Physics – First Year

<u>PAPER – II (MAY – 2011)</u>

Time : 3 Hours		Max.Marks : 60	
SECTION – A			
Note : i) Answer all the questions.		10×2=20	
	ii) Every correct answer carries 2 m	arks.	
	iii) All are Very short answer type q	lestions.	
1.	1. Write the dimensional formulae for (i) Energy, and (ii) Pressure.		
2.	. State any two characteristics of Centre of mass.		
3.	If the resultant of two unit vectors \widehat{A} and \widehat{B} is also a unit vector \widehat{C} , find the angle between \widehat{A} and \widehat{B} .		
4.	Why does a car with flattened tyres stop sooner than the one with inflated tyres?		
5.	A Platinum wire is stretched by 0.1%, find the strain in the wire.		
6.	One end of a glass capillary tube is dipped vertically in a liquid at an angle of contact less than 90°. What happens to the liquid level in the capillary tube? What is the shape of the liquid meniscus in the tube?		
7.	When a tap is opened, water comes out in a stream and one would observe that the cross – section of water decreases as water descends. Why?		
8.	A brass disc is snugly fitted in the hole of a Steel plate. By what method, the disc is removed from the plate – by heating or cooling? Why?		
9.	State Boyle's law and mention the conditions under which it is obeyed by real gases.		
10.	What is the specific heat of a gas in –		
	a) an isothermal process, and	b) an adiabatic process ?	
SECTION – B			
Note: i) Answer any six questions.		6×4=24	

ii) Every correct answer carries 4 marks.

iii) All are Short answer type questions.

- 11. Define Vector product and give an example. Write the properties of vector product.
- 12. Derive the equations for maximum height and range of a Projectile.
- 13. Show that two spheres of equal masses moving along a straight line exchange their velocities after a head on elastic collision.

- 14. Define Kinetic and rolling frictions. State the laws of rolling friction.
- 15. A uniform rod of length L is held vertical on a horizontal floor. Fixing its lower end, the rod is allowed to fall onto the ground. Find the angular velocity of the rod, when it reaches the floor.
- 16. What is orbital velocity? Obtain an expression for it.
- 17. What is Triple point? Explain triple point of water using phase diagram.
- 18. A body cools from 60°C to 40°C in 20 minutes. Find the temperature of the body after the next 40 minutes, if the temperature of the surroundings is 10°C.

SECTION - C

- **Note:** i) Answer any **two** of the following questions. 2×8=16
 - ii) Every correct answer carries 8 marks.
 - iii) All are Long answer type questions.
- 19. State the law of conservation of energy and prove it in the case of a freely falling body.

A stone of mass 10 kg is dropped from a height of 10 m from the ground. Find its P.E. after 1 sec. of its free fall. (take $g = 10 \text{ ms}^{-2}$)

20. Define Simple Harmonic Motion. Show that the motion of a simple pendulum is simple harmonic and hence derive an equation for its time period.

The length of a second pendulum at a place is 1.02 m. Find the time period of another simple pendulum of length 0.51 m at the same place.

21. Describe with necessary theory, an experiment to determine coefficient of apparent expansion of a liquid, using specific gravity bottle.

The coefficient of real expansion of mercury is 0.00018/°C. Find the coefficient of apparent expansion of mercury in a glass bottle.

(Take coefficient of linear expansion of glass = 9×10^{-6} /° C)