JAN 2006 GEOPHYSICS TEST PAPER

IMPORTANT NOTE FOR CANDIDATES

Select any Two Sections. Attempt ALL objective and subjective questions of the same Two Sections. Questions 1- 45 (objective questions) carry three marks each and questions 46 -66 (subjective questions) carry fifteen marks each.

Write the answers to the objective questions in the Answer Table for Objective Questions provided on page 17 only)

GEOLOGY SECTION

- 1. Plutonic equivalent of Trachyte is
 - diorite (A)
 - **(B)** gabbro
 - (C) granite
 - (D) syenite
- 2. The river meanders at the mature stage with gentle gradient. The formation of pointbar will be on:
 - (A) outer zone of the bend
 - inner zone of the bend **(B)**
 - straight channel segment (C)
 - steep bank of the channel. (D)
- 3. Match the features in **Group 1** with the agents responsible for these features from Group 2

	Group 1	Group 2		
P.	Arete	1.	River	
Q.	Backswamp	2.	Ground Water	
R.	Yardangs	3.	Glacier	
S.	Stalactites and stalagmites	4.	Wind	
Choo	ose the correct answer from the follow	ving:		

- (A) P-4, Q-3, R-1, S-2
- P-2, Q-1, R-3, S-4 **(B)**
- P-3, Q-1, R-4, S-2 (C)
- P-1, Q-2, R-4, S-3 (D)
- 4. The area bounded by two fault planes dipping away from each other with hanging walls going downward is called as:
 - (A) dome
 - **(B)** grabben
 - horst (C)
 - (D) klippe

5. Match the characteristics in **Group 1** with the structures in **Group 2**

Group 1

Group 2

- P. axial plane is horizontal 1. Isoclinal fold
- Q. hinges are sharp and angular 2.
- R. limbs are parallel

S. thickness of bed remains constant 4.

Choose the correct answer from the following:

- (A) P-2, Q-4, R-2, S-1
- (B) P-1, Q-3, R-2, S-4
- (C) P-4, Q-2, R-1, S-3
- (D) P-3, Q-4, R-1, S-2

6. Which of the following rock indicates initiation of metamorphism

- (A) phyllite
- (B) schist
- (C) shale
- (D) slate
- 7. Barrovian metamorphism of pelitic rocks is characterized by the first appearance of index minerals in a particular sequence. Which one of the following is the correct sequence.
 - (A) chlorite-garnet-biotite-kyanite-staurolite-sillimanite
 - (B) garnet-biotite-chlorite-staurolite-sillimanite-kyanite
 - (C) chlorite-biotite-garnet-staurolite-kyanite-sillimanite
 - (D) biotite-chlorite-garnet-kyanite-staurolite-sillimanite
- 8. A crystal has three crystallographic axes of 2 fold symmetry and mirror plane perpendicular to each of these crystallographic axes. The Herman-Manguin notation for crystal would be
 - (A) 2/m 2/m 2/m
 - (B) 2m
 - (C) 2mm
 - (D) 23
- 9. Indicate the correct order in terma of increasing Si : O ratio.
 - (A) phlogopite-beryl-plagioclase-epidote
 - (B) epidote-beryl-phlogopite-plagioclase
 - (C) beryl-phlogopite-plagioclase-epidote
 - (D) plagioclase-phlogopite-epidote-beryl
- 10. Sandstones and purple shales of Muree Series of Potwar region, equivalent to Dagshai and Kasauli beds of northwest Himalaya belongs to
 - (A) Upper Eocene
 - (B) Lower Eocene
 - (C) Middle Miocene
 - (D) Lower Miocene

3

Parallel fold

3.

- Recumbant fold
 - Cheveron fold

- 11. A radiogenic isotope has half-life of 1 hour and we have 10000 atoms of that particular isotope in a particular system at a particular time. How much atoms of that isotope will be there after 6 hours?
 - (A) 78
 - (B) 156
 - (C) 313
 - (D) 625
- 12. Find the odd man out from the following
 - (A) stockwork
 - (B) ladder vein
 - (C) saddle reef
 - (D) banding
- 13. Sulfide chimneys are observed at
 - (A) vents of seafloor hotsprings around ridges
 - (B) inland hotspring vents in volcanic terrains
 - (C) sulfide mineral coatings on the chimneys of smelters
 - (D) mouths of explosive volcanoes
- 14. Within the mantle sudden density change produce seismic-wave discontinuities due to polymorphic transition or compositional change or a combination of both occur at a depth of
 - (A) 470 kms
 - (B) 570 kms
 - (C) 670 kms
 - (D) 760 kms
- 15. The estimated thickness of the moon's lithosphere is about
 - (A) 35 km
 - (B) 65 km
 - (C) 100 km
 - (D) 1000 km

PHYSICS SECTION

- 16. In case of an inelastic collision which one of the following is true
 - (A) Total energy is not conserved
 - (B) Momentum is not conserved
 - (C) Kinetic energy is conserved
 - (D) Kinetic energy is not conserved
- 17. The root mean square speed of an ideal gas, made up of molecules of molecular weight 0.0831 kg/mol, at temperature 300°K is (Take universal gas constant R = 8.31 J/mol K)
 - (A) 100 m/s
 - (B) 200 m/s
 - (C) 300 m/s
 - (D) 400 m/s

18. The temperature differences between hot (T_H) and cold (T_C) reservoirs of two Carnot engines A and B are the same. If the ratio of the respective efficiencies, $\frac{\eta^A}{\eta^B}$, is equal

to
$$\frac{1}{2}$$
 then the ratio of the hot reservoir temperatures $\frac{T_H^A}{T_H^B}$ is

(A) $0 \cdot 25$

- $(B) \qquad 0 \cdot 5$
- (C) $1 \cdot 0$
- (D) $2 \cdot 0$
- 19. Which one of the following phenomenon cannot be described by the particle nature of electromagnetic radiations.
 - (A) Blackbody radiations
 - (B) Compton scattering
 - (C) Photoelectric effect
 - (D) X-ray diffraction
- 20. If a semiconductor is doped with donor atoms then the impurity levels created in the semiconductor are close to the
 - (A) bottom of the conduction band
 - (B) top of the valence band
 - (C) bottom of the valence band
 - (D) top of the conduction band
- 21. Binding energy per nucleon for the nuclei 4 He, 56 Fe, 197 Au and 235 U are given by B₁, B₂, B₃ and B₄, respectively. These binding energies satisfy the order
 - $(A) \qquad B_1 \!\! < B_2 \! < \! B_3 \! < \! B_4$
 - $(B) \qquad B_1\!\!> B_2\!>\!B_3\!>\!B_4$
 - $(C) \qquad B_2 \,{<}\, B_3 \,{<}\, B_4 {<}\, B_1$
 - $(D) \qquad B_2 \! > \! B_3 \! > \! B_4 \! \! > B_1$
- 22. When a thin transparent sheet is introduced along the path of one of the slits in Young's double slit experiment, then the fringe width
 - (A) decreases
 - (B) increases
 - (C) does not change
 - (D) does not change but intensity becomes half

23. An infinite wire, lying along the z-axis, carries a current I in the positive z direction denoted by \hat{k} . The magnetic field at a point $d\hat{i}$ is

(A)
$$\frac{\mu_0 I}{2\pi d} \hat{j}$$

(B)
$$\frac{\mu_0 I}{2\pi d} \hat{i}$$

(C)
$$-\frac{\mu_0 I}{2\pi d} \hat{j}$$

(D)
$$-\frac{\mu_0 I}{2\pi d} \hat{i}$$

- 24. The radius of curvature of curved surface of a plano-convex thin lens of glass (refractive index n = 1.5) of focal length 0.4 m is
 - (A) 0.1 m
 - (B) $0 \cdot 2 \, m$
 - (C) 0.4 m
 - (D) 0.8 m
- 25. The engine of a train, emitting the sound of frequency v_0 approaches an observer with constant speed. If the observer measures the frequencies as v_1 when it is approaching and v_2 while it is going away, the relation between the frequencies is given by
 - (A) $v_1 = v_2 = v_0$
 - (B) $v_1 > v_0 > v_2$
 - (C) $v_1 < v_0 < v_2$
 - $(D) \qquad v_1 = v_2 \neq v_0$
- 26. In a dielectric sphere the polarization \vec{P} is given by $\vec{P} = kr^3 \hat{r}$. The corresponding bound volume charge density is equal to
 - (A) -20k
 - (B) -10k
 - (C) 10*k*
 - (D) 20k
- 27. An ideal fluid is flowing through a tube of cylindrical cross section with smoothly varying radius. The velocity of fluid particles at the point where tube's cross sectional area is 1×10^{-4} m² is given by 0.01 m/s. The velocity at a point where cross sectional area is 2×10^{-4} m² is given by
 - (A) 0.0025 m/s
 - (B) 0.005 m/s
 - (C) 0.02 m/s
 - (D) $0 \cdot 04 \text{ m/s}$

- 28. The solution of Maxwell's equation for electric field in free space is given by $E = E_0 \sin \omega (t - x/c)$, where E_0 is a constant, ω is the angular frequency and c is the speed of light. The corresponding solution for the magnetic field B is
 - (A) $B = c E_0 \sin \omega (t - x/c)$

(B)
$$B = \frac{E_0}{c} \sin \omega (t - x/c)$$

(C)
$$B = \frac{E_0}{c^2} \sin \omega (t - x/c)$$

(D)
$$B = \frac{E_0}{c^3} \sin \omega (t - x/c)$$

- The frequency of electron in n=1 Bohr orbit is given by f_1 revolutions/s. The 29. frequency of electron in the *n*-th orbit for n > 1 is
 - f_1/n (A)
 - f_1 / n^2 (B)
 - f_1 / n^3 (C)
 - (D) $n f_1$
- 30. A signal of 1 mV is input to an amplifier circuit consisting of a transistor in commonemitter mode. What is the voltage gain if the collector current changes by 1 mA and the load resistance is equal to $1 \text{ k}\Omega$?
 - (A) 10
 - 10^{2} (B)
 - 10^{3} (C)
 - 10^{4} (D)

MATHEMATICS SECTION

Let $\sum_{n\geq 1} a_n$, $a_n > 0$ be a convergent series. Now, consider the following statements: 31.

The series $\sum_{n>1} \sqrt{a_n}$ is always convergent. **P**: The series $\sum_{n \ge 1} \left(\frac{a_1 + a_2 + \dots + a_n}{n} \right)$ is always divergent. **Q**:

Then,

- (A) both **P** and **Q** are true
- **P** is true and **Q** is false (B)
- both **P** and **Q** are false (C)
- (D) **P** is false and **Q** is true

32. Let
$$f : [0,1] \rightarrow [0,1]$$
 be defined by

$$f(x) = \begin{cases} \frac{1}{2} + \left(x - \frac{1}{2}\right)^2, & \text{if } x \text{ is rational} \\ \frac{1}{2}, & \text{if } x \text{ is irrational.} \end{cases}$$
Then

Then,

- (A) f is continuous and differentiable only at $x = \frac{1}{2}$
- (B) f is continuous only at $x = \frac{1}{2}$ but not differentiable at $x = \frac{1}{2}$
- (C) f is neither continuous nor differentiable at $x=\frac{1}{2}$
- (D) f is continuous and differentiable for every x = [0,1]

33. The value of the integral
$$\oint_C \frac{dz}{(z-i)^2 (z+i)}$$
, where $C = \{z : |z-i|=1\}$, is

- (A) 1 (B) π (C) $\frac{\pi}{2}i$
- (D) πi

34. The integral
$$\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) dz dy dx$$
 is equal to

(A)
$$\int_{0}^{1} \int_{0}^{x} \int_{z}^{x} f(x, y, z) \, dy \, dz \, dx$$

(B)
$$\int_{0}^{1} \int_{0}^{x} \int_{0}^{z} f(x, y, z) \, dy \, dz \, dx$$

(C)
$$\int_{0}^{1} \int_{x}^{1} \int_{z}^{x} f(x, y, z) \, dy \, dz \, dx$$

(D)
$$\int_{0}^{1} \int_{x}^{1} \int_{0}^{z} f(x, y, z) \, dy \, dz \, dx$$

- 35. Consider the initial value problem (IVP): x y' y = 0, y(0)=0. Now, consider the following statements:
 - **P**: Picard's theorem is applicable to the above IVP.
 - **Q**: The above IVP has exactly one solution.

Then,

- (A) both \mathbf{P} and \mathbf{Q} are true
- (B) **P** is false but **Q** is true
- (C) both \mathbf{P} and \mathbf{Q} are false
- (D) \mathbf{P} is true but \mathbf{Q} is false
- 36. Let Q be the set of rational numbers in \Re . Then
 - (A) Q is closed in \Re
 - (B) Q is open in \Re
 - (C) Q is both open and closed in \Re
 - (D) Q is neither open nor closed in \Re

37. The radius of convergence of the power series $\sum_{n\geq 0} \frac{(n!)^2}{(2n)!} x^{2n}$ is

(A)
$$\frac{1}{2}$$

(B) $\frac{1}{\sqrt{2}}$
(C) $\sqrt{2}$
(D) 2

- 38. Consider the differential equation y''+6y'+25y=0 with initial condition y(0)=0. Then, the general solution of the IVP is
 - (A) $e^{-3x}(A\cos 4x + B\sin 4x)$
 - (B) $B e^{-3x} \sin 4x$
 - (C) $A e^{-4x} \sin 3x$
 - (D) $e^{-4x}(A\cos 3x + B\sin 3x)$

39. Let $\vec{F}(x, y, z) = x^2 y \hat{i} + y \hat{j} + z^2 \hat{k}$. If $\vec{p} = curl \vec{F}$ and $q = div \vec{F}$, then (\vec{p}, q) is

(A)
$$(-x^2 \hat{k}, 1+2xy+2z)$$

- (B) $(2xy\hat{i}+\hat{j}+2z\hat{k}, 1+2xy+2z)$
- (C) $(-x^2 \hat{k}, x^2 y + y + z^2)$
- (D) $(2xy\hat{i}+\hat{j}+2z\hat{k}, x^2y+y+z^2)$

40. Let $V = \{ (x, y, z, w) : x + y + z - 3w = 0, x - y + z - w = 0, x - 7y + z + 5w = 0 \}$ be a vector subspace of \Re^4 . Then dim(V) is

)

- (A) 1
- (B) 2
- (C) 3

4

(D)

41. Let
$$T: \mathfrak{R}^3 \to \mathfrak{R}^3$$
 be a linear transformation defined by
 $T(x, y, z) = (x + y + z, y + z, z)$. Then $T^n(x, y, z)$, for $n \ge 1$, is

(A)
$$\left(x+n y+\frac{n^2+n}{2}z, y+n z, z\right)$$

(B) $\left(x+n y+(n^2-n+1)z, y+n z, z\right)$

(C)
$$\left(x+ny+\frac{n^2+5n-2}{4}z, y+nz, z\right)$$

(D) $\left(x+ny+\frac{3n^2-n+2}{4}z, y+nz, z\right)$

42. Suppose that the moment generating function of a random variable X is $\frac{1}{2}e^{-3t} + \frac{1}{4}e^{-2t} + \frac{1}{4}e^{2t}$. Then Var(X) is

(A)
$$\frac{3}{2}$$

(B) $\frac{17}{4}$
(C) $\frac{13}{2}$
(D) $\frac{35}{4}$

43. Perform Newton's method to the equation $x^3 - x - 2 = 0$ starting with $x_0 = 1$. In this operation, the value of x_2 (the second iterate) is

(A)
$$-\frac{3}{4}$$

(B) $\frac{1}{2}$
(C) $\frac{18}{11}$
(D) 2

44. The distribution function F of a random variable X is

$$F(x) = \begin{cases} 0, & \text{if } x < -1 \\ 1/8, & \text{if } -1 \le x < 0 \\ 1/4, & \text{if } 0 \le x < 1 \\ 1/2, & \text{if } 1 \le x < 2 \\ 1, & \text{if } x \ge 2. \end{cases}$$

If $\alpha = P\left(-\frac{1}{2} < X \le 1\right)$ and $\beta = P\left(0 \le X < 2\right)$, then (α, β) is (A) $\left(\frac{3}{8}, \frac{3}{8}\right)$ (B) $\left(\frac{1}{8}, \frac{3}{8}\right)$ (C) $\left(\frac{3}{8}, \frac{7}{8}\right)$

(C)
$$\left(\frac{3}{8}, \frac{7}{8}\right)$$

(D) $\left(\frac{1}{8}, \frac{1}{4}\right)$

45. Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a normal population $N(\mu, \sigma^2)$, where μ and σ^2 are unknowns. Suppose that $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, where \overline{X} is the sample mean. It is known that cS^2 follows a χ^2 -distribution with (n-1)degrees of freedom. Then c is equal to

(A)
$$\frac{n}{\sigma}$$

(B) $\frac{n}{\sigma^2}$
(C) $\frac{n-1}{\sigma}$
(D) $\frac{n-1}{\sigma^2}$

GEOLOGY SECTION

- 46. (a) What is the relationship between an earthquake focus and the corresponding epicenter? (6)
 - (b) What are the three kinds of Plate margins and associated magmatism? (9)
- 47. (a) What is dip slip fault? In an area a bed is dipping towards west at 42°. The area had been affected by fault dipping toward east at 45°. With the help of neat diagrams show the relative movements of the blocks resulting in repetition of bed and and omission of bed (9)

- (b) How you define monocline? A N-S trending bed is exposed on an easterly sloping ground with the bed-dipping west. Find the thickness of the bed, if the slope of the ground is 15° E; width of the bed measured perpendicular to strike is 100 m; dip of the bed is 30°W.
 - (6)
- 48. Why startovolcano like Mount Fuji in Japan has steep sides and shield volcano (a) like Mauna Loa in Hawaii have gentle surface slopes? (6)
 - How you define conformable and unconformable sequence? What geological (b) events are indicated by angular unconformity? (9)
- Where do back-arc basins form and what is the necessary conditions for the 49. (a) formation of back-arc basins? How is the nature of magmatism different from that of a forearc? (9)
 - Compare Airy's and Pratt's hypothesis on isostasy with the help of a neat diagram. (b) (6)
- 50. Distinguish between "perthitic" and "rapakivi" texture with the help of neat (a) sketch. (6)
 - Give the idealized Bouma sequence. Where do you find such a sequence of (b) deposition of sediments? (9)
- 51. Mention the broad tectonic regime and mode of occurrence of porphyry-copper (a) deposits. (6)
 - Mention 3 locality of each of occurrences of Iron, Manganese and Copper deposits (b) in India. (9)
- 52. (a) A grain of undeformed quartz is in contact with an untwined plagioclase, both showing first order gray interference color. How do you distinguish the two?
 - (b) What is an optical indicatrix? Draw a positive biaxial indicatrix indicating the optic axes, the optic axial angle and circular sections. (9)

PHYSICS SECTION

- An ideal diatomic gas at pressure p_i and volume V_i doubles its volume adiabatically. 53. Find
 - (6) (a) the final pressure and (9)
 - (b) the work done by the gas.
- A charge of magnitude 9.8×10^{-10} C and mass $2 \cdot 0 \times 10^{-6}$ kg is suspended through a silk 54. thread along the line passing through the center and parallel to the length of two parallel plates with a spacing of 0.1 m. The plates are connected to a voltage source of 2000 V. (Take $g = 9.8 \text{ ms}^{-2}$). Find
 - (a) the electric field experienced by the charge and (6)
 - the angle that the thread makes with the vertical when charge is in equilibrium. (b)

(9)

(6)

- 55. A cylinder of 1 kg mass and 0.02 m diameter left at the top of an inclined plane of height 1 m rolls down without slipping. (Take $g = 9.8 \text{ ms}^{-2}$)
 - (a) What is the kinetic energy of the cylinder when it reaches at the bottom of inclined plane? (6)
 - (b) Find the velocity of center of mass of cylinder on reaching the bottom of inclined plane. (9)

56. Two waves described by $y_1 = A\sin(\omega t + kx)$ and $y_2 = A\sin(\omega t - kx)$ are traveling along a string. Let A = 0.001 m, k = 3.142 m⁻¹ and $\omega = 157.1$ s⁻¹ (Take $\pi = 3.142$)

- (a) Find the magnitude and direction of velocity of these waves. (6)
- (b) What shall be the amplitude of resultant wave on the string at x=0.5 m.

(9)

(6)

- 57. Consider a monatomic FCC solid with lattice constant $\sqrt{3} \stackrel{0}{A}$.
 - (a) Find the interplanar spacing of a set of parallel (111) planes.
 - (b) For what incident angle $\hat{\theta}$ the first order Bragg peak would be observed if a monochromatic x-ray of wavelength 1 Å is incident on these planes? (9)
- 58. Consider an LR circuit with an inductor L, a resistor R, a battery of emf E and a switch S, all connected in series.
 - (a) Find an expression for current I in the circuit as a function of time after the switch S is closed. (9)
 - (b) What is value of *I* after a time that equals the time constant of this circuit?

(6)

- 59. Take radius of hydrogen atom *H* to be $5 \cdot 3 \times 10^{-11}$ m. (Take $\hbar = 1.054 \times 10^{-34}$ J s and $m_e = 9 \cdot 1 \times 10^{-31}$ kg) Assuming momentum of electron to be same as order of uncertainty in momentum,
 - (a) Find the order of kinetic energy that an electron in the hydrogen atom is expected to have based on the uncertainty principle. (9)
 - (b) If de Broglie wavelength of electron matches with the circumference of orbit, what is the velocity of electron? (6)

Mathematics Section

- 60. (a) Suppose that $f : [a, b] \to \Re$, a > 0 is continuous on the closed interval [a, b], that f is differentiable on the open interval (a, b), and that b f(a) = a f(b). Then prove that there exists $c \in (a, b)$ such that f(c) = c f'(c). (6)
 - (b) Let $f:[0, 2] \to \Re$ be defined by $f(x) = \frac{x}{2} + (x-1)^{\frac{2}{3}}$. Compute the absolute maximum and minimum value of f on [0, 2]. (9)

- 61. (a) Let $f:[0,1] \to \Re$ be continuous with $\int_{0}^{x} f(t) dt = \int_{x}^{1} f(t) dt$ for all $x \in [0,1]$. Does the above condition imply that $f(x) \equiv 0$ on [0,1]? Explain. (6)
 - (b) Let $f:[0,1] \to \Re$ be defined by $f(x)=x^3$. Find the area of the surface generated by revolving the curve y=f(x) about the x-axis. (9)

62. (a) Let
$$f(x)=1+3x^2+5x^4+7x^6+\cdots$$
, for $|x|<1$, be a power series. Determine $f\left(\frac{1}{2}\right)$. (6)

- (b) Let V be a vector subspace of \Re^4 spanned by the vectors (1,1,1,-1) and (1,-1,0,1). Let W be another vector subspace of \Re^4 spanned by the vectors (1,1,-1,1) and (1,3,4,-5). Determine a basis for $V \cap W$. (9)
- 63. (a) Consider the system of linear equations x + y + z = 3 x + 2y + 3z = a x + 3y + bz = 5.

Determine the values for a and b for which the above system has a unique solution, infinite number of solutions, and no solution. (9)

(b) Solve:
$$(4x^2y+5x^3y^2) dx + (2x^3+3x^4y) dy = 0.$$
 (6)

- 64. (a) Let *C* be the boundary of the triangle with vertices (0,1,0), (1,0,0) and (2,1,0). If $\vec{F}(x, y, z) = -y\hat{i} + y^2 z \hat{j} + z x \hat{k}$, then use Stoke's theorem to evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ when *C* is traversed counter-clockwise when viewed from above. (9)
 - (b) Let $u(x, y) = x^3 3x y^2 + x + 3$ be the real part of an analytic function f(x, y)on the entire complex plane. Determine the harmonic conjugate of u(x, y). (6)
- 65. (a) Let $X_1, X_2, X_3, \dots, X_{20}$ be a random sample of size 20 from a normal population $N(0, \sigma^2)$. Find the best critical region of size $\alpha = 0.05$ for testing $H_0: \sigma^2 = 1$ against $H_1: \sigma^2 = 2$. (9)

[Given: $\chi^2_{20}(0.95) = 31.4$, $\chi^2_{19}(0.95) = 30.1$, $\chi^2_{20}(0.05) = 10.9$, and $\chi^2_{19}(0.05) = 10.1$]

(b) Let $X_1, X_2, X_3, \dots, X_n$ be a random sample of size *n* from a normal population $N(\mu, 16)$. Compute the minimum integral value of *n* such that $P(\overline{X}-2 < \mu < \overline{X}+2) \ge 0.95$, where \overline{X} is the sample mean. (6)

[For $Z \sim N(0,1)$ and $\Phi(z) = P(-\infty < Z < z)$, $\Phi(1.645) = 0.95$ and $\Phi(1.96) = 0.975$]

66. (a)

(b)

Determine the value of c so that

$$f(x, y) = \begin{cases} c(x^2 - y^2), & for (x, y) \in D\\ 0, & otherwise, \end{cases}$$

where *D* is the triangle with vertices (0,0), (2,0) and (2,2), is the joint probability density function of the random variables *X* and *Y*. (6) The table below gives the values of f(x) for $1 \le x \le 9$.

f(x) = f(x) +							
x	1	3	5	7	9		
f(x)	1	0	1	0	1		

Compute the forward difference table and determine f(2) up to four decimal places. (9)