इसरो **डिनव**

2009

INDIAN SPACE RESEARCH ORGANISATION

MECHANICAL ENGINEERING - I

1. A hydraulic press has a ram of 15 cm diameter and plunger of 1.5 cm. It is required to lift a mass of 1000kg. The force required on plunger is nearly equal to

a) 100N b) 1000N c) 10000N d) 10N

2. If the stream function is given by $\Psi = 3xy$, then the velocity at a point (2,3) will be

a) 7.21 unitb) 18 unitc) 10.82 unitd) 54 unit

3. The correct sequence of the centrifugal pump components through which the fluid flows is

a) Impeller, Suction pipe, Foot valve and strainer, Delivery pipe

b) Foot valve and strainer, Suction pipe, Impeller, Delivery pipe

c) Impeller, Suction pipe, Delivery pipe, Foot valve and strainer

d) Suction pipe, Delivery pipe, Impeller, Foot valve and strainer

4. The relation pV^{γ} = constant, where γ is the ratio of the specific heats of ideal gas, is applicable to

a) Any adiabatic processb) Only reversible adiabatic processd) Only isothermal process

5. Across a normal shock

a) static pressure and the static temperature riseb) entropy remains constantc) velocity and static pressure decreased) density and temperature decrease

6. A necessary precaution in selection of pumps for parallel operations is that

- a) H-Q characteristics of both should be identical
- b) Both pumps should be centrifugal type
- c) Both pumps should be identical
- d) There should not be change from positive to negative slope in H-Q curve
- 7. A metallic cube of side 10 cm, density 6.8 gm/cc is floating in liquid mercury (density 13.6gm/cc), with 5 cm height of cube exposed above the mercury level. Water (density 1 gm/cc) is filled over this, to submerge the cube fully. The new height of cube exposed above mercury level is

a) 4.6 cm **b**) 5.4 cm **c**) 5.0 cm **d**) 5.8 cm

8. The pressure drop for a relatively low Reynolds number flow in a 600 mm, 30 m long pipeline is 70kPa. What is the wall shear stress?

a) 0 Pa	b) 1400 Pa	c) 700 Pa	d) 350 Pa	
Mechanical - I		1		SET-A

MECHANICAL ENGINEERING - I

SET-A

9. The radiative heat transfer rate per unit area (W/m2) between two plane parallel grey surfaces (emissivity 0.9) maintained at 400 K and 300 K is (Stefan Bottzman constant $\sigma = 5.67 \times 10^{-6} W / m^2 K^4$)

10. At the eye tip of a centrifugal impeller, blade velocity is 200 m/s while the uniform axial velocity at the inlet is 150 m/s. If the sonic velocity is 300 m/s, then the inlet Mach number of the flow will be

a) 0.75 **b)** 0.66 **c)** 0.90 **d)** 0.83

11. The transition Reynolds number for flow over a flat plate is $5*10^5$. What is the distance from the leading edge at which transition will occur for flow of water with a uniform velocity of 1m/s? (For water, the kinematic viscosity, $\nu = 0.86*10^{-6} \text{ m}^2/\text{s}$)

12. For a reciprocating water pump having cylinder dia d and crank radius r, if W is the weight of water lifted, the coefficient of discharge is

a) $\frac{W}{\pi d^2 r}$ b) $\frac{2W}{\gamma \pi d^2 r}$ c) $\frac{W}{\gamma d^2 r}$ d) $\frac{W}{\gamma \pi d^2}$

13. Both free vortex and forced vortex can be expressed mathematically in terms of tangential velocity V at the corresponding radius r. Choose the correct combination

	Free vortex	Forced vortex
a) [†]	V = r x const.	Vr = const.
b)	$V^2 x r = const.$	V = r x const.
c)	$V \ge r = const.$	$V^2 = r x const.$
d)	$V \ge r = const.$	V = r x const.

14. A bucket of water is hanging from a spring balance. An iron piece is suspended into water without touching sides of bucket from another support. The spring balance reading will

- a) Remain sameb) Decreasec) Increased) Increase/decrease depending on depth of immersion
- 15. A single-stage impulse turbine with a diameter of 120 cm runs at 3000 rpm. If the blade speed ratio is 0.42, then, the inlet velocity of steam will be

a) 79 m/s	b) 188 m/s	c) 450 m/s	d) 900 m/s

2

			- · · · · · · · · · · · · · · · · · · ·					
•	·/				Page:			
इस्	אל וא וא	DIAN SPACE RESEA	RCH URGANISATIO		3 OF 11			
2	2009	MECHANICAL EN	GINEERING - I		SET - A			
16.		t and triple point data fo		(Critical			
		22.1 Mpa, $T_T = 0.01^{\circ}C$, P_T	•	22.1-P	point D			
	Indicate the pha- cases,	se change that will occur	in following		riple			
		Pa is heated isobarically		d 6>	R			
		our at 400 ⁰ C is compress	ed isothermally		— В 1°С 374°С			
	a) (i) along AB, (ii) along CD	b) (i) along CD, (ii)	Tempe along AB	rature			
	c) (i) along OD, (•	d) (i) along RD, (ii)	-				
17.	The ratio of spec	tific heats of a gas is 1.4 a	and the value of specifi	c heat at c	onstant			
	• ·	$al/mole$ $^{\circ}C$. The difference		at at consta	int pressure			
	and specific heat	at constant volume will	be (in cal / mole ^{0} C)					
۹	a) 1.4	b) 1.7	c) 5.0	d) 2.0				
18.	1 A A	of linear expansion of a so by 1° C will change by	olid is L. The volume	V of a cub	e of this solid			
	a) VL	b) 3VL	c) 3 <i>L</i>	$d) \frac{VL}{3}$				
19.	mass of 2 tonnes	equal length but having statistics in series. Find the frequencies	uency of vibration					
	a) $\frac{1}{2\pi}\sqrt{3}$ Hz	b) $\frac{1}{2\pi}\sqrt{10}$ Hz	c) $\frac{1}{2\pi}\sqrt{15}$ Hz	$\mathbf{d}) \; \frac{1}{2\pi}$	$\sqrt{2}$ Hz			
20.	Ratio of pitch ci	rcle diameter in millimet	ers to the number of t	eeth, is kno	own as			
	a) Module	b) Circular pitch	c) Diametral pitch	d) Clea	arance			
21.	-	ith masses in the ratio 1: eir linear momentums wi			energies. Th			
	a) 1:8	b) 1: $\sqrt{2}$	c) $\sqrt{2}$: 1	d) 1:2				
	 Which of the following stresses are associated with the tightening of a nut on a stud? 1. Tensile stresses due to stretching of stud 2. Bending stresses of stud 3. Transverse shear stresses across threads 							
22.	 Tensile street Bending street Transverse 	esses due to stretching of st resses of stud shear stresses across threa	ds					
22.	 Tensile street Bending street Transverse Torsional street 	esses due to stretching of st resses of stud	ds e to frictional resistance	e				
22.	 Tensile street Bending street Transverse Torsional street 	esses due to stretching of st resses of stud shear stresses across threa hear stresses in threads due	ds e to frictional resistance	e d) 2,3	and 4			

		_					
इसरो डिसर		NDIAN	INDIAN SPACE RESEARCH ORGANISATION				
20	09		MECHANICAL E	NGINEERING - I		SET - A	
23.	A flywhee	I weighs $\frac{98}{\pi}$	$\frac{1}{-kg}$ and has a rad	lius of gyration of 100	cm. It is g	iven a spin of	
. :	100 rpm a at 6 rad/s	bout its holes. The gyr	rizontal axis. The oscopic couple exp	whole assembly is rot: crienced will be	ating about	a vertical axis	
:	a) 2,000 k	gm	b) 19,620 kgm	c) 20,000 kgm	d) 1,9)62 kgm	
24.	Determin shear stro	e the diam ss in the sh	eter of solid shaft aft is limited to 60	which will transmit N/mm ²	90kw at 1	60 rpm, if th	
	a) 50 mm		b) 60 mm	c) 77 mm	d) 70	mm	
	block sho	of weight wn in the gi use the said	W is rolled over t iven figure. The p motion is	the wooden ull required	-30°	▶ F	
•	a) W / 2	, [,]	b) √3 W	c) W	d) 2	W	
	is P ₁ , and a) M ₂ < N	limensional the initial I 1_1 ; $P_2 < p_1$ 1_1 ; $P_2 > p_1$	isentropic flow in Mach number is M	a diverging passage, i $I_1 (M_1 < 1)$, then for th b) $M_2 > M_1$; P_2 d) $M_2 > M_1$; P_2	e downstre $p_1 > p_1$	am flow	
27.	Inside he Outside h	eat transfer	oefficient = 35 W/m coefficient = 25 W/ of bricks (15 cm th	m ² K	er to the		
	b) Outsc) Then	ide heat trar mal conduct	fer coefficient asfer coefficient tivity of bricks afficient based on th	e thermal conductivity	of the brick	s alone.	
28.	tempera	ture of 25 ⁰ C	since it has a rela	emperature of 20°C. tive humidity of 65%. bulb temperature	System 'A' . System 'B	⁹ has Dry bulb 3' has a relativ	
•	-		b) 25 ⁰ C	c) 27 ⁰ C	d) 2	2 ⁰ C	
	a) 33 ⁰ C						
29.	Four roo	ls with diffe temperatu	erent radii <i>r</i> and le re. Which one of t	ngth / are connected t hem will conduct mos	o two reser at heat?	voirs at	

·						· · · ·	
-	-4				<u> </u>	,	Page:
इस	ם חצו וג	INDIA	N SPACE	RESEAR	CH ORGANIS	ATION	5 OF 11
2	009		MECHA	NICAL ENG	INEERING - I		SET - A
30.	arrangeme contained i specific hea	ent. If all o in the cylir eat of the lid	of the energy nder, what i iquid is 4.0 I	y of the vehi is the maxin kJ/kg. ⁰ C)	icts a plunger att icle is absorbed mum temperatur	by the 20 kg re rise of the	g of liquid e liquid? (The
•	a) 55°C	· · · · · · · · · · · · · · · · · · ·	b) 40 ⁰ C		c) 45 ⁰ C	d) 5	0°C
31.	In the Van to compens		l's gas equa	tion $\left(p + \frac{a}{v}\right)$	$\left(v-b\right)=RT$ th	ne constant '	'a' is introduc
	a) Reductionc) Reduction	on in specif		2	b) Inter-molecud) All of the ab		
32.	The centri	fugal tensi	ion in belts				
	b) Increasc) Does n	ses power the not affect po	ansmission t transmission ower transm ransmission	1	speed and then de	ecreases	
33.	In nodular	r iron, graj	phite is in tl	ne form of			
	a) Spheroic	ls	b) Nodula	r carbide	c) Flakes	d) C	Cementite
34.	Corrosion	1 resistance	e of steel in	creases by a	ddition of		
		um, alumini um and nicl		, I	er, phosphorus, le en, molybdenum,		hromium
35.	Phenomer	non of prog	gressive ext	ension of m	naterial with time	e at constant	t load is called
	a) Plasticit	ty b)	Creep	c	e) Yield	d) Br	eaking
36.	Rivets are	e made of			• • •		
	a) Soft mat	terial b)	Ductile mat	terial c	e) Hard material	d) Br	ittle material
37.	Addition (of copper 1	to aluminiu	m results in	1		
-		tation harde	ening system	n b	b) Corrosion resist I) High machinab		
38.	A Hooke'	s joint is u	sed to conn	ect two			
	a) Coplana	ar & Nonpa	arallel shafts) Non coplanar & I) All the 3 above	-	l shafts

INDIAN SPACE RESEARCH ORGANISATION

Page: 6 OF 11 SET - A

MECHANICAL ENGINEERING - I

39. In a hardness test, L is load in kg, D is diameter of ball in mm and d is diameter of indentation in mm. Brinell Hardness Number is expressed by the equation

a)
$$BIIN = \frac{L}{\pi D(D - \sqrt{D^2 - d^2})}$$

b) $BIIN = \frac{2L}{\pi D(D - \sqrt{D^2 - d^2})}$
c) $BIIN = \frac{L}{\pi d(D - \sqrt{D^2 - d^2})}$
d) $BHN = \frac{2L}{\pi d(D - \sqrt{D^2 - d^2})}$

40. Circumferential and longitudinal strains in the cylindrical boiler under internal steam pressure are ε_1 and ε_2 respectively. Change in the volume of the boiler cylinder per unit volume will be

a)
$$\varepsilon_1^2 \varepsilon_2$$
 b) $\varepsilon_1 \varepsilon_2^2$ **c**) $2\varepsilon_1 + \varepsilon_2$ **d**) $\varepsilon_1 + 2\varepsilon_2$

41. An overhung beam ABC of length 4m is supported at A and B 3m apart. It is loaded with UDL of 5 kN/m along its entire length. Find the value of load 'P' at C such that the reactions at A and B are equal and opposite.

a) P=10 kN **b**) P=30 kN **c**) P=20 kN

42. If two gears have moment of inertias as I_1 and I_2 respectively and mesh with a speed ratio $\omega_2 / \omega_1 = n$, then equivalent moment of inertia of both gears referred to first one is

a) $n^2 I_1 + I_2$ **b)** $I_1 + nI_2$

- **c)** $nI_1 + I_2$
- **d**) $I_1 + n^2 I_2$

d) P=25 kN

 43. A uniform circular ring of mass M and radius r is rotating with an angular speed *ω* about an axis passing through its center and perpendicular to the plane of the ring. Two identical beads, each of mass m, somehow get attached at two diametrically opposite points. The rotational speed of the ring will become

a)
$$\frac{\omega M}{M+2m}$$
 b) $\frac{\omega M}{M+m}$ c) $\frac{2\omega M}{M+2m}$ d) ω

- 44. An electric lift is moving downward with an acceleration of g/3. the vertical force between a passenger in the lift and its floor is equal to
 - a) 3/4 of the passenger's weight
- b) 2/3 of the passenger's weightd) 4/3 of the passenger's weight

c) Passenger's weight

Mechanical - I

6

SET-A

	1	hipias		Page:			
इसरो	isro	INDIAN	UN	7 of 11			
20	09		MECHANICA	L ENGINI	CERING - I		SET - A
	•		moving with a final velocity o	•	f 1 m/s is acted u y is	pon by a fo	orce of 50 N
:	a) 22m/sec	b) 1	m/sec	c) √	21 m/sec	d) 11m/s	sec
16.	Proof resilie	nce may	be defined as				
	a) Work don	e in strain	ing the materia	1	 b) Max. strain e in a material 		
			that can be sto tic condition	red in a	d) Max. load wl member	hich can be	applied to a
	A plane inte index of this		e co-ordinate a	$\mathbf{xes} \ \mathbf{at} \ x =$	2/3, y = 1/3, z = 1/3	2. What is	s the Miller
	a) (932)	b) (432	2)	c) (36-	4)	d) (423)	
	Relationshij ratio μ is) betweer	n modulus of e	lasticity E	modulus of rigi	dity G and	Poisson's
	a) G=E/2(1+	μ) b) G	=E (2-μ)	c) E=	G (1+µ)	d) G=E/	l+μ
		0	ea A and You red in the bar	•	lus E is subjecte	d to a pulli	ng force P.
	a) $\frac{PL^2}{AE}$		b) $\frac{PL^2}{2EI}$) $\frac{P^2L}{2AE}$	$\mathbf{d}\mathbf{)} \; \frac{P^2 L}{AE}$	
	What is the and other en	-	n for crippling	g load for	a column of leng	th L, with o	one end fixed
:	a) $P=\pi^2 E I$	$T/4L^2$	b) $P = \pi^2 EI/2$	L^2	$P = 2\pi^2 EI/L$	d) 4π	$^{2} EI/L^{2}$
51.	A Mohr's ci	rcle redu	ces to a point v	when the I	ody is subjected	to	
	a) Pure she	ar					
	b) Uniaxia		•	, ,	11		
	c) Equal & free of s		axial stresses o	n two mut	ually perpendicula	ar planes, th	e planes being
			es are on two m	utually pe	pendicular planes	s, the planes	being free of
52.	Power screw	vs are use	d to convert				
	a) Linear mo rotary mot		b) None of	these	c) Both a & b		y motion into atory motion

7

SET-A

	4	INDIAN SPACE RES	Page:	
इसर	isro	INDIAN OPACE INES		8 of 11
20	009	MECHANICAL	, ENGINEERING - I	SET - A
53.	Following g	gases are used in tungsten	inert gas welding	
	a) CO_2 and	_)) Helium and neon
54.	The force r ultimate sh	equired to punch a 25 mm ear stress of the plate is 50	hole in a mild steel plate 10 00 N/mm ² will be nearly	mm thick, when
	a) 78kN	b) 393kN	c) 98kN	d) 158kN
55.	having a be	ore of 5 mm. The rod is su mum shear stress in solid	eel rod is solid while the rem ubjected to equal and opposit portion is τ , the maximum s c) $\frac{4}{3}\tau$	e torque at its ends.
56.	joined by a	plates of thickness $t' \& w$ a fillet weld of 45^{0} as shown to a pulling force 'F' the st fill be b) $\frac{F}{wtSin45}$	n in fig. When	$\frac{t}{t} \xrightarrow{45^{\circ}} F$ $\frac{d}{t} \frac{2F}{wt}$
	WI	nt/1110	wt	wt
57.	Ring rollin		be diameter b) To increase	the thickness of a rin
		ease the thickness and increa lucing a seamless tube		ng large cylinder
58.	applied th	e extension measured over	on. It is observed that when a r a gauge length of 200mm is n. Find the Poisson's ratio	a load of 38KN is 0.12mm and
	a) 0.2	b) 0.3	c) 0.25	d) 0.33
59.	A perfect	frame has N joints. The	number of members should n	ot be less than
	a) 2N-1	b) 2N-2	c) 2N-3	d) 2N-5
60.	depth of t	ver beam of rectangular cr he beam is doubled and lo I to original will be	oss section is subjected to loa ad is halved , deflection of th	d at free end. If the e free end as
	-	b) 1/8	c) 2	d) 1/16
1 I	a) 1/2	4		
	a) 1/2	•		

	-A		· · · · · · · · · · · · · · · · · · ·	Page:			
इस	रो <mark>वनवां शि</mark>	AN SPACE RESEA	RCH ORGANISATION	9 of 11			
2	009	MECHANICAL EN	GINEERING - I	SET - A			
61.	The kinematic plan the given figure is a						
t, e							
	a) Structurec) Mechanism with 1		b) Mechanism with 2 degd) Mechanism with more freedom				
62.	The machining pro is called	cess in which the wor	k piece is dissolved into 2	an electrolyte solution			
	a) Electro-chemicalc) Electro-discharge	•	b) Ultrasonic machinid) Laser machining	ng			
63.	In the metal formin	g process, the stresses	s encountered are				
	b) Less than yield	rield strength but less the d strength of the materi he ultimate strength of	ial				
	,			· · · · · · · · · · · · · · · · · · ·			
64.	÷ -		36 M 7 V 24. The numbe				
	a) Structure	b) Grade	c) Grit size	d) Bond			
65.	In a fluid machinery, the relationship between saturation temperature and pressure decides the process of						
	a) Flow separation	b) Cavitation	c) Turbulent mixing	d) Water hammer			
66.	Anodising is						
	c) A process used fo	ing of zinc by hot dippi r making thin phosphat o act as a base or prime aints	te d) An oxidizing proc	ess used for aluminium			
67.	The process layout	is best suited where	· · · · · · · · · · · · · · · · · · ·				
• • •	a) Automation is em	ployed	b) Mass production i	s envisaged			
• / •		non-standardized units		nged according to			

		INDIA	N SPACE	E RESEA	RCH O R	GANISATI	ON	Page: 10 OF 11
	1		MEGH	NICAL EN		G I		SET - A
2	009		MECHA	INICAL EN	GINEERIN	G -1		<u>901 - 11</u>
8.	The blan	k size of the	gear of 3	mm modu	le and 40 r	number of t	teeth is	
	a) 120 mi		b) 123 m		c) 126			9 mm
9 .	A bag co probabil	ntains 7 whi ity that both	ite, 6 red a	nd 9 black will be bla	c balls. Tw ick is	o balls are	drawn at	random. The
	⁻ . 1				c) $\frac{5}{77}$		d) $\frac{9}{7}$	
	a) <u>-</u> 		b) $\frac{12}{77}$		C) 77	x	-, 7	7
70.	correct a	st – I (Machi nswer using	g the codes	ess) with li given bel	ow the lists	5		
		<u>I (Machining</u>				ist – II (Ass Kerosen		edium)
	A) UII B) ED	rasonic ma(M	chining		2)			
	C) EC				3)		·	
	D) EB				4]) Salt solu	tion	
	I	A B	C	D	· · ·			
	a) 2		4	3				
	~)	2 3	4 2	1	2			
	.,	1 1 1 3	2	1				
71.	The rak What is	the velocity	of chip al	ong the to	ol face?			ity 35 m/min.
	a) 25.3 r	n/min	b) 27.3	m/min	c) 28.	5 m/min	d) 2	3.5 m/min
72.	The val	ue of the det	erminant	given belo	w is			
	11 1	1 1				•		
	1 1 + a	1 1						
	1 1	1 1 1 1 1 1 1 1 1 1						
	1 1	1 1+	c					
	a) -abc		b) abc		c) 1		d) 0)
73.	The loc	us of the po	int Z satis	fying the c		211 3	is	
	a) $x^2 -$	$y^2 - 2\sqrt{3}y =$	= 0			$+y^{2}=1$		
	c) $x^2 -$	$y^2 - 2\sqrt{3}y -$	1 = 0		d) x ²	$x^2 + y^2 - 2\sqrt{3}$	$\overline{8}y - 1 = 0$	

	INDIAN SPACE RI	ESEARCH ORGANIS		Page:						
इसरो डिल्व				11 of 11						
2009	MECHANIC	AL ENGINEERING - I		SET - A						
-	In a simple micrometer with screw pitch 0.5 mm and divisions on thimble 50, the reading corresponding to 5 divisions on barrel and 12 divisions on thimble is									
a) 2.620 n	b) 2.512 mm	c) 5.120 mm	d) 5.	012 mm						
-	ired to cut screw threads o If the spindle speed is 60 r	-		-						
a) 10 rpm	b) 20 rpm	c) 120 rpm	d) 18	0 rpm						
$6. If \ u = \log u$	$(\tan x + \tan y)$, then $\sin 2x$	$\frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y}$ is								
a) l	b) -2	c) 2	d) -1							
	e of λ for which the equat 2 = 0 are consistent is	ions $2\lambda x - 3y + \lambda - 3 = 0$	3x - 2y + 1 =	0 and						
a) 3 or 6	b) 1 or 3	c) 2 or 6	d) 2	or 3						
8. If $\vec{a} + \vec{b} + \vec{b}$	$\vec{c} = \vec{0}$ and $ \vec{a} = 3$, $ \vec{b} = 5$, $ \vec{c} $	=7, then the angle betw	een \vec{a} and \vec{b}	is						
a) 45 ⁰	b) 30 ⁰	c) 90 ⁰	d) 60	0						
9. The imag	e of the point P(1,3,4) in	the plane $2x - y + z = -3$	is							
a) (-3, 5,	-2) b) (-3,-5,2)	c) (3, -5, -2)	d) (-:	3, 5, 2)						
0. Find a pa	rticular integral of the di	fferential equation								
	$(+3)y = \sin 3x \cos 2x$	······	• •							
a) $\frac{1}{20}$	$10\cos 5x - 11\sin 5x + \frac{1}{884}$	$\sin x - 2\cos x$)								
b) $\frac{1}{884}$	$(10\cos 5x - 11\sin 5x) + \frac{1}{20}($	$\sin x + 2\cos x)$								
20	$10\cos 5x - 11\sin 5x) + \frac{1}{884}($									
d) $\frac{1}{884}$	$(10\cos 5x + 11\sin 5x) + \frac{1}{20}($	$(\sin x + 2\cos x)$								

11