MODEL QUESTION PAPER

MATHEMATICS – Paper II B (Coordinate Geometry and Calculus)

Time : 3 Hours Max Marks : 75

Section – A

- I. Very Short Answer Questions 10x2=20 Marks Attempt all Questions. Each Question carries 2 marks.
- 1. If $x^2 + y^2 4x + 6y + c = 0$ represents a circle with radius '6', find the value of 'c'.
- 2. Find the equation of the directix of the parabola $2x^2 + 7y = 0$.
- 3. Find the length of the latus rectum of the ellipse $\xrightarrow{x^2 \quad y^2} = 1$ 16 8
- 4. Find the eccentricity of the hyperbola $x^2 4y^2 = 4$
- 5. Find the distance between the two points in a plane whose polar coordinates are $(2, \pi/6) (3, \pi/4)$

6. If
$$y = \frac{1}{2x+5}$$
, then find y_n .

7. Find
$$\int \sqrt{1 + \sin 2x} \, dx$$

8. Find
$$\int \frac{e^{\sin -1} x}{\sqrt{1-x^2}} dx$$

9. Obtain
$$\int_{1}^{4} x \sqrt{x^2 - 1} \, \mathrm{d}x$$

10. State the Simpson's rule for Numerical Integration of a function f(x) over the interval [a,b] by dividing [a,b] into *n* sub-intervals.

Section – B

II.Short Answer Questions $5 \ge 4 = 20$ Marks

Attempt any five questions. Each question carries 4 marks

- 11. If the line y = mx + c touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $c^2 = a^2 m^2 + b^2$; (a > b)
- 12. Find the equations of the tangents shown drawn from (-2,1) to the hyperbola $2x^2 3y^2 = 6$.
- 13. Transform the polar equation $r \cos^2 \theta = a$ (a>0), origin as pole and the 2

+ve axis as initial line, into Cartesian form.

14. If
$$y = \frac{\log x}{x}$$
 then show that

$$y_n = \frac{(-1)^n \angle n}{x^{n+1}} \left(\log x - 1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{n} \right)$$

15. Evaluate
$$\int \frac{x^6 - 1}{1 + x^2} dx$$

16. Solve
$$(x^2 + y^2) dx = 2 xy dy$$

17. Solve
$$\frac{dy}{dx} = \frac{2x+y+3}{2y+x+1}$$

Section – C

- II.Long Answer Questions $5 \ge 7 = 35$ MarksAttempt any five questions. Each question carries 7 marks
- 18. Find the equation of the pair of tangents drawn from (3,2) to the circle $x^2 + y^2 6x + 4y 2 = 0$
- 19. Find the equation of the circle passing through the points of intersection of the circles $x^2 + y^2 8x 6y + 21 = 0$, $x^2 + y^2 2x 15 = 0$ and the point (1,2).
- 20. Find the equation of the circle passing through the origin and coaxial with the circles $x^2 + y^2 6x + 4y 8 = 0$ and $x^2 + y^2 2x + y + 4 = 0$.
- 21. Find the pole of the line x + y + 2 = 0 with respect to the parabola $y^2 + 4x - 2y - 3 = 0$.

22.Evaluate
$$\int \frac{3 \sin x + \cos x + 7}{\sin x + \cos x + 1} dx$$

23. Evaluate
$$\int \frac{x^{1/4}}{x^{1/2}+1} dx$$

. .

24. Find the area enclosed by the curves y = 3x and $y = 6x - x^2$.

* * *

QUESTION PAPER PATTERN

Subject	:	Mathematics
Paper	:	Paper –II B
Class	:	II Year Intermediate
		(Coordinate Geometry, Calculus)
Time	:	3 Hours
Max. Marks	:	75

1. Weightage of Ojbectives :

Objectives	Knowledge	Understanding	Application	Total
Actual Marks	41	28	28	97

2. Weightage to form of Questions :

Form of questions	VSA	SA		LA	Т	otal
_	Sec A	Sec B	5	Sec C		
No. of questions	10 of 10	5 of 7		5 of 7	20	of 24
Marks allotted	<u>10 x 2=20</u>	<u>5 x 4=20</u>	4	5 x 7=35	75 /	97
	0 x 2=20	7 x 4 = 28	7	x 7=49		
3. Weightage to content units / sub-units :						Marks
Coordinate Geometry						
1. Circles						16
2. System of Circles						07
3. Parabola						09
4. Ellipse					06	
5. Hyperbola					06	
6. Polar Coordiantes					06	
<u>Calculus</u>						
7. Successive differentiation						06
8. Integration						15
9. Definite Integration						09
10. Numerical Integration						09
11. Differential equations						08
	_			Total		97

* * *