frac{dy}{dx}\right)^2 + 2x\left(\frac{dy}{dx}\right) - y = 0$$

The number of integral curves which will pass through (1, 2) is

- (A) One (B) Two
- (C) Three (D) Four
- **Q25.** If $u = \sinh x \cos y$ then the analytic function f(z) = u + jv is
 - (A) $\cosh^{-1} z + ic$ (B) $\cosh z + ic$

(C) $\sinh z + ic$ (D) $\sinh^{-1} z + ic$

Q26. The equations of the two lines of regression are : 4x + 3y + 7 = 0 and 3x + 4y = 8 = 0. The correlation coefficient between x and y is

(A) 1.25 (B) 0.25

- (C) -0.75 (D) 0.92
- **Q27.** For dy/dx = x + y given that y = 1 at x = 0. Using Runge Kutta fourth order method the value of y at x = 0.2 is (h = 0.2)

(A) 1.1384	(B) 1.9438
(C) 1.2428	(D) 1.6389

Q28. Consider three different signal

$$x_{1}[n] = \left[2^{n} - \left(\frac{1}{2}\right)^{n}\right]u[n], \quad x_{2}[n] = -2^{n}u[-n-1] + \frac{1}{2^{n}}u[-n-1], \quad x_{3}[n] = -2^{n}u[-n-1] - \frac{1}{2^{n}}u[n]$$

Fig. Q28 shows the three different region.

Choose the correct option for the ROC of signal

	R_1	R_{2}	R_{3}
(A)	$x_1[n]$	$x_2[n]$	$x_3[n]$
(B)	$x_2[n]$	$x_3[n]$	$x_1[n]$
(C)	$x_1[n]$	$x_3[n]$	$x_2[n]$
(D)	$x_3[n]$	$x_2[n]$	$x_1[n]$

Q29. The Fourier transform of the signal x(t) as shown in fig. Q29 is

(A) $2 - 2e^{-2} \sin 2\omega + 2\omega e^{-2} \sin 2\omega$ (B) $2 + 2e^{-2} \cos 2\omega - 2\omega e^{-2} \cos 2\omega$ (C) $\frac{2 - 2e^{-2} \cos 2\omega + 2\omega e^{-2} \sin 2\omega}{1 + \omega^2}$ (D) $\frac{2 + 2e^{-2} \cos 2\omega - 2\omega e^{-2} \sin 2\omega}{2\omega^2}$

$$1+\omega^2$$

Q30. For the circuit of Fig. Q30 the value of v_s , that will result in $v_1 = 0$, is

(A) 28 V (B) –28 V

(C) 14 V (D) –14 V

Q31. In the circuit of fig Q31 the value of i_1 will be

(A) 3 A (I	B) 0.75 mA
------------	------------

- (C) 2 mA (D) 1.75 mA
- Q32. The network of fig. Q32 reaches a steady state with the switch closed. At t = 0 switch is opened. For $t \ge 0$, $v_o(t)$ is

Q34. The initial condition at $t = 0^-$ of a switched capacitor circuit are shown in Fig. Q34. Switch S_1 and S_2 are closed at t = 0. The voltage $v_a(t)$ for t > 0 is

Q35. The Thevenin equivalent at terminal *ab* for the network shown in fig. Q35 is

Q36. The circuit shown in fig. Q36 is reciprocal if *a* is

Q37. In germanium $(n_i = 2.4 \times 10^{13} \text{ cm}^{-3})$ at T = 300 K, the donor concentration are $N_d = 10^{14} \text{ cm}^{-3}$ and $N_a = 0$. The Fermi energy level with respect to intrinsic Fermi level is

(A) 0.04 eV	(B) 0.08 eV

- (C) 0.42 eV (D) 0.86 eV
- **Q38.** Two ideal *pn* junction have exactly the same electrical and physical parameters except for the band gap of the semiconductor materials. The first has a bandgap energy of 0.525 eV and a forward-bias current of 10 mA with $V_a = 0.255$ V. The second *pn* junction diode is to be designed such that the diode current $I = 10 \mu$ A at a forward-bias voltage of $V_a = 0.32$ V. The bandgap energy of second diode would be
 - (A) 0.77 eV
 - (B) 0.67 eV
 - (C) 0.57 eV
 - (D) 0.47 eV
- Q39. Consider the circuit shown in fig Q39. If $V_s = 0.63$ V, $I_1 = 275 \,\mu\text{A}$ and $I_2 = 125 \,\mu\text{A}$, then the value of I_3 is

Q40. The parameters of *n* – channel depletion mode MOSFET are $V_{TN} = -2$ V and $k'_n = 80 \,\mu\text{A/V}^2$. The drain current is $I_D = 1.5$ mA at $v_{GS} = 0$ and $V_{DS} = 3$ V. The ratio W/L is

(A) 7.78 mA	(B) 15.56 mA
(C) 9.375 mA	(D) 4.69 mA

Q41. For a particular NMOS device the parameters are $V_{TN} = 1$ V, $L = 2.4 \,\mu\text{m}$, $\mu_n = 600 \text{ cm}^2/\text{V} - \text{s}$ and $t_{ox} = 400 \,\text{A}^\circ$. When device is biased in the saturation region at $V_{GS} = 5$ V, the drain current is $I_D = 1.2 \,\text{mA}$. The channel width of device is

- (C) 5.23 μm (D) 20.92 μm
- **Q42.** In the series voltage regulator circuit of fig. Q42 $V_{BE} = 0.7 \text{ V}, \beta = 50, V_Z = 8.3 \text{ V}$. The output voltage V_o is

- (C) 15 V (D) 15.7 V
- Q43. For the circuit in fig. q43 the transistor parameters are $V_p = -3.5$ V, $I_{DSS} = 18$ mA, and $\lambda = 0$. The value of V_{DS} is

Q44. Consider the NMOS common-gate circuit of fig. Q44. The parameter are $g_m = 2$ mS and $r_o = \infty$. The voltage gain A_v is

Q45. For the circuit shown in fig. Q45 the true relation is

(C) $v_o = 2v_{o2}$

(D) $2v_{o1} = v_{o2}$

- **Q47.** A 7 bit Hamming code groups consisting of 4 information bits and 3 parity bits is transmitted. The group 1101100 is received in which at most a single error has occurred. The transmitted code is
 - (A) 1111100
 - (B) 1100100
 - (C) 1001100
 - (D) 1101000
- Q48. The 4-to-1 multiplexer shown in fig. Q48 implements the Boolean expression

$$f(w,x,y,z) = \Sigma m(4, 5, 7, 8, 10, 12, 15)$$

The input to I_1 and I_3 will be

- (A) $y\overline{z}$, $\overline{y} + \overline{z}$
- (B) $\overline{y} + z$, $y \odot z$
- (C) $\overline{y} + z$, $y \oplus z$
- (D) $x + \overline{y}$, $y \oplus z$
- **Q49.** Consider the RTL gate of fig. Q49. The transistor parameters are $V_{CE(sat)} = 0.2$ V and $\beta = 50$. The logic HIGH voltage is $V_H = 3.5$ V. If input drive the similar type of gate, the fanout is

- (A) 5
- (B) 10
- (C) 15
- (D) 20

- **Q50.** Consider the following instruction to be executed by a 8085 μp. The input port has an address of 01H and has a data 05H to input:
 - IN 01H ANI 80H

After execution of the two instruction the contents of flag register are

(A)	1	0	×	1	×	1	×	0
(B)	0	1	×	0	×	1	×	0
(C)	0	1	×	1	×	1	×	0
(D)	0	1	×	1	×	0	×	0

Q51. It is desired to mask is the high order bits $(D_7 - D_4)$ of the data bytes in register C of μ P. Consider the following set of instruction

(a)	MOV ANI MOV	A, C F0H C, A
	HLT	
(b)	MOV	A, C
	MVI	B, F0H
	ANA	В
	MOV	С, А
	HLT	
(c)	MOV	A, C
	MVI	B, 0FH
	ANA	В
	MOV	С, А
	HLT	
(d)	MOV	A, C
	ANI	0FH
	MOV	С, А
	HLT	
	The instruction set w	hich avacute th

The instruction set, which execute the desired operation are

(A) a and b	(B) c and d
(C) only a	(D) only d

Q52. Consider the cascade of the following two system S_1 and S_2 , as shown in fig. Q51

$$x[n] \longrightarrow S_2 \xrightarrow{v[n]} S_1 \longrightarrow y[n]$$
 Fig Q52

- S_1 : Causal LTI $v[n] = \frac{1}{2}v[n-1] + x[n]$
- S_2 : Causal LTI y[n] = ay[n-1] + bv[n]

The difference equation for cascaded system is

$$y[n] = -\frac{1}{8}y[n-2] + \frac{3}{4}y[n-1] + x[n]$$

The value of *a* is

$$(A)\frac{1}{4} (B) 1$$

(C) 4 (D) 2

Q53. The system diagram for the transfer function $H(z) = \frac{z}{z^2 + z + 1}$ is shown in fig. Q53. This system diagram is a

- (A) Correct solution
- (B) Not correct solution
- (C) Correct and unique solution
- (D) Correct but not unique solution
- Q54. The frequency response of a causal and stable LTI system is $H(j\omega) = \frac{1-j\omega}{1+j\omega}$. The group delay of the system is

$$(A)\frac{2}{1+\omega^2} (B)\frac{-2}{1+\omega^2}$$

(C) $2 \tan^{-1} \omega$ (D) $-2 \tan^{-1} \omega$

Q55. Consider a periodic signal x(t) whose Fourier series coefficients are

$$X[k] = \begin{cases} 2, & k = 0\\ j \left(\frac{1}{2}\right)^{|k|}, & \text{otherwise} \end{cases}$$

Consider the statements

1.
$$x(t)$$
 is real 2. $x(t)$ is even. 3. $\frac{dx(t)}{dt}$ is even

The true statements are

- (A) 1 and 2 (B) only 2
- (C) only 1 (D) 1 and 3
- **Q56.** A real and odd periodic signal x[n] has fundamental period N = 7 and FS coefficients X[k]. Given that X[15] = j, X[16] = 2j, X[17] = 3j. The values of X[0], X[-1], X[-2], and X[-3] will be
 - (A) 0, *j*, 2*j*, 3*j*
 - (B) 1, 1, 2, 3
 - (C) 1, -1, -2, -3
 - (D) 0, -j, -2j, -3j
- Q57. For the block diagram shown in fig. Q57 the numerator of transfer function is

- (A) $G_6[G_4 + G_3 + G_5(G_3 + G_2)]$
- (B) $G_6[G_2 + G_3 + G_5(G_3 + G_4)]$
- (C) $G_6[G_1 + G_2 + G_3(G_4 + G_5)]$

(D) None of the above

- **Q58.** A second order system with no zeros has its poles located at -3 + j4 and -3 j4 in the *s*-plane. The undamped natural frequency and the damping ratio of the system are respectively
 - (A) 5 rad/s and 0.60
 - (B) 3 rad/s and 0.60
 - (C) 5 rad/s and 0.80
 - (D) 3 rad/s and 0.80
- **Q59.** The characteristic equation of a feedback control system is given by $(s^2 + 4s + 4)(s^2 + 11s + 30) + Ks^2 + 4K = 0$ where K > 0. In the root locus of this system, the asymptotes meet in *s*-plane at
 - (A) (-9.5, 0)
 - (B)(-5.5,0)
 - (C)(-7.5, 0)
 - (D) None of the above
- **Q60.** For the certain unity feedback system $G(s) = \frac{K}{s(s+1)(2s+1)(3s+1)}$ the Nyquist plot is

Q61. A state-space representation of a system is given by

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \mathbf{x}, \ y = \begin{bmatrix} 1 & -1 \end{bmatrix} \mathbf{x}, \ \text{and} \ \mathbf{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The time response of this system will be

(A)
$$\sin \sqrt{2}t$$

(B) $\frac{3}{\sqrt{2}} \sin \sqrt{2}t$
(C) $-\frac{1}{\sqrt{2}} \sin \sqrt{2}t$
(D) $\sqrt{3} \sin \sqrt{2}t$

Q62. A signal process m(t) is mixed with a channel noise n(t). The power spectral density are as follows

$$S_m(\omega) = \frac{6}{9+\omega^2}, S_n(\omega) = 6$$

The optimum Wiener-Hopf filter is

(A)
$$\frac{\omega^2 + 9}{\omega^2 + 10}$$
 (B) $\frac{1}{\omega^2 + 10}$
(C) $\frac{\omega^2 + 10}{\omega^2 + 9}$ (D) None of the above

- Q63. A mixer stage has a noise figure of 20 dB. This mixer stage is preceded by an amplifier which has a noise figure of 9 dB and an available power gain of 15 dB. The overall noise figure referred to the input is
 - (A) 11.07
 - (B) 18.23
 - (C) 56.48
 - (D) 97.38

Q64. An FM modulator has output $x_c(t) = 200 \cos\left(\omega_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right)$ where $k_f = 30 \text{ Hz/V}$. The m(t) is the rectangular pulse $m(t) = 8\Pi(\frac{1}{4}(t-2))$. The frequency deviation would be

- (A) 240u(t) 720u(t-4)
- (B) 240u(t) + 720u(t-4)
- (C) 240u(t) 80u(t-4)
- (D) 240(u(t) u(t-4))

Q65. Consider a set of 10 signals $x_i(t)$, i = 1, 2, 3, ... 10. Each signal is band limited to 1 kHz. All 10 signals are to be time-division multiplexed after each is multiplied by a carrier c(t) shown in fig. Q65.

If the period T of c(t) is chosen to have the maximum allowable value, the largest value of Δ would be

(A)
$$5 \times 10^{-3}$$
 sec
(B) 5×10^{-4} sec
(C) 5×10^{-5} sec
(D) 5×10^{-6} sec

- **Q66.** A linear delta modulator is designed to operate on speech signals limited to 3.4 kHz. The sampling rate is 10 time the Nyquist rate of the speech signal. The step size δ is 100 mV. The modulator is tested with a 1 kHz sinusoidal signal. The maximum amplitude of this test signal required to avoid slope overload is
 - (A) 2.04 V (B) 1.08 V
 - (C) 4.08 V (D) 2.16 V
- **Q67.** If $V = xy x^2y + y^2z^2$, the value of the **div grad** V is
 - (A) 0
 - (B) $z + x^2 + 2y^2 z$
 - $(C) 2y(z^2 yz x)$
 - (D) $2(z^2 y^2 y)$
- **Q68.** A uniform plane wave in air with $\mathbf{H} = 6\sin(\omega t 5x)\mathbf{u}_y \mathbf{A}/\mathbf{m}$ is normally incident on a plastic region $(\sigma = 0, \mu_r = 1, \varepsilon_r = 4)$. The reflection coefficient is

(A)
$$-\frac{1}{3}$$
 (B) $\frac{1}{3}$
(C) $-\frac{1}{6}$ (D) $\frac{1}{6}$

Q69. Two identical antennas, each of input impedance 74 Ω are fed with three identical 50 Ω quarter-wave lossless transmission lines as shown in fig. Q69. The input impedance at the source end is

(A) 148 Ω	(B) 106 Ω
(C) 74 Ω	(D) 53 Ω

Q70. A parallel-plate guide operates in the *TEM* mode only over the frequency range 0 < f < 3 GHz. The dielectric between the plates is teflon ($\varepsilon_r = 2.1$). The maximum allowable plate separation b is

(A) 3.4 cm	(B) 6.8 cm
(C) 4.3 cm	(D) 8.6 cm

Common Data Questions

Common Data for Questions Q.71-73:

Consider the region defined by |x|, |y| and |z| < 1. Let $\varepsilon = 5\varepsilon_{o}$, $\mu = 4\mu_{o}$, and $\sigma = 0$ the displacement current density $\mathbf{J}_{d} = 20\cos(15 \times 10^{8} t - ax) \mathbf{u}_{v} \,\mu \text{A/m}^{2}$. Assume no DC fields are present.

- **Q71.** The electric field intensity **E** is
 - (A) $6\sin(1.5 \times 10^8 t ax)$ **u**_v mV/m
 - (B) $6\cos(1.5 \times 10^8 t ax) \mathbf{u}_v \text{ mV/m}$
 - (C) $3\cos(1.5 \times 10^8 t ax) \mathbf{u}_v \text{ mV/m}$
 - (D) $3\sin(1.5 \times 10^8 t ax) \mathbf{u}_v \text{ mV/m}$
- Q72. The magnetic field intensity is
 - (A) $-4a\sin(1.5 \times 10^8 t ax)$ **u**_z μ A/m
 - (B) $-4a\sin(1.5 \times 10^8 t ax)$ **u**_z mA/m
 - (C) $4a\sin(1.5\times10^8 t ax)\mathbf{u}_z \,\mu\mathrm{A/m}$
 - (D) $4a\sin(1.5 \times 10^8 t ax)$ **u**_z mA/m

Q73. The value of *a* is

(A) 4.3	(B) 2.25
(C) 5	(D) 6

Common Data for Questions Q74-75:

Consider the system shown in fig. Q74-75. The average value of m(t) is zero and maximum value of |m(t)| is *M*. The square-law device is defined by $y(t) = 4x(t) + 10x^2(t)$

- Q74. The value of *M*, required to produce modulation index of 0.8, is
 - (A) 0.32 (B) 0.26
 - (C) 0.52 (D) 0.16
- **Q75.** Let W be the BW of message signal m(t). AM signal would be recovered if.
 - (A) $f_c > W$ (B) $f_c > 2W$
 - (C) $f_c > 3W$ (D) $f_c > 4W$

Linked Answer Questions: Q76. to Q85. carry two marks each.

Statement for Linked Answer Questions: Q76. and Q77:

Consider the circuit shown in fig. Q76-77. If voltage $V_s = 0.63$ V, the currents are $I_c = 275 \,\mu$ A and $I_B = 5 \,\mu$ A.

Q76. The forward common-emitter gain β_F is

(A) 56	(B) 55
--------	--------

(C) 0.9821 (D) 0.9818

- **Q77.** The forward current gain α_F is
 - (A) 0.9821
 - (B) 0.9818
 - (C) 55
 - (D) 56

Statement for Linked Answer Questions: Q78 and Q79:

The diode in the circuit of fig. Q78-79 has the non linear terminal characteristic as shown in fig. Let the voltage be $v_s = \cos \omega t V$.

- **Q78.** The current i_D is
 - (A) $2.5(1 + \cos \omega t)$ mA
 - (B) $5(0.5 + \cos \omega t)$ mA
 - (C) $5(1 + \cos \omega t)$ mA
 - (D) $5(1+0.5\cos\omega t)$ mA
- **Q79.** The voltage v_D is
 - (A) $0.25(3 + \cos \omega t)$ V
 - (B) $0.25(1 + 3\cos\omega t)$ V
 - $(C) 0.5(3 + 1\cos \omega t) V$
 - (D) $0.5(2 + 3\cos \omega t)$ V

Statement for Linked Answer Questions: Q80 and Q81:

For the Schmitt trigger oscillator of fig. Q80-81 saturation output voltage are +10 V and -5 V.

Q80. The frequency of oscillation is

(A) 2183 Hz	(B) 869 Hz
(C) 1369 Hz	(D) 1443 Hz

Q81.	The duty cycle is	S
------	-------------------	---

(A) 60.2%	(B) 39.8%

Statement for Linked Answer Questions: Q82 and Q83:

Suppose that $x(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & \text{elsewhere} \end{cases}$ and $h(t) = x\left(\frac{t}{a}\right)$, where $0 < a \le 1$.

Q82. The y(t) = x(t) * h(t) is

Q83. If $\frac{dy(t)}{dt}$ contains only three discontinuities, the value of *a* is

- (A) 1
- (B) 2
- (C) 3
- (D) 0

Statement for Linked Answer Questions: Q84 and Q85:

A feedback system is shown in fig. Q84-85.

Q84. The closed loop transfer function for this system is

(A)
$$\frac{2s^{4} + (K+2)s^{3} + Ks^{2}}{s^{3} + s^{2} + 2s + K}$$

(B)
$$\frac{s^{5} + s^{4} + 2s^{3} + (K+2)s^{2} + (K+2)s + K}{s^{3} + s^{2} + 2s + K}$$

(C)
$$\frac{s^{3} + s^{2} + 2s + K}{2s^{4} + (K+2)s^{3} + Ks^{2}}$$

(D)
$$\frac{s^{3} + s^{2} + 2s + K}{s^{5} + s^{4} + 2s^{3} + (K+2)s^{2} + (K+2)s + K}$$

Q85. The poles location for this system is shown in fig. Q85. The value of
$$K$$
 is

Answers Paper-3

[
1. (B)	2. (B)	3. (D)	4. (B)	5. (D)
6. (A)	7. (B)	8. (D)	9. (A)	10. (D)
11. (A)	12. (A)	13. (C)	14. (A)	15. (D)
16. (D)	17. (A)	18. (B)	19. (A)	20. (A)
21. (A)	22. (C)	23. (C)	24. (B)	25. (C)
26. (C)	27. (C)	28. (C)	29. (C)	30. (D)
31. (B)	32. (B)	33. (B)	34. (C)	35. (C)
36. (A)	37. (A)	38. (A)	39. (B)	40. (C)
41. (A)	42. (C)	43. (A)	44. (A)	45. (B)
46. (B)	47. (C)	48. (B)	49. (C)	50. (C)
51. (B)	52. (A)	53. (D)	54. (A)	55. (B)
56. (D)	57. (A)	58. (A)	59. (C)	60. (A)
61. (B)	62. (B)	63. (A)	64. (D)	65. (C)
66. (B)	67. (D)	68. (A)	69. (A)	70. (A)
71. (D)	72. (C)	73. (B)	74. (D)	75. (C)
76. (B)	77. (A)	78. (C)	79. (A)	80. (B)
81. (B)	82. (A)	83. (A)	84. (A)	85. (C)

Problem

Solution

10. $v_1 = ?$

(A) 6 V (B) 7 V

(C) 8 V (D) 10 V

Fig. S1.4.10

$$v_1 = \frac{\frac{4}{1+1} + \frac{12}{1+2}}{\frac{1}{1+1} + \frac{1}{6} + \frac{1}{1+2}} = 6 \text{ V}$$

4

25 Paper-3