Previous 2006 to 2011 Question Papers.

MCA -I I Year

Design and Analysis of Algorithms

PROF. G. RAM REDDY CENTER FOR DISTANCE EDUCATION

OSMANIA UNIVERSITY: HYDERABAD - 500 007

EHTESHAM CYBER CAFÉ

Computer Hardware & Network Solutions

E-mail: mail2ehteshamcybercafe@gmail.com http://ehteshamcybercafe.webs.com

9-10-68/A/502/C, Kathora Houz, Resham Bagh, Golconda Fort, Hyderabad - 500 008. AP.

SAMAS INFOTECH

Computer Hardware & Network Solutions

E-mail: samasinfotech@yahoo.com http://samasinfotech.webs.com

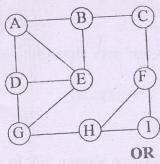
9-10-68/A/502/C, Kathora Houz, Resham Bagh, Golconda Fort, Hyderabad - 500 008. AP.

Ansar Ahmed

FACULTY OF INFORMATICS

MCA II-Year (CDE) (Main) Examination, August/September, 2008

DESIGN AND ANALYSIS OF ALGORITHMS


Time: Three Hours]

[Maximum Marks: 80

Answer ONE question from each unit. All questions carry equal marks.

UNIT-I

- (a) Give definitions of θ , Ω , O (Theta, Omega and Big Oho) notations. What is their 1. significance?
 - (b) Write about the Breadth First and Depth First traversal of a GRAPH for the following diag.

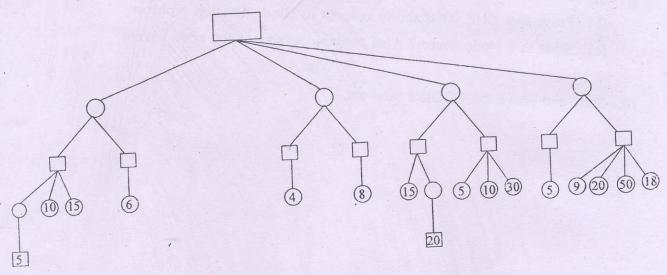
(a) Write the applications of STACKS.

Why to convert a given infix expression to REVERSE POLISH/POLISH notation?

Convert the following INFIX expression to REVERSE POLISH notation and evaluate it using STACKS: 8

$$(A + B) * D + E/(F + A * D) + C.$$

(Contd.)


2

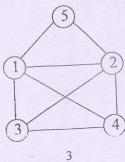
SPT-1835

1

		보기도 보고 있었다. 이 등 경기 시간에 되었어만 것 않는 성기를 위해야 하는데 사고 있는데 없어요? 그렇게 하는데				
	(b)	In a Binary tree prove that $n_0 = n_2 + 1$ where				
		n ₀ is the number of nodes with degree ZERO				
		n ₂ is the number of nodes with degree TWO.				
		UNIT—II				
3,	(a)	Write a control abstraction for 'GREEDY METHOD'.				
	(b)	Given the start and stop times of jobs as under, solve it using job sequencing with				
		DEADLINES algorithm:				
		$\{(1, 3), (1, 4), (2, 5), (3, 7), (4, 7), (6, 9), (7, 8)\}.$				
	(c)	Write an algorithm for PRIM's method of finding a MINIMUM SPANNING TREE.				
		Analyze its time complexity.				
		OR				
4.	(a)	Write an algorithm for SELECTION SORT. Analyze its BEST, AVERAGE and WORST				
		case time complexity.				
	(b)	Explain the single source shortest path algo with an example.				
	UNIT—III					
5.	Def	ine the 'Principle of Optimality'.				
		astruct the Optimal Binary Search Tree given $n = 4$; $(a_1, a_2, a_3, a_4) = (do, if, read, while)$;				
		(3, 3, 1, 1) and $Q(0 : 4) = (2, 3, 1, 1, 1)$.				
		alyze its time complexity.				
	OR					
6.	(a)	Write an Algorithm SWAPTREE(T) which takes a binary tree and swaps the left and				
	(2)	right children of every node; where T is the pointer to the root node of the tree. Explain				
		with an example.				
SPT	183	(Contd.)				

(b) Define α , β cut-offs in a Game tree. What is their significance? For the following hypothetical game tree:

- (i) Obtain the value at the root node using min-max technique.
- (ii) Clearly show the α-β cut-offs.


UNIT-IV

Draw the portion of the state space tree generated by LCKNAPP for the knapsack instances; given

iven
$$n = 5, (p_1, p_2,, p_5) = (10, 15, 6, 8, 4)$$

$$(w_1, w_2,, w_5) = (4, 6, 3, 4, 2) \text{ and } M = 12.$$
OR

Write an Algorithm to find all the Hamiltonian cycles in a given graph. What is its time complexity? Trace your algorithm for the following graph:

(Conid.)

10

	UNIT—V	
	(a) Define NP HARD and NP COMPLETE problems.	4
9.	(a) Define NP HARD and NI COMPEDITOR Problem	8
	(b) Prove that CNF satisfiability reduces to clique decision problem(c) What is a Node cover? Also explain the size of the node cover.	4
	OR	16
10.	State and prove the COOK's theorem.	10

SAMAS InfoTech Golconda Fort, Hyderabad-500 008. <u>eMail: samasinfotech@yahoo.com</u> http://samasinfotech.webs.com. And http://ehteshamcybercafe.webs.com

2500

Code No.: 3859/CDE

[Max. Marks: 80

FACULTY OF INFORMATICS

M.C.A. II Year CDE (Main) Examination, August/September 2007

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours Answer one question from each Unit. All questions carry equal marks. Unit-I 4 × 4 1. Explain the following: (b) Theta-notation (a) Stack (d) Hashing. (c) Heap Or 8 (a) Write algorithms for the following operations in Stack. (ii) Delete 8 (i) Add (b) Discuss about 'Heap Sort'. Give an example. Unit - II (a) Sort the following set of numbers using 'merge sort' technique. 8 351 652 179 285 310 450 520 (b) Explain how to find Kth smallest element using 'SELECT' algorithm. 254 8 (a) Write the Greedy algorithm for sequencing unit time jobs with deadlines and profits. 6 (b) Briefly explain about 'Single Source Shortest Paths'. Unit - III 10 5. (a) Discuss the features of 'Multistage Graphs'. 6 (b) Explain about 'Travelling Salesperson Problem'. 10 6. (a) Differentiate between BFS and DFS Spanning Trees. 6 (b) Briefly explain about 'Articulation Point', [P.T.O.

Unit - IV

7. (a) Explain about general backtracking method, using 4-queens problem. 10 (b) What is the purpose of 'Hamiltonian Cycle'? 6 (a) Explain how to solve the '15-puzzle problem' using branch-and-bound technique. 10 (b) Briefly describe about '0/1 knapsack problem'. 6 Unit - V 9. Explain the following: 6 + 10(a) Non-deterministic sorting (b) NP-complete problems Or 10. (a) Write and explain Clique Decision Problem. 10 (b) What is meant by 'Halting Problem'. 6

SAMAS InfoTech Golconda Fort, Hyderabad-500 008. <u>eMail: samasinfotech@yahoo.com</u> <u>http://samasinfotech.webs.com</u>. And <u>http://ehteshamcybercafe.webs.com</u>

FACULTY OF INFORMATICS

M.C.A. II Year Main Examination, August 2006

Subject: DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours.

Max. Marks: 80

Note: Answer one question from each Unit. All questions carry equal marks.

UNIT-1 4 x 4 1. Explain the following. by O-notation a) Algorithm dYFIND algorithm c) Full binary tree OR 8 2. a) Differentiate between 'stacks' and 'queues'. b) Discuss about 'linked representation for the binary trees'. 8 UNIT-2 3. a) Write the 'Merge Sort' algorithm. Give an eample. 8 8 b) Describe about 'Minimum Spanning Trees'. OR 10 4. a) Explain the logic involved in 'Quick Sort'. by Briefly explain about 'knapsack problem'. 6 UNIT-3 5. a) Discuss the features of 'Optimal Binary Search Trees'. 10 6 b) Explain about 'biconnected components'. 10 6. Write short notes on 'Reliability Design'. by Briefly explain about 'Depth First Search'. 6

UNIT-4

7. Describe about '8-queens problem' using using backtracking concept. What is the purpose of 'Graph Coloring'.	10
8. a) Describe in detail about 'LC-Search'. b) Briefly describe about '15-puzzle problem'.	6
UNIT – 5	6
9. Explain the following.a) Non-deterministic algorithm.b) NP-hard problems.	6+10
OR 10, 1) Write and explain Cook's theorem. b) What is meant by 'CFN-satisfiability'.	10

SAMAS InfoTech Golconda Fort, Hyderabad-500 008. <u>eMail: samasinfotech@yahoo.com</u> <u>http://samasinfotech.webs.com</u>. And <u>http://ehteshamcybercafe.webs.com</u>