PAPER -1

Questions Q1. to Q20. carry one mark each.

Q1. If $\mathbf{A} = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -2 & \lambda \end{bmatrix}$ is a singular matrix, then λ is

Q2. Let $f(x) = e^x$ in [0, 1]. Then, the value of *c* of the mean-value theorem is

(A)
$$0.5$$
 (B) $(e-1)$
(C) $\log(e-1)$ (D) None

Q3. If $\mathbf{D} = xy\mathbf{u}_x + yz\mathbf{u}_y + zx\mathbf{u}_z$, then the value of $\oiint \mathbf{A} \cdot d\mathbf{S}$ is, where S is the surface of the cube defined by $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$

(A) 0.5	(B) 3
(C) 0	(D) 1.5

Q4. The gradient of field $f = y^2 x + xyz$ is

(A) $y(y+z)\mathbf{u}_x + x(2y+z)\mathbf{u}_y + xy\mathbf{u}_z$

(B) $y(2x+z)\mathbf{u}_x + x(x+z)\mathbf{u}_y + xy\mathbf{u}_z$

- (C) $y^2 \mathbf{u}_x + 2yx \mathbf{u}_y + xy \mathbf{u}_z$
- (D) $y(2y+z)\mathbf{u}_x + x(2y+z)\mathbf{u}_y + xy\mathbf{u}_z$
- **Q5.** In the circuit of fig. Q5 the value of R_1 will be

- Q7. Epitaxial growth is used in integrated circuit
 - (A) because it produces low parasitic capacitance
 - (B) because it yields back-to-back isolating junctions
 - (C) to grow single crystal n –doped silicon on a single-crystal p –type substrate

(D) to grow selectively single-crystal p –doped silicon of one resistivity on p –type substrate of a different resistivity.

Q8. The chemical reaction involved in epitaxial growth in IC chips takes place at a temperature of about

Q9. In the circuit of fig. Q9 the output voltage v_o is

(A) 2.67 V	(B) –2.67 V
(C) -6.67 V	(D) 6.67 V

Q10. Assertion (A) In the self bias CE transistor amplifier a single battery is used. **Reason (R)** The collector base junction is forward biased by V_{CC} .

Chose the correct option:

- (A) Both A and R individually true and R is the correct explanation of A.
- (B) Both A and R individually true and but R is not the correct explanation of A.
- (C) A is true but R is false
- (D) A is false

Q11. The address bus width of a memory of size 1024×8 bits is

(A) 10 bits	(B) 13 bits
(C) 8 bits	(D) 18 bits

Q12. Consider the TTL circuit in fig Q12. The value of V_H and V_L are respectively

 $12 \mathrm{V}$

Q21. If the rank of the matrix,
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 7 & \lambda \\ 1 & 4 & 5 \end{bmatrix}$$
 is 2, then the value of λ is
(A) -13 (B) 13
(C) 3 (D) None of these
Q22. If $u = e^{xyz}$, then $\frac{\partial^3 u}{\partial x \partial y \partial z}$ is equal to
(A) $e^{xyz} [1 + xyz + 3x^2y^2z^2]$
(B) $e^{xyz} [1 + xyz + x^3y^3z^3]$
(C) $e^{xyz} [1 + 3xyz + x^2y^2z^2]$
(D) $e^{xyz} [1 + 3xyz + x^3y^3z^3]$
Q23. The value of $\int e^x \left(\frac{1 + \sin x}{1 + \cos x}\right) dx$ is
(A) $e^x \tan \frac{x}{2} + c$ (B) $e^x \cot \frac{x}{2} + c$
(C) $e^x \tan x + c$ (D) $e^x \cot x + c$

Q24. The solution of the differential equation $(x - y^2)dx + 2xydy = 0$ is

(A)
$$ye^{2/x} = A$$

(B) $xe^{y^2/x} = A$
(C) $xe^{x/y^2} = A$
(D) $ye^{x/y^2} = A$

Q25. The Taylor's series expansion of $f(z) = \sin z$ about $z = \frac{\pi}{4}$ is

$$(A) \frac{1}{\sqrt{2}} \left[1 + \left(z - \frac{\pi}{4} \right) - \frac{1}{2!} \left(z - \frac{\pi}{4} \right)^2 - \dots \right]$$

$$(B) \frac{1}{\sqrt{2}} \left[1 + \left(z - \frac{\pi}{4} \right) + \frac{1}{2!} \left(z - \frac{\pi}{4} \right)^2 + \dots \right]$$

$$(C) \frac{1}{\sqrt{2}} \left[1 - \left(z - \frac{\pi}{4} \right) - \frac{1}{2!} \left(z - \frac{\pi}{4} \right)^2 - \dots \right]$$

(D) None of the above

Diameter of heart (in mm)	Number of persons
120	5
121	9
122	14
123	8
124	5
125	9

The median of the above frequency distribution is

(A) 122 mm	(B) 123 mm

Q27. For $\frac{dy}{dx} = x + y^2$, given that y = 0 at x = 0, using Picard's method up to third order of approximation the solution of the differential equation is

(D) 122.75 mm

(A)
$$\frac{x^2}{2} + \frac{x^5}{40} + \frac{x^8}{480} + \frac{x^{11}}{1600}$$

(B) $\frac{x^2}{2} + \frac{x^5}{20} + \frac{x^8}{160} + \frac{x^{11}}{4400}$
(C) $\frac{x^2}{2} + \frac{x^5}{20} + \frac{x^8}{160} + \frac{x^{11}}{2400}$
(D) $\frac{x^2}{2} + \frac{x^5}{40} + \frac{x^8}{480} + \frac{x^{11}}{2400}$

(C) 122.5 mm

Q28. The bilateral laplace transform of $\cos 3t u(-t) * e^{-t} u(t)$ is

(A)
$$\frac{-s}{(s+1)(s^2+9)}$$
, Re $(s) > 0$
(B) $\frac{-s}{(s+1)(s^2+9)}$, $-1 < \text{Re}(s) < 0$
(C) $\frac{s}{(s+1)(s^2+9)}$, $-1 < \text{Re}(s) < 0$
(D) $\frac{s}{(s+1)(s^2+9)}$, Re $(s) > 0$

Q29. The *z*-transform of $x[n] = \left(\frac{2}{3}\right)^{|n|}$ is

(A)
$$\frac{-5z}{(2z-3)(3z-2)}$$
, $-\frac{3}{2} < z < -\frac{2}{3}$
(B) $\frac{-5z}{(2z-3)(3z-2)}$, $\frac{2}{3} < |z| < \frac{3}{2}$
(C) $\frac{5z}{(2z-3)(3z-2)}$, $\frac{2}{3} < |z| < \frac{2}{3}$
(D) $\frac{5z}{(2z-3)(3z-2)}$, $-\frac{3}{2} < z < -\frac{2}{3}$

Q30. Consider the graph shown in fig. Q30 in which twigs are solid line and links are dotted line.

A fundamental loop matrix for this tree is given as below

$$\mathbf{B}_{F} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix}$$

The oriented graph will be

Q31. The value of the current measured by the ammeter in Fig. Q31 is

Q32. In the circuit of fig. Q32 the equivalent resistance seen by the capacitor is

Q33. In the circuit of fig. Q33 switch is moved from position *a* to *b* at t = 0. The $i_L(t)$ for t > 0 is

(A) $(4-6t)e^{4t}$ A (B) $(3-6t)e^{-4t}$ A

(C) $(3-9t)e^{-5t}$ A (D) $(3-8t)e^{-5t}$ A

Q34. In the circuit of fig. Q34 the i(t) will be

(A) $2\sin(2t+5.77^{\circ})$ A	(B) $\cos(2t - 84.23^\circ)$ A
(A) $2\sin(2t+5.77^\circ)$ A	(B) $\cos(2t - 84.23^\circ)$ A

(C) $2\sin(2t-5.77^{\circ})$ A	(D) $\cos(2t + 84.23^\circ)$ A
--------------------------------	--------------------------------

Q35. In the circuit of fig. Q35 L_{eq} will be

(C) 3 H (D) 4 H

- Q37. Three scattering mechanism exist in a semiconductor. If only the first mechanism were present, the mobility would be 500 cm²/V s. If only the second mechanism were present, the mobility would be 750 cm²/V s. If only third mechanism were present, the mobility would be 1500 cm²/V s. The net mobility is
 - (A) 2750 cm²/V s
 - (B) 1114 cm²/V s
 - (C) 818 cm²/V s
 - (D) 250 cm²/V s
- **Q38.** In a silicon $(n_i = 1.5 \times 10^{10} \text{ cm}^{-3}, D_n = 35 \text{ cm}^2/\text{s})$ sample the electron concentration drops linearly from 10^{18} cm^{-3} to 10^{16} cm^{-3} over a length of 2.0 µm. The current density due to the electron diffusion current is
 - (A) 9.3×10^4 A/cm²
 - (B) 2.8×10^4 A/cm²
 - (C) 9.3×10^9 A/cm²
 - (D) 2.8×10^9 A/cm²
- **Q39.** A *pn* junction diode is operating in reverse bias region. The applied reverse voltage, at which the ideal reverse current reaches 90% of its reverse saturation current, is
 - (A) -59.6 mV
 - (B) 2.7 mV
 - (C) 4.8 mV
 - (D) 42.3 mV
- **Q40.** In bipolar transistor biased in the forward-active region the base current is $I_B = 50 \,\mu\text{A}$ and the collector currents is $I_C = 2.7 \,\text{mA}$. The α is
 - (A) 0.949
 - (B) 54
 - (C) 0.982
 - (D) 0.018

- **Q41.** An *n*-channel silicon $(n_i = 1.5 \times 10^{10} \text{ cm}^{-3})$ JFET at T = 300 K has doping concentration of $N_d = 8 \times 10^{16} \text{ cm}^{-3}$ and $N_a = 3 \times 10^{18} \text{ cm}^{-3}$. The channel thickness dimensions is $a = 0.5 \mu \text{m}$. If the undepleted channel has to be $0.2 \mu \text{m}$, the required gate voltage is
 - (A) 2.73 V
 - (B) -2.73 V
 - (C) 4.66 V
 - (D) -4.66 V

(A) 1.04 mA

(C) 962 µA

Q42. In the circuit shown in fig. Q42 voltage $V_E = 4$ V. The value of α and β are respectively

(A) 0.943, 17.54	(B) 0.914, 17.54
(C) 0.914, 10.63	(D) 0.914, 11.63

Q43. In the current mirror circuit of fig. Q43 the transistor parameters are $V_{BE} = 0.7 \text{ V}, \beta = 50$ and the Early voltage is infinite. Assume transistor are matched. The output current I_{a} is

Q44. The parameter of the transistor in fig. Q44 are $V_{TN} = 1.2 \text{ mA} / \text{V}^2$, $K_n = 0.5 \text{ mA} / \text{V}^2$, and $\lambda = 0$. The voltage V_{DS} is

Q45. In the circuit shown in fig. Q45 the op-amp is ideal. If transistor has $\beta = 60$, then the total current supplied by the 15 V source is

(C) 49.4 mA (D) 168 mA

Q46. Consider the statements below:

(A) 123.1 mA

1. If the output waveform from an OR gate is the same as the waveform at one of its inputs, the other input is being held permanently LOW.

2. If the output waveform from an OR gate is always HIGH, one of its input is being held permanently HIGH.

The statement, which is always true, is

(A) Both 1 and 2	(B) Only 1
(C) Only 2	(D) None of the above

Q47. A logic circuit consist of two 2×4 decoder as shown in fig. Q47.

The output of decoder are as follow

 $D_{0} = 1 \text{ when } A_{0} = 0, \quad A_{1} = 0$ $D_{1} = 1 \text{ when } A_{0} = 1, \quad A_{1} = 0$ $D_{2} = 1 \text{ when } A_{0} = 0, \quad A_{1} = 1$ $D_{3} = 1 \text{ when } A_{0} = 1, \quad A_{1} = 1$ The value of f(x, y, z) is
(A) 0
(B) z
(C) \overline{z} (D) 1

Q48. The circuit shown in fig. Q48 implements the function

(A) $ABC + \overline{ABC}$

(B) $ABC + \overline{(A+B+C)}$

(C) $\overline{ABC} + \overline{(A+B+C)}$

⁽D) None of the above

Q49. Consider the following 8085 assembly program

	MVI	A, DATA1
	MOV	B, A
	SUI	51H
	JC	DLT
	MOV	A, B
	SUI	82H
	JC	DSPLY
DLT :	XRA	А
	OUT PORT1	
	HLT	
DSPLY :	MOV	A, B
	OUT PORT2	
	HLT	

This program will display

- (A) the bytes from 51H to 82H at PORT2
- (B) 00H AT PORT1
- (C) all byte at PORT1
- (D) the bytes from 52H to 81H at PORT 2

Q50. Consider the following program

MVI A, BYTE1 RRC RRC

If BYTE1 = 32H, the contents of A after the execution of program will be

- (A) 08H (B) 8CH
- (C) 12H (D) None of the above
- **Q51.** The response of a system S to a complex input $x(t) = e^{j5t}$ is specified as $y(t) = te^{j5t}$. The system
 - (A) is definitely LTI (B) is definitely not LTI
 - (C) may be LTI (D) information is insufficient

Q52. The following input output pairs have been observed during the operation of a time invariant system :

The conclusion regarding the linearity of the system is

- (A) System is linear
- (B) System is not linear
- (C) One more observation is required.
- (D) Conclusion cannot be drawn from observation.
- **Q53.** The transfer function H(s) of a stable system is

$$H(s) = \frac{s^2 + 5s - 9}{(s+1)(s^2 - 2s + 10)}$$

The impulse response is

(A)
$$-e^{-t}u(t) + (e^{t}\sin 3t + 2e^{t}\cos 3t)u(t)$$

(B) $-e^{-t}u(t) - (e^{t}\sin 3t + 2e^{t}\cos 3t)u(-t)$
(C) $-e^{-t}u(t) - (e^{t}\sin 3t + 2e^{t}\cos 3t)u(t)$
(D) $-e^{-t}u(t) + (e^{t}\sin 3t + 2e^{t}\cos 3t)u(-t)$

Q54. The frequency response which has nonlinear phase is

(A)
$$\frac{1}{j\omega+1}$$
 (B) $\frac{1}{(j\omega+1)^2}$
(C) $\frac{1}{(j\omega+1)(j\omega+2)}$ (D) All above

$$x[n] = \frac{\sin\left(\frac{1\,\ln n}{20}\,n\right)}{\sin\left(\frac{\pi}{20}\,n\right)}$$

with a fundamental period N = 20. The Fourier series coefficients of this function are

(A)
$$\frac{1}{20}(u[k+5]-u[k-6]), |k| \le 10$$

(B) $\frac{1}{20}(u[k+5]-u[k-5]), |k| \le 10$
(C) $(u[k+5]-u[k+6]), |k| \le 10$
(D) $(u[k+5]-u[k-6]), |k| \le 10$

Q56. A feedback control system shown in fig. Q56 is subjected to noise N(s).

The noise transfer function $\frac{C_N(s)}{N(s)}$ is

(A)
$$\frac{G_1 G_2}{1 + G_1 G_2 H}$$
 (B) $\frac{G_2}{1 + G_1 H}$

(C)
$$\frac{G_2}{1+G_2H}$$
 (D) None of the above

Q57. For the block diagram shown in the fig. Q57 the limiting value of K for stability of inner loop is found to be X < K < Y. The over all system will be stable if and only if

Q58. The transfer function of a *ufb* system is

$$G(s) = \frac{10^5(s+3)(s+10)(s+20)}{s(s+25)(s+a)(s+30)}$$

The value of *a* to yield velocity error constant $K_v = 10^4$ is

- (C) 8 (D) 16
- **Q59.** The forward-path transfer function of a *ufb* system is $G(s) = \frac{K(s+\alpha)(s+3)}{s(s^2-1)}$. The root-loci for K > 0 with $\alpha = 5$ is

The transfer function is

(A) $\frac{8s(s+2)}{(s+5)(s+10)}$ (B) $\frac{4(s+5)}{(s+2)(s+10)}$ (C) $\frac{4(s+2)}{s(s+5)(s+10)}$ (D) $\frac{8s(s+5)}{(s+2)(s+10)}$

Q61. The joint PDF of random variable x and y is shown in fig. Q61. The value of A is

(A) 1 (B) 2

(C) 4 (D) None of the above

Q62. The probability density function of a random variable X is given as $f_X(x)$. A random variable Y is defined as y = ax + b where a < 0. The PDF of random variable Y is

(A)
$$bf_{X}\left(\frac{y-b}{a}\right)$$

(B) $af_{X}\left(\frac{y-b}{a}\right)$
(C) $\frac{1}{a}f_{X}\left(\frac{y-b}{a}\right)$
(D) $\frac{1}{b}f_{X}\left(\frac{y-b}{a}\right)$

Q63. A carrier is amplitude modulate to 100 % by a polar rectangular signal as shown in fig. Q62. The percentage increase in signal power is

Q64. In a AM signal the received signal power is 10^{-10} W with a maximum modulating signal of 5 kHz. The noise spectral density at the receiver input is 10^{-18} W/Hz. If the noise power is restricted to the message signal bandwidth only, the signals-to-noise ratio at the input to the receiver is

(C) 56 dB (D) 33 dB

Q65. Fig. Q65 shows a PCM signals in which amplitude level of +1 volt and -1 volt are used to represent binary symbol 1 and 0 respectively. The code word used consists of three bits.

The sampled version of analog signal from which this PCM signal is derived is

(A) 4 5 2 1 3
(B) 8 4 3 1 2
(C) 6 4 3 1 7
(D) 1 2 3 4 5

Q66. The flux of $\mathbf{D} = \rho^2 \cos^2 \phi \mathbf{u}_{\rho} + 3\sin \phi \mathbf{u}_{\phi}$ over the closed surface of the cylinder $0 \le z < 3$, $\rho = 3$ is

- (A) 324 (B) 81π
- (C) 81 (D) 64π
- **Q67.** In a certain region $\mathbf{J} = (4y\mathbf{u}_x + 2xz\mathbf{u}_y + z^3\mathbf{u}_z)\sin(10^4 t)$ A/m. If volume charge density ρ_v in z = 0 plane is zero, then ρ_v is
 - (A) $3z^2 \cos(10^4 t) \text{ mC/m}^3$
 - (B) $0.3z^2 \cos(10^4 t) \,\mathrm{mC/m^3}$
 - (C) $-3z^2 \cos(10^4 t) \,\mathrm{mC/m^3}$
 - (D) $-0.3z^2 \cos(10^4 t) \text{ mC/m}^3$
- **Q68.** Two $\lambda/4$ transformer in tandem are to connect a 50 Ω line to a 75 Ω load as shown in fig. Q68. If $Z_{02} = 30\Omega$ and there is no reflected wave to the left of A, then the characteristic impedance Z_{01} is

Q69. The cross section of a waveguide is shown in fig. Q69. It has dielectric discontinuity as shown in fig. If the guide operate at 8 GHz in the dominant mode, the standing wave ratio is

Q70. An antenna consists of 4 identical Hertizian dipoles uniformly located along the z-axis and polarized in the z-direction. The spacing between the dipole is $\frac{\lambda}{4}$. The group pattern function is

(A)
$$4\cos\left(\frac{\pi}{4}\cos\theta\right)\cos\left(\frac{\pi}{2}\cos\theta\right)$$
 (B) $4\cos\left(\frac{\pi}{4}\cos\theta\right)\cos\left(\frac{\pi}{8}\cos\theta\right)$
(C) $4\cos\left(\frac{\pi}{4}\cos\theta\right)\sin\left(\frac{\pi}{2}\cos\theta\right)$ (D) $4\cos\left(\frac{\pi}{4}\cos\theta\right)\sin\left(\frac{\pi}{8}\cos\theta\right)$

Common Data Questions

Common Data for Questions Q71-73:

In the voltage regulator circuit in fig. Q71-73 the Zener diode current is to be limited to the range $5 \le i_z \le 100 \text{ mA}$.

Q71. The range of possible load current is

(A) $5 \le i_L \le 130 \mathrm{mA}$	(B) $25 \le i_L \le 120 \mathrm{mA}$
-------------------------------------	--------------------------------------

- (C) $10 \le i_L \le 110 \text{ mA}$ (D) None of the above
- **Q72.** The range of possible load resistance is

$(A) 60 \le R_L \le 372 \Omega$	(B) $60 \le R_L \le 200 \Omega$
(C) $40 \le R_L \le 192 \Omega$	(D) $40 \le R_L \le 360 \Omega$

Q73. The power rating required for the load resistor is

(A) 576 mW	(B) 360 µW
(C) 480 mW	(D) 75 µW

Common Data for Questions Q74-75:

The state-space representation of a system is given by $\dot{\mathbf{x}}(t) = \mathbf{A} \cdot \mathbf{x}(t) + \mathbf{B} \cdot \mathbf{u}(t)$, where

$$\mathbf{A} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

If $\mathbf{x}(0)$ is the initial state vector, and the component of the input vector $\mathbf{u}(t)$ are all unit step function, then the state transition equation is given by $\dot{\mathbf{x}}(t) = \Phi(t)\mathbf{x}(0) + \theta(t)$, where $\Phi(t)$ is a state transition matrix and $\theta(t)$ is a vector matrix.

Q74. The $\Phi(t)$ is

(A)
$$\begin{bmatrix} \cos 2t & \sin 2t \\ -\sin 2t & \cos 2t \end{bmatrix}$$

(B) $\begin{bmatrix} \cos 2t & -\sin 2t \\ \sin 2t & \cos 2t \end{bmatrix}$
(C) $\begin{bmatrix} \sin 2t & \cos 2t \\ -\cos 2t & \sin 2t \end{bmatrix}$
(D) $\begin{bmatrix} \sin 2t & -\cos 2t \\ \cos 2t & \sin 2t \end{bmatrix}$

Q75. The $\theta(t)$ is

(A)
$$\begin{bmatrix} 0.5(1 - \sin 2t) \\ 0.5\cos 2t \end{bmatrix}$$
 (B) $\begin{bmatrix} \sin 2t \\ \cos 2t \end{bmatrix}$
(C) $\begin{bmatrix} 0.5(1 - \cos 2t) \\ 0.5\sin 2t \end{bmatrix}$ (D) $\begin{bmatrix} \cos 2t \\ \sin 2t \end{bmatrix}$

Linked Answer Questions: Q76. to Q85. carry two marks each.

Statement for Linked Answer Questions: Q76. and Q77:

A silicon Hall device at T = 300 K has the geometry $d = 10^{-3}$ cm , $W = 10^{-2}$ cm, $L = 10^{-1}$ cm. The following parameters are measured: $I_x = 0.75$ mA, $V_x = 15$ V, $V_H = +5.8$ mV, $B_z = 0.1$ tesla.

Q76. The majority carrier concentration is

(A) 8×10^{15} cm⁻³, *n*-type

- (B) $8 \times 10^{15} \text{ cm}^{-3}$, *p*-type
- (C) 4×10^{15} cm⁻³, *n*-type
- (D) 4×10^{15} cm⁻³, *p*-type
- Q77. The majority carrier mobility is
 - (A) $430 \text{ cm}^2/\text{V}-\text{s}$ (B) $215 \text{ cm}^2/\text{V}-\text{s}$
 - (C) $390 \text{ cm}^2/\text{V}-\text{s}$ (D) $195 \text{ cm}^2/\text{V}-\text{s}$

Statement for Linked Answer Questions: Q78 and Q79:

Consider the circuit shown in fig. Q78-79.

Q78. The expression for the next state Q^+ is

(A) xQ B) $x\overline{Q}$ (C) $x \oplus Q$ (D) $x \odot Q$

Q79. Let the clock pulses be numbered 1, 2, 3... after the point at which the FF is reset ($Q_0 = 0$). The circuit is a

- (A) even parity checker (B) odd parity generator
- (C) Both A and B (D) None of the above

Statement for Linked Answer Questions: Q80 and Q81:

A causal and stable LTI system has the property that $\left(\frac{2}{3}\right)^n u[n] \implies n\left(\frac{2}{3}\right)^n u[n]$.

Q80. The frequency response $H(e^{j\Omega})$ for this system is

(A)
$$\frac{2e^{j\Omega}}{2-3e^{j\Omega}}$$
 (B) $\frac{2e^{-j\Omega}}{2-3e^{-j\Omega}}$
(C) $\frac{2e^{j\Omega}}{3-2e^{j\Omega}}$ (D) $\frac{2e^{-j\Omega}}{3-2e^{j\Omega}}$

Q81. The difference equation for this system relating any input x[n] and the corresponding output y[n] is

(A) 3y[n] - 2y[n-1] = 2x[n](B) 3y[n] - 2y[n-1] = 2x[n-1](C) 3y[n] - 2y[n+1] = 2x[n+1]

(D)
$$3y[n] - 2[y+1] = 2x[n]$$

Statement for Linked Answer Questions: Q82 and Q83:

In a certain frequency–modulation experiment conducted with $f_m = 1 \text{ kHz}$ and increasing amplitude (starting from 0 V), it is found that the carrier component of the FM signal is reduced to zero for the first time when $A_m = 2$ V. Given that Bessel function $J_0(x)$ is zero for x = 2.44, 5.52, 8.65, 11.8 and so on.

Q82. The frequency sensitivity of the modulator is

(A) 1.38 kHz/V	(B) $0.61 \mathrm{kHz/V}$
(C) 2.76 kHz/V	(D) 1.22 kHz/V

Q83. The carrier components is reduced to zero for the second time for the value of A_m

(A) 4.52 V	(B) 3.38 V
(C) 2.68 V	(D) 1.39 V

Statement for Linked Answer Questions: Q84 and Q85:

The amplitude of a wave traveling through a lossy nonmagnetic medium reduces by 18% every meter. The wave operates at 10 MHz and the electric field leads the magnetic field by 24°.

- **Q84.** The propagation constant is
 - (A) 0.198 + j0.448 per meter
 - (B) 0.346 + j0.713 per meter
 - (C) 0.448 + j0.198 per meter
 - (D) 0.713 + j0.346 per meter

Q85. The skin depth is

- (A) 2.52 m (B) 5.05 m
- (C) 8.46 m (D) 4.23 m

(C)
. (A)
. (D)
. (D)
. (A)
. (D)
. (D)
. (C)
. (C)
. (B)
. (A)
. (C)
. (D)
. (A)
. (C)
. (D)
. (B)

26 Paper-1