$$\begin{array}{ccc} (1) \left(\begin{array}{ccc} 54 & 110 \\ -3 & -11 \end{array}\right) & (2) & \frac{1}{66} \left(\begin{array}{ccc} -54 & -110 \\ 3 & 11 \end{array}\right)$$

(3)
$$\frac{1}{66}$$
 $\begin{pmatrix} 64 & 110 \\ 3 & 11 \end{pmatrix}$ (4) none of these

5. The value of the determinant
$$\begin{vmatrix} \cos \alpha \cos i \alpha \cos 0 \\ -\sin \alpha \cos \alpha \cos \alpha \cos 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 is:
 $(1) - 1$ (2) 0 (3) 1 (4) $\cos 2\alpha$

6. If was the cube root of unity then the value of
$$\begin{vmatrix} 1 & \omega \omega \omega \delta \\ \omega \omega \omega \delta & 1 \end{vmatrix}$$
 will be:

(1) ω (2) $\omega^2 + 1$ (3) 0 (4) 1

7. If
$$(1+x)^n = C_0 + c_1x + C_2x^2 + \dots + C_nx^n$$
, then $C_0 + \underline{C_1} + \underline{C_2} + \dots + \underline{C_n}$ is equal to : 2 3

(1)
$$2^{n} - 1$$
 (2) $2^{n} - 1$ (3) $2^{n-1} - 1$ (4) $2^{n+1} - 1$ $n+1$

8. If
$$(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$$
, then $C_0C_2 + C_1C_3 + C_2C_4 + \dots = C_{n-2}$ Cn is equal to :

(1)
$$\underline{2n}$$
 (2) $\underline{2n}$ (3) $\underline{2n}$ (4) none of these $\underline{n-2 \ n-2}$ $\underline{n \ n}$ $\underline{n-2 \ n+2}$

9. If the ratio of the second and third term in the expansion of $(a+b)^2$ is equal to the ratio of third and fourth term in the expansion of $(a+b)^{n+3}$ then the value of n is equal to:

(1) 6 (2) 4 (3) 5 (4) 3

10. The number of different words that can be formed by using the letters of the word 'MISSISIPI' is :

11. If a^2 , b^2 , c^2 are in A.P. then $\frac{1}{b+c^2}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ will be:

	bag couta								nen
(1) 1	1 <u>5</u> (_	11 28	 <u>5</u> 28	(4)	<u>2</u> 7			

13. Two dice are thrown together then the probability that the sum of numbers appearing on the dice is 7:

(1)
$$\frac{1}{6}$$
 (2) $\frac{1}{12}$ (3) $\frac{5}{36}$ (4) none of these

14. The position vectors of the two points A and B are a and b respectively then the position vector of the point C which divides AB in the ration 2:1 will be:

(1)
$$\frac{1+b}{3}$$
 (2) $\frac{2a+b}{3}$ (3) $\frac{a+2b}{3}$ (4) none of these

15. If $\mathbf{a} + \mathbf{b} = \mathbf{a} - \mathbf{b}$, then the angle between \mathbf{a} and \mathbf{b} will be: (1) 180^0 (2) 90^0 (3) 60^0 (4) 0^0

16. The area of the region bounded by the curve
$$y = \sin^2 x$$
, x-axis and the lines $x = 0$, $x = \pi / 2$ is

(1)
$$\pi$$
 (2) $\pi/8$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

17.
$$\pi / 2$$

$$\frac{\sin x}{0 \sqrt{1 + \sin 2x}} dx \text{ is equal to :}$$

(1)
$$\pi$$
 (2) 2π (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

18. xe^x dx is equal to:

(1)
$$(x-1)e^x + C$$
 (2) $(1-x)e^x + C$ (3) $(1-x)e^x + C$ (4) none of these

19. $x^2 \sin x^3 dx$ is equal to:

(1)
$$\frac{1}{3}\sin x^3 + C$$
 (2) $-\frac{1}{3}\sin x^3 + C$ (3) $\frac{1}{3}\cos x^3 + C$ (4) $-\frac{1}{3}\cos x^3 + C$

20. The max. value of $\sin x + \cos x$:

(1) 1 (2)
$$\frac{1}{\sqrt{2}}$$
 (3) $\sqrt{2}$ (4) none of these

21. The angle between the curves y = x and $y^2 = 4x$ at origin will be :

22. If the volume of a balloon is increasing at the rate of 25 cm³/sec., then if the radius of the balloon is 5 cm. then the rate of change of the surface are a is:

(1) $20 \text{ cm}^2/\text{sec}$.

(2) $10 \text{ mt.}^2/\text{sec.}$

 $(3) 5 \text{ cm.}^2/\text{sec.}$

(4) 10 cm./sec.

23. The differential of coefficient of x^x is :

 $(1) x^{x} \log_{e} x$

(2) $x^x (1 + \log_e x)$ (3) $x^x (1 - \log_e x)$ (4) none of these

24. $\frac{d}{dx}$ (sin x) tan x is equal to:

(1) $(\sin x)^{\tan x} [1 - \sec^2 x \log \sin x]$ (2) $(\tan x)^{\sin x} [\cos x] [\cos x]$

(3) $(\sin x)^{\tan x} [1 + \sec^2 x \log \sin x]$

(4) none of these

25. If $y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$

then <u>dy</u> is equal to:

(1)∞

(2) 0

(3) 1

(4) -1

26. If $y = \sin^{-1}\left(\frac{2x}{1+y^2}\right)$, then $\frac{dy}{dy}$ is equal to:

(1) $-\frac{1}{1+x^2}$ (2) $-\frac{2}{1+x^2}$

(3) $\frac{2}{1+x^2}$ (4) $\frac{2x}{1+x^2}$

27. If $x \sqrt{1+y} + y\sqrt{1+x} = 0$ then $\frac{dy}{dx}$ is equal to:

(1) $\frac{1}{1+x^2}$ (2) - $\frac{1}{1+x^2}$

(3) $\frac{2}{(1+x)^2}$

(4) none of these

28. The continuous product of the roots of $(-1)^{2/3}$ is:

(1) ω^2

(2) ω

(3) 0

(4) 1

29. The value of $\sin^{h-1} x$:

(1) $\log (x - \sqrt{x^2 - 1})$ (2) $\log (x + \sqrt{x^2 - 1})$

$$(3) \log (x + \sqrt{x^2 + 1})$$

(4)
$$\frac{1}{2} \log \frac{1+x}{1-x}$$

30. The equation of a st-line passing through the point (1,2) and making equal angles to with axes, will be:

(1)
$$x-y-2=0$$

(2)
$$x+y+1=0$$

$$(3) x-y=1$$

(4)
$$x+y = 1$$

31. If the vertices of a parallelogram are (0,0), (2,1), (1,3) and (1,2) then the angle between their diagonals will be:

$$(1) \underline{\pi}_{4}$$

(2)
$$\frac{3\pi}{2}$$

(3)
$$\frac{\pi}{2}$$
 (4) $\frac{\pi}{3}$

$$(4) \frac{\pi}{3}$$

32. The equation of line which is parallel to the straight line 3x + 4y - 7 = 0 and passing through (1,2) is:

$$(1) 3x + 4y = 11$$

(2)
$$3x+4y+11=0$$

$$(3) 4x-3y+2=0$$

$$(4) 3x+4y+7=0$$

33. The pole of the straight line 9x + y - 28 = 0 w.r.t. the circle $x^2 + y^2 = 16$ will be:

$$(1) \quad \frac{\cancel{33}}{\cancel{7}}, \quad \cancel{3}$$

$$(2) \quad \frac{63}{7}, \quad \frac{4}{7}$$

$$(3) \left[\frac{4}{7}, \quad \frac{36}{7} \right]$$

$$(4) \quad \frac{36}{7}, \quad \frac{4}{7}$$

34. The equation of the tangent from origin to the circle $x^2 + y^2 - 2rx - 2hy + h^2 = 0$

(1)
$$(h^2 - r^2) x + 2rhy = 0$$

$$(2) y = 0$$

$$(3) x - y = 0$$

(3)
$$x - y = 0$$

(4) $(h^2 - r^2) x - 2rhy = 0$

35. If a tangent at a point p to the parabola meets to the directrix at Q. If S is the focus of the parabola then $\angle PSQ$ is equal to:

$$(1) \pi$$

$$(2) \ \underline{\pi}$$

$$(3) \ \underline{\pi} \ 3$$

$$(4) \ \underline{\pi} \ 4$$

36. If $f(y) = \log y$, then f(y) + f(1/y) is equal to :

$$(3) -1$$

37. $\lim_{x\to 0\to} \frac{\sec^x - \log(1+x)}{x^2}$ is equal to :

(1)
$$\frac{1}{2}$$

(2)
$$\frac{1}{3}$$
 (3) $\frac{3}{2}$ (4) $\frac{2}{3}$

$$(3) \ \frac{3}{2}$$

$$(4) \frac{2}{3}$$

38. If acand	$\beta\beta$ are the roots of the equation 1	$(1 + n^2 + n^4) = 0$ then	$\alpha^2 + \beta^2 $ is
equal to:			

- (1) $2n^2$ (2) n^2 (3) $-n^2$ (4) $n^2 + 2$

39. The H.M. between 1 and $\underline{1}$ will be :

- (1) $\frac{17}{2}$

40. If for two numbers G.M. is 4 and A.M. is 5, then H.M. will be :

- (1) <u>25</u> 15
- (2) $\frac{17}{8}$ (3) $\frac{16}{5}$
- 16

41. If ${}^{10}C_r = {}^{10}C_{r+2}$ then 5C_r is equal to :

- (1)360
- (2) 120
- (3) 10
- (4) 5

42. The value of $1 + \frac{1}{4} + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \dots$ is:

- (1) $\sqrt{(3/2)}$ (2) $\sqrt{2}$ (3) 2 (4) 3/2

43. If $(1+x)^n = C_0 + C_2x + C_2x^2 + + C_nx^n$ then $C_1 + C_2 + C_2 + C_3 + + C_nx^n$ then $C_1 + C_2 + C_3 + + C_nx^n$ nCn is equal to:

- (1) $\frac{n(n+1)}{2}$ (2) $\frac{n(n^2+1)}{2}$ (3) $\frac{n(n+1)}{n!}$ (4) $\frac{n(n-1)}{2}$

44. In the expansion of $\begin{bmatrix} 2^4 - \frac{1}{x^7} \end{bmatrix}$ the term independent of x is :

- (1) 32190 (2) 114050 (3) 42240 (4) 330

45. The value of the determent | 4 -6 1 | -1 -1 1 | is:

- $(1) \theta$

- (2) -25 (3) 25 (4) none of these

46. If $\begin{vmatrix} 1 & 2 & 4 \\ 3 & 6+x & 7 \end{vmatrix} = 0$, then the value of x will be:

- (1) 3
- (2) 0
- (3) 1
- (4) none of these

47. If
$$A = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$$
 then $adj A =$

- $\begin{pmatrix}
 d_1^{-1} & 0 & 0 \\
 0 & d_2^{-1} & 0 \\
 0 & 0 & d_3^{-1}
 \end{pmatrix}$
- $\begin{pmatrix}
 d_2 d_3 & 0 & 0 \\
 0 & d_1 d_3 & 0 \\
 0 & 0 & d_1 d_2
 \end{pmatrix}$
- (3) $\begin{pmatrix} d_2 d_2 & 0 & 0 \\ 0 & d_1 d_3 & 0 \\ 0 & 0 & d_1 d_3 \end{pmatrix}$
- $\begin{pmatrix}
 d_1 d_3 & 0 & 0 \\
 0 & d_2 d_3 0 \\
 0 & 0 & d_1 d_2
 \end{pmatrix}$
- 48. If $A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 0 & 5 \end{bmatrix}$, then 4A 3B is equal to :
- (1) $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ (2) $\begin{pmatrix} -5 & -10 \\ 0 & 3 \end{pmatrix}$ (3) $B = \begin{pmatrix} 5 & 10 \\ 0 & -3 \end{pmatrix}$ (4) $A = \begin{pmatrix} 7 & 14 \\ 0 & 7 \end{pmatrix}$
- 49. If $A = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}$, then A^{-1} is equal to:

$$(1) \begin{bmatrix} \cos x & \sin x \\ \sin x & \cos x \end{bmatrix} (2) \begin{bmatrix} \cos x - \sin x \\ \sin x & \cos x \end{bmatrix} (3) \begin{bmatrix} \cos x \sin x \\ -\sin x \cos x \end{bmatrix} (4) \text{ none of these}$$

50. A card is drawn at random from a pack of playing cards. The probability that it is red or an ace, is:

- (1) <u>1</u> 13

51. If the sum of two unit vector is also a unit vector then the magnitude of their difference will be:

- (1) 1
- (2) $\sqrt{3}$
- (3) $\frac{1}{\sqrt{3}}$ (4) $\sqrt{2}$

52. The unit vector perpendicular to the vectors $6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $3\mathbf{i} - 6\mathbf{j} - 2\mathbf{k}$ will be:

- (1) 2i 3j 6k (2) 2i 3j + 6k (3) 2i + 3j = 6k (4) 2i + 3j + 6k 7

53. The area of the region bounded by the curves $y^2 = 4ax$, x = 0 and x = a is

- (1) $4\pi a^2$
- (2) $3\pi a^2$ (3) $2\pi a^2$ (4) πa^2

54. The area of the region bounded by the curves $y^2 = 4ax$, x = 0 and x = a is :

- (1) $\frac{5}{3}$ a^2
- (2) $\frac{2}{3}$ a^2 (3) $\frac{8}{3}$ a^2 (4) $\frac{4}{3}$ a^2

55. $\cos^3 x \, dx$ is equal to

- $(1) \quad \frac{\sin 3x}{4} + 3\sin x + C$
- $(2) \quad \frac{\sin 3 x}{3} + \frac{\sin x}{2} + C$
- (3) $\sin 3 x + C$
- (4) $\frac{\sin 3x}{12} + \frac{3}{4} \sin x + C$

56. If x = a (t+sin t) and $y = a(1 - \cos t)$ then dy is equal to:

- (1) tan t
- (2) tan 2t
- (3) $\cot(t/2)$
- (4) $\tan(t/2)$

57. If $x = t^2$ and y = 2t, then the normal at t = 1 is:

(1)
$$x + y - 3 = 0$$
 (2) $x + y - 1 = 0$ (3) $x + y + 1 = 0$ (4) $x + y + 3 = 0$

$$(2) x + y - 1 = 0$$

(3)
$$x + y + 1 = 0$$

$$(4) x + v + 3 = 0$$

58. $f(x) = 2x^3 - 9x^2 + 12x + 29$ is a monotonic decreasing function when:

(1)
$$1 < x < 2$$
 (2) $x > 1$

(3)
$$x > 2$$
 (4) $x < 2$

59. The height of the cylinder of maximum volume that can be inscribed in a sphere of radius r is:

$$(1) \ 2\sqrt{3r}$$

(2)
$$\frac{2r}{\sqrt{3}}$$

$$(3) \quad r\sqrt{3}$$

(2)
$$\frac{2\mathbf{r}}{\sqrt{3}}$$
 (3) $\mathbf{r}\sqrt{3}$ (4) $\frac{\mathbf{r}}{\sqrt{3}}$

60. sec x dx is equal to:

(1)
$$\log \sin x + C$$

(2)
$$\log \tan (x/2) + C$$

$$(3) - \log(\sec x - \tan x) + C$$

(4)
$$\log \tan \left(\frac{\pi}{2} + \frac{\pi}{4}\right) + C$$

61. The differential coefficient of sin-1 $\underbrace{1-x^2}_{1+x^2}$ w.r.t. x is :

$$(1) - \frac{2}{1+x^2}$$
 $(2) \frac{2}{1+x}$

(1) -
$$\frac{2}{1+x^2}$$
 (2) $\frac{2}{1+x^2}$ (3) $\frac{1}{1+x^2}$ (4) none of these

$$(1) \quad \frac{1}{x\sqrt{x-1}}$$

62. d (sec⁻¹ x) is equal to:
(1)
$$\frac{1}{x\sqrt{x-1}}$$
 (2) $\frac{1}{x\sqrt{x^2-1}}$ (3) $\frac{1}{x\sqrt{1+x^2}}$ (4) $\frac{1}{x\sqrt{1-x^2}}$

$$(3) \quad \frac{1}{x\sqrt{1+x^2}}$$

(4)
$$\frac{1}{x\sqrt{1-x^2}}$$

63. The differential coefficient of tan-1 $\underbrace{1-x^2}_{1+x^2}$ w.r.t. is :

- $(1)\frac{1}{2}$
- (2) 1
- $(3) \frac{1}{2}$ (4) none of these

64. $\lim_{x\to \oplus} \frac{\tan 2 x - x}{3 x - \sin x}$ is equal to:

- (1) 0
- (2) 1
- (3) $\frac{1}{3}$ (4) $\frac{1}{4}$

65. The differential coefficient of $\sin^{-1} x$ w.r.t. $\cos^{-1} \sqrt{1-x^2}$ is :

$$(1) - \underbrace{1}_{\sqrt{1+x^2}}$$

(1) -
$$\frac{1}{\sqrt{1+x^2}}$$
 (2) $\frac{1}{\sqrt{1-x^2}}$ (3) $\frac{2}{\sqrt{1-x^3}}$

(3)
$$\frac{2}{\sqrt{1-x^3}}$$

(4) none of these

66. The sum of 20 terms of the series 1 + 4 + 7 + 10 + ... is:

67. Which terms of the series $\frac{1}{2}$, $\frac{-1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ Is – 128: (1) 10^{th} (2) 8^{th} (3) 9^{th} (4) 12^{th}											
(1) 10 th	(2) 8 th	(3) 9th	(4) 1	2 th							
68. If ${}^{n}P_{4}$: ${}^{n}P_{5} = 1 : 2$, then n is equal to :											
(1) 2	(2) 4	(3) 5	(4) 6	5							
69. <u>(cos 3θθ</u> (cos θθ+ i	<u>i sin 3θ</u> sin θθ ⁻⁴	θ ⁵ (cos 2θθ+ i (cos θθ i sin	sin 200 ⁴	is equal to :							
(1) $\cos 27\theta - i$ (2) $\cos 33\theta - i$ (3) $\cos 33\theta +$ (4) $\cos 27\theta +$	i sin 33θ i sin 33θ)									
70. The value	e of cos h	⁻¹ x is:									
$(1) \log (x - \sqrt{x})$	$\widehat{(x^2-1)}$	(2) log	$(x + \sqrt{x^2 - 1})$)							
$(3) \log (x + \sqrt{2})$	(x^2+1)	(4) log	$(x - \sqrt{x^2 + 1})$	-)							
1 and passes	through	the point wh	ere the giver	n st-line cuts t	tular to the lin the x-axis: (4) bx – ay	\overline{a} \overline{b}					
72. If the line to: $(1) \frac{-2}{3}$	-	•	-		ncurrent then	λλis equal					
73. If two vertex will be	rtices of	a triangle are	e (6,4), (2,6)	and its centro	oid is (4, 6) the	n its theird					
(1) (6,4)				(4) none of $\frac{1}{2}$	these $\mathbf{v}^2 - 4\mathbf{v} - 7 = 0$	· •					
74 The radic	al avic o	t the circles 7	$\mathbf{v}^- \perp \mathcal{I} \mathbf{v}^- = \mathcal{I} \mathbf{v}$	z – II and v~ ⊥	v 4v _ 7 - 1	1 16 •					

(4) none of these

75. The equation of the polar line w.r.t. the pole (1, - 2) to the arile $x^2 + y^2 - 2x - 6y + 5 = 0$ is :

(2) 7x - 8y + 14 = 0(4) 7x + 8y + 14 = 0

(1)
$$x + y - 1 = 0$$

(1) 8x - 7y + 14 = 0

(3) 7x - 8y - 14 = 0

(1)290

(2)490

(3) 590

$$(2) x + y + 1 = 0$$

$$(3) y = 2$$

$$(4) x = 2$$

76. The vertex of the parabola $x^2 - y + 6x + 10 = 0$ is :

77. If $f(\theta) = \tan \theta \theta$, then the value of $\underline{f(\theta) - f(\phi)}$ is: $1 + f(\theta) f(\phi)$

 $(1) \theta - \phi$ $(2) f(\theta/\phi)$ $(3) f(\theta-\phi)$ $(4) f(\theta+\phi)$

78. $\lim_{x \to 0} \frac{x^2 - 3x + 2}{2x^2 + x - 3}$ is equal to :

(1) 0

(2) 2

 $(3) \frac{1}{2}$

(4) ∞

79. $\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$ is equal to :

(1) - 1

(2) 1

(3) 2

 $(4) \frac{1}{2}$

80. The equation of the normal at a point of intersection of line 2x + y = 3 and curve $yx^2 + y^2 = 5$ is:

(1) 2x + 2y + 3 = 0 (2) x - y + 4 = 0 (3) x - 4y + 3 = 0 (4) x + y + 2 = 0

81. If $f(x) = \frac{x-3}{x+1}$, then $f[f\{f(x)\}]$ is equal to :

(1) $\frac{-1}{x}$ (2) -x (3) $\frac{1}{x}$ (4) x

82. The modules of $\frac{1+i}{1-i}$ is:

(1) $\sqrt{2}$ (2) 2 (3) $\frac{1}{2}$

(4) 1

83. The value of $\frac{4\sqrt{\sqrt{3}}}{7}$ - $\frac{\sqrt{\sqrt{3}}}{7}$ is

(1) $\frac{3\sqrt{3}}{7}$ (2)- $\frac{3\sqrt{3}}{7}$ (3) $\frac{3\sqrt{3}}{7}$ i

(4) none of these

84. $\frac{1-2i}{2+i} + \frac{4-i}{3+2i}$ is equal to :

(1) $\frac{10}{13}$ + $\frac{24}{13}$ i (2) $\frac{10}{13}$ - $\frac{24}{13}$ i (3) $\frac{24}{13}$ - $\frac{10}{13}$ i (4) $\frac{24}{13}$ + $\frac{10}{13}$ i $\frac{13}{13}$ i $\frac{13}{13}$

85. If z = 5 + 3i then the value of |z - 2| will be :

(1) $\sqrt{13}$ (2) $2\sqrt{3}$ (3) $3\sqrt{2}$ (4) 13

86. The imaginary part of $1-i$ is:										
(1) - i		1 + i (3) 1	(4) i							
		-1, then z_1/z_2 $\frac{1}{2} + \frac{3}{2}$		(4) none of these						
88. The ampl	litude of $1 - \sqrt{1}$	⅓i is:								
$(1) \frac{-2\pi}{3}$	(2) $\frac{-\pi}{3}$	$(3) \ \underline{2\pi}$ 3	(4) $\frac{\pi}{3}$							
89. If α and β are the roots of the equation $x^2 + px + q = 0$ then the value of $\alpha^3 + \beta^3 = 0$ will be:										
(1) p3 - 3pq	(2) – ($(p^3 + 3pq)$	$(3) p^3 + 3pq$	$(4) - p^3 + 3pq$						
90. If α and β	ββare the roots	of the equatio	n whose roots a	are $\frac{1}{\alpha \alpha}$, $\frac{1}{\beta \beta}$ is:						
$(1) x^2 + x + 1$	$=0$ (2) x^2	-x+1=0	(3) $x^2 - x = 1$	$(4) x^2 - x = 1$						
91. If $z = (1)$	+i)(2+i)	then z is ed	qual to :							
$(1) - \frac{1}{2}$	$3 + 1$ (2) $\frac{1}{2}$	(3) 1	(4) – 1							
		t to the parabo (3) 1/t		int (at ² , 2at) will be:						
		λjare the para (3) – 4	allel vectors the	n λλis equal to :						
then the rate when radius	of change of t of the circle is	he are when the 10 cm, then the the	ne radius of the ne rate at which	ring at the rate of 6 cm0/sec. unite is 10 cm. at the time its area increases is: c. (4) $120 \pi \text{cm}^2/\text{sec}$.						
95. A dice is (1) 1/6	thrown then the (2) 1/3	ne probability (3) 2/3	that the sum of	the number is 1 or 6 is:						
96. The value (1) 0	e of cos h (πi) (2) 1		(4) none of the	se						
97. For Z₁, Z (1) $2(Z_1 ^2 + Z_1 ^2)$	$Z_2 \in \mathbb{C}$ the value $ Z_2 ^2$ (2) $ Z_1 ^2$	e of $ \mathbf{Z}_1 + \mathbf{Z}_2 ^2$ $ ^2 + \mathbf{Z}_2 ^2$ (3) $ \mathbf{Z}_1 ^2$	$+ \mathbf{Z}_1 - \mathbf{Z}_2 ^2 \text{ wil}$ $ \mathbf{Z}_1 ^2 + \mathbf{Z}_2 ^2 - \mathbf{Z}_1 - \mathbf{Z}_1 ^2$	Il be : $ Z_2 $ (4) $2(Z_1 ^2 - Z_2 ^2)$						

98. The real part of $\cos h$ ($\alpha \alpha$ ibbis:

- (1) $\sin h\alpha \cos \beta$
- (2) $\cos h\alpha \cos \beta$
- (3) $-\cos h\alpha \cos \beta$
- (4) $\sin \alpha \cos \beta$

99. If three vertices of a square are 3i, 1 + i and 3 + 2i then its fourth vertex will be:

- (1) (3,3)
- (2)(2,4)
- (3) aigin
- $(4)\left(\frac{1}{2}, \frac{1}{2}\right)$

100. $\lim_{x \to b} \frac{|x-b|}{x-b}$ is equal to:

- (1) 1
- (2) b
- (3) 0
- (4) does not exist

ANSWER SHEET

THIS WELL SHEET										
1.(1)	2.(2)	3.(2)	4.(2)	5.(3)	6.(3)	7.(4)	8.(3)	9.(4)	10.(4)	11.(3)
12.(3)	13.(1)	14.(3)	15.(2)	16.(3)	17.(3)	18.(1)	19.(4)	20.(3)	21.(3)	22.(4)
23.(2)	24.(3)	25.(2)	26.(3)	27.(2)	28.(4)	29.(3)	30.(2)	31.(3)	32.(3)	33.(4)
34.(4)	35.(2)	36.(2)	37.(3)	38.(2)	39.(2)	40.(3)	41.(4)	42.(2)	43.(1)	44.(3)
45.(2)	46.(2)	47.(2)	48.(3)	49.(2)	50.(4)	51.(2)	52.(3)	53.(4)	54.(3)	55.(4)
56.(4)	57.(1)	58.(1)	59.(2)	60.(3)	61.(1)	62.(3)	63.(1)	64.(4)	65.(3)	66.(3)
67.(1)	68.(4)	69.(3)	70.(2)	71.(1)	72.(3)	73.(3)	74.(3)	75.(3)	76.(4)	77.(3)
78.(3)	79.(2)	80.(3)	81.(4)	82.(4)	83.(3)	84.(2)	85.(3)	86.(2)	87.(3)	88.(2)
89.(4)	90.(1)	91.(3)	92.(3)	93.(3)	94.(4)	95.(2)	96.(3)	97.(1)	98.(2)	99.(2)
100(4)										