119. A constant voltage of 25 V is applied to a series L-R circuit at t = 0, by closing a switch. What is the potential difference across the resistor and the inductor at time t = 0?

D

 L-R ලිස් නවාගතාබරි t = 0 නසු බුදුම්හා කාශ්‍යිතාවක සිදුලා 25 V බුර බිද්දීස්බ

 කතානපුතා ගින්නාවක සිදුලාවක සිද

120. The sensitivity of a galvanometer is 60 divisions/Amp. When a shunt is used, its sensitivity becomes 10 divisions/Amp. If the galvanometer is of resistance 20 Ω , the value of shunt used is :

ఒక గాల్వచామీటర్ యొక్క నూక్ష్మ గ్రాహ్యత 60 విభాగాలు/అంపియర్, ఒక వంట్ నిరోధంను వాడినవుడు, దావి నూక్ష్మగ్రాహ్యత 10 విభాగాలు/అంపియర్ అవుతుంది. గాల్వనామీటరు నిరోధం 20 Ω లు అయితే, ఉపయోగించిన వంట్ నిరోధం బిలువ :

(1) 4 Ω
(2) 5 Ω
(3) 20 Ω
(4) 2 Ω

-			1
		D	E 2011 D
		PHYSICS	
ι.	Two photons of energy 2.5 eV and	d 3.5 eV fall on a metal s	urface of work function
	1.5 eV. The ratio of the maximu		
	the metal surface is :		
	2.5 eV మరియు 3.5 eV శక్తిగల రెంగ	డు ఫోటాన్న 1.5 eV వని (క	వేయంగల లో హాఠలం పై
	వతనం చెందినవి. లో హాతలంపై ను		
	(1) 1:4	(2) 2 : 1	
	(3) 1:2	(4) 1: √2	
	a characteristic X-ray spectrum		
	a characteristic X-ray spectrum $z = 31, a = 5 \times 10^7 \text{ Hz}^{1/2} \mod 3$	al fa damaa	
	a characteristic X-ray spectrum	al fa damaa	వటంలోని k _a రేఖ యొక్క

Rough Work

			D	De la v	E 201
84.	In	a p-n junction di	ode the thickness o	f depletion lay	ver is 2×10^{-6} m and ba
	pot	tential is 0.3 V.	The intensity of t	he electric fie	ald at the junction is :
	(1)	0.6×10^{-6} V	m^{-1} from <i>n</i> to P	side	in the Junction Is .
	(2)	0.6×10^{-6} V	m^{-1} from P to n	side	
	(3)	$1.5 \times 10^5 V_{\rm f}$	n^{-1} from <i>n</i> to P s	ide	
	(4)	1.5×10^5 Vr	n^{-1} from P to n s	de	
	65,	p-n నంధి దయోడ్	లేమి పొర మందం 2 x	10 ⁻⁶ m మరియ	ు అవరోథ పొెంచియల్ 0.3
	4.5	్నది. అయిన నంది	వద్ద విద్యుత్ క్రేత్ర తీడ్ర	ið :	
	(1)	0.6×10^{-6} V	m ⁻¹ n నుండి P పైవ	50	
	(2)	$0.6 \times 10^{-6} V_1$	m^{-1} P నుండి n వెష	රා	
	(3)		1-1 n 200 P 2 201		
	(4)		⁻¹ P నుండి n వైపుక		
85.	$\frac{1}{2}$	nagnetic field in 1 ₀ H ² ಮುಕ್ಕ, ಮಿತಿ	tensity) is :	$(\mu_0 - \text{Perm})$	eability of free space . බ්දෙම්පම H-පෙරාබලංවෙ
85.	$\frac{1}{2}$	agnetic field in	tensity) is : సూక్రతము (µ ₀ – స్మే	(µ ₀ – Perm පො (නස් ෙය	
1	1-n 1 p 2 (3) (1) (3)	iagnetic field int 1 ₀ H ² యొక్క మిత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻²	tensity) is : సూక్రతము (µ ₀ – స్మె (2) (4)	' (µ ₀ – Perm లాపై (వదిశ (వ ML ² T ⁻² ML ² T ⁻¹	వేశ్యాళీలత H-అయస్కాంత
2	H-n 1 μ δ(S) (1) (3)	iagnetic field int 1 ₀ H ² యొక్క మిత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in t	tensity) is : సూత్రాము (µ ₀ – స్మె (2) (4) he xy plane has an	(µ ₀ - Perm సాఫై (వదిశ (వ ML ² T ⁻² ML ² T ⁻¹ x component	వేశ్యకీలత H-అయస్కాంత of 4 m and a y compon
1	H-m 1 2 P 8 (3) (1) (3) A ce of 1(rtain vector in t 0 m. It is then r	tensity) is : సూత్రవమ (µ ₀ – స్మె (2) (4) he xy plane has an otated in the xy p	' (µ ₀ - Perm సాఫై (వదేశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i	వేశ్యాళీలత H-అయస్కాంత
85.	H-m 1 2 P 8 (5) (1) (3) A ce of 10 Ther	rtain vector in t 0 m. It is then r n its new y com	tensity) is : సూత్రవమ (µ ₀ – స్మె (2) (4) he xy plane has an otated in the xy p ponent is (approxi	' (µ ₀ – Perm సాఫై (వదేశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i mately) :	వేశ్యకీలత H-అయస్కాంత of 4 m and a y compon
86.	$\frac{1}{2}$ μ δ (5) (1) (3) A ce of 10 Ther (1)	rtain vector in t 0 m. It is then r n its new y com	tensity) is : సూత్రవమ (µ ₀ – స్మె (2) (4) he xy plane has an otated in the xy p ponent is (approxi	' (µ ₀ - Perm సాఫై (వదేశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i	వేశ్యకీలత H-అయస్కాంత of 4 m and a y compon
86.	H-m 1 2 P 8 (5) (1) (3) A ce of 1(Ther (1) (3)	nagnetic field int n ₀ H ² ແນວະ ເມລ ອ້) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t 0 m. It is then r n its new y com 20 m 5.0 m	tensity) is : సూత్రవమ (µ ₀ – స్మె (2) (4) he xy plane has an otated in the xy p ponent is (approxi (2) (4)	' (µ ₀ - Perm సాఫై (వదిశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i mately) : 7.2 m 4.5 m	వేశ్యాళీలత H-అయస్రాంత of 4 m and a y compon ts x-component is doubl
86.	H-m 1 2 P 2 (3) (1) (3) A ce of 1(Ther (1) (3) XY 5	agnetic field int HoH ² ແນວະ ເມຣິ ອັ) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in t 0 m. It is then r n its new y com 20 m 5.0 m ອລມເຮົ [*] ລ ແລ້ ເລີ	tensity) is : సూత్రవమ (µ ₀ - స్మె (2) (4) he xy plane has an otated in the xy p ponent is (approxi (2) (4) 25 యొక్క x అంశమ	(µ ₀ - Perm (౫ాౖ (వదేశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i mately) : 7.2 m 4.5 m 4.5 m	వేశ్యశీలత H-అయస్కాంత of 4 m and a y compon ts x-component is doubl ము 10 మీ. దీనిని x అంశ
86.	H-m 1 2 P 2 (5) (1) (3) A ce of 1(Ther (1) (3) xy 5 5 2 0	lagnetic field int H ₀ H ² యొక్క మిత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in t 0 m. It is then r n its new y com 20 m 5.0 m లములోని ఒక న గమ అయ్యాటక్కు	tensity) is : సూత్రవమ (µ ₀ - స్మె (2) (4) he xy plane has an otated in the xy p ponent is (approxi (2) (4) 25 యొక్క x అంశమ	(µ ₀ - Perm (౫ాౖ (వదేశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i mately) : 7.2 m 4.5 m 4.5 m	వేశ్యశీలత H-అయస్కాంత of 4 m and a y compon ts x-component is doubl ము 10 మీ. దీనిని x అంశ
86.	H-m 1 2 P 2 (a) (1) (3) A ce of 1(Ther (1) (3) XV 5 7 cf of (a) (a)	lagnetic field int H ₀ H ² యొక్క మిత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in t 0 m. It is then r n its new y com 20 m 5.0 m లదులో ని ఒక ను ంపు అయ్యాటక్కు ంపు అయ్యేటక్కు	tensity) is : సూత్రవమ (µ ₀ - స్మె (2) (4) he xy plane has an otated in the xy p ponent is (approxi (2) (4) 25 యొక్క x అంశమ	(µ ₀ - Perm (౫ాౖ (వదేశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i mately) : 7.2 m 4.5 m 4.5 m	వేశ్యాళీలత H-అయస్రాంత of 4 m and a y compon ts x-component is doubl
86.	H-m 1 2 P 2 (a) (1) (3) A ce of 1(Ther (1) (3) XV 5 7 cf of (a) (a)	lagnetic field int H ₀ H ² యొక్క మిత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in t 0 m. It is then r n its new y com 20 m 5.0 m లములోని ఒక న గమ అయ్యాటక్కు	tensity) is : సూత్రము (µ ₀ – స్మె (2) (4) he xy plane has an otated in the xy p ponent is (approxi (2) (4) 28 యొక్క x అంశమ xy తలచుంలో (1	(µ ₀ - Perm (౫ాౖ (వదేశ (వ ML ² T ⁻² ML ² T ⁻¹ x component lane so that i mately) : 7.2 m 4.5 m 4.5 m	వేశ్యశీలత H-అయస్కాంత of 4 m and a y compon ts x-component is doubl ము 10 మీ. దీనిని x అంశ

D

87.

A police party is moving in a jeep at a constant speed v. They saw a thief at a distance x on a motorcycle which is at rest. The moment the police saw the thief, the thief started at constant acceleration α . Which of the following relations is true if the police is able to catch the thief ?

ఒక జీవులో v నదువేగముతో చెలించుచున్న పోలీసులు x దూరములో నిశ్చల స్థితిలోనున్న మోటరు సైకిల్పై ఉన్న ఒక దొంగను దూశారు. పోలీసులు చూసిన వెంటనే దొంగ a నమత్వరణముతో పారిపోయారు పోలీసులు ఆ దొంగను చట్టకొనినట్లయితే (కింది నంబంధాలలో ఏది నరియైనది ?

- (1) $v^2 < \alpha x$ (2) $v^2 < 2\alpha x$ (3) $v^2 \ge 2\alpha x$ (4) $v^2 = \alpha x$
- 88. A 1 N pendulum bob is held at an angle 0 from the vertical by a 2 N horizontal force \vec{F} as shown in the figure. The tension in the string supporting the pendulum bob (in Newtons) is

ఒక 1 N లోలకవు గుండును, 2 N పెలువగల F అనే క్షితిజ నమాంతర బలము ద్వారా నిలువుతలముతో 0 కోడాము చేయునట్ల (వటములో చూపినట్ల) ఉంచబడినది. లోలకవు తీగలో గల తన్నత (న్యూటన్లలో) :

Rough Work

(1)

(3)

Galantin Sama R

E 2011 D

D

89.

The maximum tension a rope can withstand is 60 kg wt. The ratio of maximum acceleration with which two boys of masses 20 kg and 30 kg can climb up the rope at the same time is :

ఒక తాడు తట్టుకో కలిగిన గరిష్ఠ తన్యత 60 kg wt. 20 kg మరియు 30 kg ద్రవ్యరాశులు గల ఇద్దరు బాలురు బకేసారి తాడు మీదకు పారుచున్న, వారి గరిష్ఠ త్వరణాల నిష్పత్తి:
(1) 1:2
(2) 2:1
(3) 4:3
(4) 3:2

90.

A ball is let fall from a height h_0 . It makes *n* collisions with the earth. After '*n*' collisions it rebounds with a velocity ' v_a ' and the ball rises to a height h_a , then coefficient of restitution is given by :

h₀ ఎత్తు నుండి ఒక బంతి క్రిందపడునట్లు చేయబడినది. అది భూమితో n అభిభూతాలు చేసినది. 'n' అభిభూతాల తరువాత వేగము 'v_n' తో అది పైకి లేచింది మరియు ఆ బంతి h_n ఎత్తుకు ఎగిరినచో (వతార్ధవ్యస్తాన గుజకము :

(1)
$$e = \left[\frac{h_n}{h_0}\right]^{1/2n}$$

(2) $e = \left[\frac{h_0}{h_n}\right]^{1/2n}$
(3) $e = \frac{1}{n}\sqrt{\frac{h_n}{h_0}}$
(4) $e = \frac{1}{n}\sqrt{\frac{h_0}{h_n}}$

91. A circular disc of radius 'R' is removed from a bigger circular disc of radius '2R' such that the circumferences of the discs touch. The centre of mass of the new disc is at a distance 'αR' from the centre of the bigger disc. The value of 'α' is.

"R' వ్యాసార్థము గల ఒక వృత్తార దిళ్ళను "2R' వ్యాసార్థము గల ఒక పెద్ద బిళ్ళ నుండి వాని పరిధులు తాకునట్ల తొలగించినారు. పెద్ద బిళ్ళ కేంద్రము నుండి కొత్త బిళ్ళ యొక్క ద్రవ్యరాశి కేంద్రము దూరం 'αR' అయిన 'α' బిలువ :

(1)	$\frac{1}{2}$	(2)	$\frac{1}{3}$
(3)	$\frac{1}{4}$	(4)	$\frac{1}{6}$

A uniform chain of length L is lying on the horizontal table. If the coefficient of friction between the chain and the table top is ' μ ', what is the maximum length of the chain that can hang over the edge of the table without disturbing the rest of the chain on the table ?

L పొడవు గల ఒక పకరీతి గొలును క్రితిజ నమాంతర బల్లపై నున్నది. గొలును మరియు బల్లపై భాగముల మధ్య ఘర్షణ గుణకము 'µ' అయిన, బల్లపై గల మిగిలిన గొలును స్థితిని మార్చకుండా, బల్ల అంచు నుండి (వేలాడవలసిన గొలును గరిష్ఠ పొడవు ఎంత?

in	L	and the second	μL
(1)	$(1 + \mu)$	(2)	$\overline{(1 + \mu)}$
100	L		μL
(3)	$(1 - \mu)$	(4)	$\overline{(1-\mu)}$

93. Two uniform circular discs having the same mass and the same thickness but different radii are made from different materials. The disc with the smaller rotational inertia is :

(1) the one made from the more dense material

(2) the one made from the less dense material

(3) the disc with the larger angular velocity

(4) the disc with the larger torque

ఒకే (దవ్యరాళ్ ఒకే మందము గల రెండు ఏకరీతి వృత్తాకార బిళ్ళలు విధిన్న పడార్మాలతో చేయటడినవి. కాని వాటి వ్యాసార్థములు వేరు. తక్కువ జడత్వ (భామకము గల బిళ్ళ:

ఎక్కువ సాందర గల వదార్గముతో చేయబడినది

(2) తక్కువ సాందర్ గల వదార్థముతో చేయబడినద

(3) ఎక్కువ కోణియ వేగము గల దిళ్ళ

(4) ఎక్కువ బలభామకము (బార్క్) గల బిళ్ళ

Rough Work

92.

D

94. A thin hollow sphere of mass 'm' is completely filled with a liquid of mass 'm'. When the sphere rolls with a velocity 'c', kinetic energy of the system is (neglect friction) :

'm' (దవ్యరాశి గల ఒక పలుచని బోలు గోశము 'm' (దవ్యరాశి గల (దవముతో పూర్తిగా నింపబడినది. గోళము 'v' వేగముతో దొర్హుచున్న, ఆ వ్యవస్థ గతిజ శక్తి (ఘర్తజను పరిగడించుల లేదు):

(1)	$\frac{1}{2} mv^2$	$(2) - mv^2$
(3)	$\frac{4}{3}$ mv ²	$(4) \frac{4}{5} mv^2$

95. Assertion (A) : An astronaut inside a massive spaceship orbiting around the earth will experience a finite but small gravitational force.
 Reason (R) : The centripetal force necessary to keep the spaceship in orbit around the earth is provided by the gravitational force between the earth and the spaceship.

(1) Both (A) and (B) are true and (B) is the correct explanation of (A)

(2) Both (A) and (R) are true and (R) is not the correct explanation of (A)

(3) (A) is true but (R) is not true

(4) (A) is not true but (R) is true

నిశ్చితము (A) : దూమి చుట్నా వరిక్రమంచుదున్న బరువైన అంతరిక్ర నౌకలో గల వ్యోమగామి వరిమీత తక్కువ గురుత్వాకరణ బలాన్ని అనుభూతి చెందును.

కారణము (R) : అంతరిక్ష నౌకను భూమిచుట్నా కక్ష్యలో వుంచులకు అవనరమైన అధికేంద్ర బలాన్ని, భూమి మరియు అంతరిక్ష నౌక మధ్య గల గురుత్వాకర్షణ బలం సమకూరున్నంది.

- (1) (A) మరియు (R) రెండూ వరియైనవి (A) కు (R) సరియైన వివరణ
- (2) (A) మరియు (R) రెండూ నరియైనవి (A) కు (R) చరియైన వివరణ కాదు

(3) (A) నరియెనడి, కాని (R) నరియెనడి కాదు

(4) (A) నరియెనది కాదు, కాని (R) నరియెనది

Rough Work

ఒక నరళ పారాత్మక డోలకం 'm' ద్రవ్యరాశి గల ఒక కణమును మరియు బలస్త్రిరాంకము 'k' కరిగిన ఒక అదర్శ (స్పింగును కరిగియున్నది. ఆ కణము T' డోలనావర్తన కాలముతో డోలనాలు చేస్తుంది. ఆ (స్పింగును రెండు నమాన భాగములుగా చేసినారు. ఒక భాగము అదే కణముతో డోలనాలు చేస్తే, డోలనావర్తన కాలము :

(1)	2T	(2)	$\sqrt{2}T$
in	τ/√2	(4)	$\frac{T}{T}$
(9)	17√2	(4)	2

97. Two blocks of masses 1 kg and 2 kg are connected by a metal wire going over a smooth pulley. The breaking stress of metal is $\frac{40}{3\pi} \times 10^6 \text{ Nm}^{-2}$. What should be the minimum radius of wire used if it should not break ? $(g = 10 \text{ ms}^{-2})$

1 kg మరియు 2 kg ద్రవ్యరాశులు గల రెండు దిమ్మలు ఒక లోపావు తీగతో కలువజడి. ఒక నునుపైన కప్పేపుడుగా పోసిచ్చారు. ఆ లోపాపు పిచ్ఛేదన (పతిజలము $\frac{40}{3\pi} \times 10^6 \ {\rm Nm}^{-2}$. తీగ తెగకుండా ఉండవలెనన్న తీగ కనిష్ఠ వ్యాసార్థము ఎంత? (g = 10 ms⁻²)

(1) 0.5 mm (2) 1 mm (3) 1.5 mm (4) 2 mm

98.

If two soap bubbles of different radii are connected by a tube, then :

- Air flows from bigger bubble to the smaller bubble till sizes become (1)equal
- Air flows from bigger bubble to the smaller bubble till sizes are inter-(2)changed
- Air flows from smaller bubble to bigger (3)
- (4) There is no flow of air
- రెండు విభిన్న వ్యాసారాలు గల రెండు పబ్బు నీటి బుడగలను ఒక గొట్టముతో కలిపిన:
- వాటి పరిమాణాలు ఒకటయ్యే వరకు గాలి పెద్ద బుడగ నుండి చిన్న బుడగకు (1)|వవహించును
- వాటి పరిమాణాలు తారుమారు అయ్యేవరకు గాలి పెద బుడగ నుండి చిన్న (2)బుడగకు 1వవహించును
- గాలి చిన్న బుడగ నుండి పెద్ద బుడగకు క్రవహించును (3)
- గాల్ (వవాహము ఉండదు (4)
- A large open tank has two holes in the wall. One is a square hole of side 'L' 99. at a depth 'y' from the top and the other is a circular hole of radius R at a depth '4y' from the top. When the tank is completely filled with water, the quantities of water flowing out per second from the two holes are the same. Then value of R is :

ఒక తెరచి ఉన్న పెద్ద తొట్టి గోడకు రెండు రంద్రాలను కల్లియున్నది. ఒకటి పైభాగము నుండి 'y' లో తులో 'L' పొడవు గల చతుర్రసాకార రంద్రము, రెండవది పైభాగము నుండి '4y' లో తులో 🕆 వ్యాసార్థము గల వృత్తాకార రంద్రము. తొట్టిని, పూర్తిగా నీటితో నింపినపుడు రెండు రంభాల నుండి సెకనులో (వవహించే సీటి పరిమాణాలు నమానము. అయిన R విలువ :

(1)	$\frac{L}{\sqrt{2\pi}}$	(2)	2πL
(3)	$L\sqrt{\frac{2}{\pi}}$	(4)	$\frac{L}{2\pi}$

Rough Work

100. A non-conducting body floats in a liquid at 20°C with $\frac{2}{3}$ of its volume immersed in the liquid. When liquid temperature is increased to 100°C, $\frac{3}{4}$ of body's volume is immersed in the liquid. Then the coefficient of real expansion of the liquid is (neglecting the expansion of container of the liquid) : 20°C ఉష్యోగత నద్ద ఉన్న (దవములో ఒక వావారత్వము లేని వన్నువు, దాని ఘనవరిమాణములో $\frac{2}{3}$ వంతు మునిగినది. (దవ ఉష్యోగతను 100°C కు ెుంచినవుడు ఆ వస్తువు, దాని ఘనవరిమాణములో $\frac{3}{4}$ వంతు మునిగినది. (దవము యొక్క నిజ త్యార్⁴ద గణకము, (దవము ఉన్న పాత యొక్క వ్యార్⁴ద గణకము, (దవము ఉన్న పాత యొక్క వ్యార్⁴ పరిగణించుట లేదు) : (1) 15.6 × 10⁻⁴ °C⁻¹ (2) 156 × 10⁻⁴°C⁻¹ (3) 1.56 × 10⁻⁴°C⁻¹ (4) 0.156 × 10⁴°C⁻¹

D

101. An insulated cylindrical vessel filled with an insulated piston of negligible weight and negligible thickness at the mid point of the vessel. The cylinder contains a gas at 0°C. When the gas is heated to 100°C, the piston moves through a length of 5 cm. Length of the cylindrical vessel in cm is :

ఒక ఉష్టలంధక స్యూపాకార హెత్రయందు వరిగణించలేని భారము మరియు వరిగణించలేని మందముగల ఉష్ణ బంధక మువలకము ఆ పాత్ర మధ్య బిందువు దగ్గర బిగించబడినది. ఆ స్యూపము 0°C వద్ద వాయువును కలిగి యున్నది. వాయువును 100°C కు వేడిచేసినపుడు ముషలకము 5 ెసం.మీ. పొడవు చలించినది. స్యూపాకార పాత్ర పొడవు (ెసం.మీ.లలో)

64.6

- (1) 13.65 (2) 27.3
- (3) 38.6

Rough Work

(4)

		D	E 2011 I
02.	A reversible engine converts one temperature of the sink is reduced The temperatures of the source ఇవ్వందిన ఉష్టములో $1/6$ వంతున	d by 62°C, the efficien and sink are : ා සර පැලි _{ර්} නස්නා	cy of the engine is doubled యంత్రము పనిగా మార్చును
	సంకు ఉష్ణాగతను 62°C తగ్గించినవ మరియు సంకు ఉష్యాగతలు చరుగ		దక్షత రద్దంజగును, అనికిలు
	(1) 99°C, 37°C	 (2) 80°C, 37°C (4) 90°C, 37°C 	
_	(3)/ 95°C, 37°C		
	ఒక స్త్రీరోష్టక (పక్రియనందు, ఒక అనులో మానుపాతములో ఉన్నది. (1) 7/5 (3) 5/3		
			Alt have been to be
104.	end to end to form a composite	slab. The thermal co	nductivities of A and B a
104.	end to end to form a composite k_1^{i} and k_2^{i} respectively. A stead	slab. The thermal co dy temperature differ	nductivities of A and B a rence of 12°C is maintaine
104.	end to end to form a composite	slab. The thermal co dy temperature differ	nductivities of A and B a rence of 12°C is maintaine
104.	end to end to form a composite k_1' and k_2' respectively. A stead across the composite slab. If k A is : aba_{32} acrows added a baa_{32} acrows a baa_{32} added a baa_{32} added a $baaa_{32}$ added a baaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	slab. The thermal co dy temperature differ $_1 = \frac{\hbar_2}{2}$, the tempera కే మందము గల రెంద రు కొన కలుపబడినవి యుక్త దిమ్మకు నిలకం	nductivities of A and B a rence of 12°C is maintaine dure difference across sh ప దమ్మలు A మరియు B, a , A, B ఉప్పదహాన గుణా Srs 12°C ఉప్పదాలా వేధు
104.	end to end to form a composite k_1 and k_2 respectively. A stead across the composite slab. If k A is : $2 \xi_2 \xi_3 = 0$	slab. The thermal co dy temperature differ $_1 = \frac{\hbar_2}{2}$, the tempera కే మందము గల రెంద రు కొన కలుపబడినవి యుక్త దిమ్మకు నిలకం	nductivities of A and B a rence of 12°C is maintaine dure difference across sh ప దమ్మలు A మరియు B, a , A, B ఉప్పదహాన గుణా Srs 12°C ఉప్పదాలా వేధు
104.	end to end to form a composite k_1' and k_2' respectively. A stead across the composite slab. If k A is : aba_{32} across b^{*} downda c baa_{32} across b^{*} downda c baa_{33} downda c	slab. The thermal co dy temperature differ $_1 = \frac{\hbar_2}{2}$, the tempera కే మందము గల రెంద రు కొన కలుపబడినవి యుక్త దిమ్మకు నిలకం	nductivities of A and B a rence of 12°C is maintaine dure difference across sh ప దమ్మలు A మరియు B, a , A, B ఉప్పదహాన గుణా Srs 12°C ఉప్పదాలా వేధు

Rough Work

105. The wavelengths of two sound notes in air are $\frac{40}{195}$ m and $\frac{40}{193}$ m. Each note produces 9 beats per second separately with a third note of fixed frequency. The velocity of sound in air in m/s is :

D

గాలలో రెండు ధ్వవి స్వరాలు $\frac{40}{195}$ m మరియు $\frac{40}{193}$ m తరంగదైర్థాన్రించు కలిగి ఉన్నాయి. (పతి స్వరం, స్తిర పావశవున్యం గల ఒక మూడవ స్వరంతో సెకనుకు 9 వివృందనాలు నృష్టిస్తోంది. గాలిలో ధ్వవి వేగము (మీ. సెలలో): (1) 360 (2) 320

(3) 300 (4) 340

106. Two uniform stretched strings A and B, made of steel, are vibrating under the same tension. If the first overtone of A is equal to the second overtone of B and if the radius of A is twice that of B, the ratio of the lengths of the strings is : සේ මරුදුමම් බංග්රී කාශයීන A කාරිකා B මබ් ටිරිසා කර්දීම් කරාදුම් මගානායීන කිහිනා දීමාන්ත කර්දීම කරාදුමේ මගානායීන කර්දීම කරාදුමේ කරාදීම කරාදුමාන්ත කර්දීම කරාදුමේ කරාදීම කරාදුමාන්ත කර්දීම කරාදීම කරාදුමේ කරාදීම කරාදුමාන්ත කර්දීම කරාදීම කරාදීම

The focal length of a lens of dispersive power 0.45 which should be placed in 107. contact with a convex lens of focal length 84 cm and dispersive power 0.21 to make the achromatic combination from the two lenses, in cm is : 0.45 విశ్రేమణ సామర్యం గల కటకాన్ని, 84 సెం.మీ.ల నాధ్యంతరం మరియు 0.21 విశ్రేషణ సామర్యం గల కుంభాకార కటకంతో స్పర్శిమ్తా ఉన్నప్పుడు. ఆ రెండు కటకాలు ఒక అవర్ధక సంయోగంగా వనిచేయవలెనంటే, కటకానికి ఉండవలసిన నాభ్యంతరం విలువ (సెం.మీ.లరో) : (2) 90 (1)45 (4) -180 (3)180 108. Which of the following statements are true in the context of a Compound Microscope ? Each lens produces a virtual and inverted image (A) The objective has a very short focal length (B) The eyepiece is used as a simple magnifying glass (C) The objective and eyepiece are convex and concave lenses respectively (D) (B) and (C) (2)(A), (B) and (D) (1)(4) (B) and (D) (A), (C) and (D) (3)నంయుక్త సూక్ష్మదర్శిని సందర్భానికి ఈ (కింది వివరణంలో ఏవి 'యదార్గము'? ఒక్కొక్క కటకం, తలకిందులైన మథ్యా క్రవతివించాన్ని పర్పరుస్తుంది (A) వస్తు కటకానికి అతి అల్ప నాధ్యంతరం ఉంటుంది (B) అక్షి కటరాన్ని ఒక నరళ ఆచరనం కలిగించే గాజాగా వాడతారు (C) వస్తు, అక్షికటకాలు వరునగా కుంభాకార, పుటాకార కటరాలు (D) (2) (B) あらるがい (C) (A), (B) మరియు (D) (1) (4) (B) あるない (D) (A), (C) ಮರಿಯು (D) (3)

109. A ray of light refracts from medium 1 into a thin layer of medium 2, crosses the layer and is incident at the critical angle on the interface between the medium 2 and 3 as shown in the figure. If the angle of incidence of ray is θ , the value of θ is :

ఒక కాంతి కిరణం యానకం 1 నుంచి యానకం 2 యొక్క పలుచని పొరలోనికి వడ్రీభవనం చెందిన తర్వాత దానిని దాటి యానకం 2 మరియు యానకం 3 ల మధ్య గల అంతర ఫలకంపై నంధిగ్ధ కోణం చేన్నూ `వతనం చెందుతుంది. రాంతి కిరణం వతన కోణం 9 అయితే, 9 విలువ :

- 111. If a bar magnet of pole strength *m* and magnetic moment M is cut equally 5 times parallel to its axis and again 3 times perpendicular to its axis, then the pole strength and magnetic moment of each piece are respectively : (దువసత్వం *m*, అయస్కాంత బ్రామకము M గల దండాయస్కాంతాన్ని దాని అప్రానికి సమాంతరముగా 5 సార్లు నమానంగాను, అక్రానికి అంబంగా 3 సార్లు నమానంగాను కోసినవుడు, ఏర్పడే ఒక్కొక్క అయస్కాంతవు ముక్క యొక్క (ధువ నత్వమి, అయస్కాంత బ్రామకముల విలువలు వరునగా :

as	$\frac{m}{20}, \frac{\mathrm{M}}{4}$	(2)	$\frac{m}{5}, \frac{\mathrm{M}}{20}$
(3)	$\frac{m}{6}, \frac{M}{24}$	(4)	$\frac{m}{5}, \frac{M}{24}$

coil of resistance wire, embedded in a block of specific heat 's' and mass 'm' under thermally isolated conditions. If the temperature of the block is raised by 'AT', the potential difference V across the capacitor initially is : රංධාරීගණ ක්රීමට ස්රීන් පිණිඩාඩ් ඔොහො පිණිඩාඩින් 'C'. කිබ්බ අනුධනානු කර්දීණාවේ.

విశిష్ణో స్టం 's', (దవ్యరాశి 'm' గల ఒక దిమ్మరో పొదిగిన సిరోధం గల చిన్న తీగమట్ట వ్వారా ఉత్సరం చేసినవుడు దిమ్మ ఉష్ణో (గత 'AT' పెరిగితే, తెపాసిటర్ కొడల మద్య తొలిగా ఉన్న పొపెన్లియల్ తేడా, V పిలువ :

(1)	$\left(\frac{2 ms \Delta T}{C}\right)^2$	(2) $\left(\frac{2 ms \Delta T}{C}\right)^{1/2}$	
(3)	$\left(\frac{2\ ms\ \Delta T}{C}\right)$	(4) 2 ms $\Delta T, C$	
		#2. St	

Rough Work

114. Two identical condensers M and N are connected in series with a battery. The space between the plates of M is completely filled with a dielectric medium of dielectric constant 8 and a copper plate of thickness $\frac{d}{2}$ is introduced between the plates of N. (d is the distance between the plates). Then potential differences across M and N are, respectively, in the ratio : $\overline{0}0\Delta i \ \Delta 0_2 \ \Delta \Delta m \ \delta$ $\overline{0} \ \Delta 0 \ \Delta 0 \ \delta$ $\overline{0} \ \Delta 0 \ \Delta m \ \delta$ $\overline{0} \ \delta 0 \ \delta$

D

(d జనేది వలకల మధ్య దూరం). అయితే, M, N ల కొనల మధ్య పొరున్నియల్ తెడాల నివృత్తి, /వరునగా:

115. The electric current i in the circuit shown is : థింద చూపిన వలయంలో విద్యుత్పవాహం i విలువ :

Rough Work

(1)

(3)

117. The thermo e.m.f. of a hypothetical thermocouple varies with the temperature θ of hot junction as $E = a\theta + b\theta^2$ in volts, where the ratio a/b is 700°C. If the cold junction is kept at 0°C, then the neutral temperature is :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) no neutral temperature is possible for this thermocouple

ఒక వరికల్పిత ఉష్ణయుగ్యం యొక్క ఉష్ణ విద్యుచ్చాలక బలం, వేడి సంధి ఉష్మోగత 0 తో, $\mathbf{E} = a0 + b0^2$ (వేల్యలలో)గా మారుతుంది. ఇక్కడ సిష్పత్తి a/b 700°C. చల్లని నంధి ఉష్మోగతను 0°C వద్ద ఉంచితే, తటన్న ఉష్మోగత :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) ఈ ఉష్ఠయుగ్మానికి తటన్న ఉష్యోగ్రత ఉండటం సాధ్యం కాదు

-	-	-	-	£.
3	*		8	L
U		,	1	L
ų,	1			Ŀ
-	-	-	-	÷.,

118,	Match the following and find the correct pairs :				
		List I		List II	
	(a)	Fleming's left hand rule	(e)	Direction of induced current	
	(b)	Right hand thumb rule	(f)	Magnitude and direction of magnetic	
				induction	
	(c)	Biot-Savart law	(g)	Direction of force due to magnetic	
				induction	
	(d)	Fleming's right hand rule	(<i>h</i>)	Direction of magnetic lines due to current	
	50 (8	రంది జాబితాలలో నరియైన జం	ంటలన	ಸಿ ಗು <u>ರ್</u> ಮಿಂವಂಡಿ :	
		జాదిలా I		ertor II	
	(a)	్టామింగ్ ఎడమచేతి నిబంధన	(e)	(పేరితి పిద్యుత్ (వవాహ దళ	
	(b)	కుడిచేతి బొటనవేలు నిబంధన	(f)	అయస్కాంత (ేవరణ పరిమాణం మరియు దిశ	
	(c)	లయాట్ సావర్డ్ నియమం	(g)	అయస్కాంత శ్రేతంవల్ల కలిగే ఒలడిక	
	(d)	్షామింగ్ కుడిచేతి నిబంధన	(<i>h</i>)	విద్యుత్ (వవాపాంవల్ల కలిగే అయస్కాంత రేఖం	
				ದಿಕ	
	(1)	$(a)\!\!-\!\!(g),(b)\!\!-\!\!(e),(c)\!\!-\!\!(f),(d)\!\!-\!\!(h)$	(2)	(a)-(g),(b)-(h),(c)-(f),(d)-(e)	
	(3)	$(a)\!\!-\!\!(f),(b)\!\!-\!\!(h),(c)\!\!-\!\!(g),(d)\!\!-\!\!(e)$	(4)	(a)-(h),(b)-(g),(c)-(e),(d)-(f)	

119. A constant voltage of 25 V is applied to a series L-R circuit at t = 0, by closing a switch. What is the potential difference across the resistor and the inductor at time t = 0?

D

 L-R ලීඝ නలయానికి t = 0 వద్ద స్పిత్న మూసివేయటం ద్వారా 25 V స్థిర వోల్డేడిని

 అనువర్తితం చేసినారు. t = 0 కాలం వద్ద సరోధం కొనల మధ్య మరియు (పేరకం

 కొనల మధ్య పొటన్నియల్ తేడా ఎంతంత ఉంటుంది?

 (1) 0 V, 25 V
 (2) 12.5 V, 12.5 V

 (3) 10 V, 15 V
 (4) 25 V, 0 V

120. The sensitivity of a galvanometer is 60 divisions/Amp. When a shunt is used, its sensitivity becomes 10 divisions/Amp. If the galvanometer is of resistance 20 Ω, the value of shunt used is :

ఒక గాల్వనామీటర్ యొక్క నూర్ష్మ గ్రాహ్యత 60 విభాగాలు/అంపియర్ ఒక వంట్ సరోధిందు వాడినవుడు, దాని నూర్ష్మగాహ్యత 10 విభాగాలు/అంపియర్ అవుతుంది. గాల్వనామీటరు సరోధం 20 Ω లు అయితే, ఉపయోగించిన వంట్ సరోధం విలువ :

(1) 4 Ω
(2) 5 Ω
(3) 20 Ω
(4) 2 Ω

PHYSICS

Two photons of energy 2.5 eV and 3.5 eV fall on a metal surface of work function 81. 1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted from the metal surface is : 2.5 eV మరియు 3.5 eV శక్తిగల రెండు ఫోటాన్న 1.5 eV పని (వమేయంగల లో హాతలంపై వతనం చెందినవి. లో హతలం పై నుండి వెలువడే కాంతి ఎలక్రామల గరిష వేగాల నిష్పత్తి: (2) 2:1 (1)1:4 (4) 1: 12 (3)1:2Calculate the wavelength of the h_{α} line for z = 31 when $\alpha = 5 \times 10^7 \text{ Hz}^{1/2}$ for 82. a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7 \text{ Hz}^{1/2}$ అయిన ఒక అభిలక్షణ X-కరణ వర్షపటంలోని k_{α} రేఖ యొక్క తరంగదెర్యాన్ని గణించండి. (2) 1.33 nm 1.33 Å (1) 133×10^{-10} m (4) 133 nm (3)

83. If 200 MeV of energy is released in the fission of one nucleus of ²³⁵₈₂U, the number of nuclei that must undergo fission to release an energy of 1000 J is :

 LS ²³⁵₉₂U 30(CTSO 202)을, 200CAS(A) 200CB v 200 MeV 2000 3 1000 J

 K 3 200 MeV 2000 3 202 3 20CAS(A) 200CB v 200 MeV 2000 3 1000 J

 K 4 3.125 × 10¹³

 (3) 12.5 × 10¹³

Rough Work

				T			E 2	011
12011				D				
84.	In a	a <i>p-n</i> junction	diode the thi	ickness o	F depletion	layer is 2	$\times 10^{-6}$ m and	bar
	pot	ential is 0.3	V. The inten	usity of t	he electric	field at t	he junction is	1
	(1)	0.6×10^{-4}	⁶ Vm ⁻¹ from	n to P s	side			
	(2)	0.6×10^{-4}	⁶ Vm ⁻¹ from	P to $n \equiv$	ide			
	(3)		Vm^{-1} from n					
	(4)	$1.5 \times 10^{\circ}$	Vm ⁻¹ from I	P to n si	de			
	681	9-11 నంధి డయో 1ది. అయిన నం	ండ్ లేమి పొర వ ంధి చద్ద విద్యుత్	ఏందం2× '∋< న	10 ⁻⁶ m మరి	యు అవర్	థ పొశాస్త్రయల్ 0	.3 V
	(1)	0.6×10^{-6}	Vm ⁻¹ n , 500	နှစ် ရေစ	eri V			
	(2)	0.6 × 10 ⁻⁶	Vm ⁻¹ P 200	പറച്ചു	90 V			
	(3)	1.5×10^5	Vm ⁻¹ n నుండి	(D) = ~	63			
	Same	with the way of	WHEN IN DURING	1 0 0 3				
-	(4)	1.5×10^{6}	Vm ^{−1} P ,మeå	ル夏朝日				
85.	The H-m	1.5 × 10 ⁸ dimensional agnetic field	Vm ⁻¹ P నుండి formula of intensity) is	$\frac{1}{2} \mu_0 H^2$	(µ ₀ – Pe		of free space	
85.	The H-m 1 2 μ δ(33	1.5×10^8 dimensional agnetic field $_0$ H ² شنعي ش ف) :	Vm ⁻¹ P నుండి formula of intensity) is	$\frac{1}{2} \frac{1}{\mu_0 H^2}$ $\frac{1}{(\mu_0 - \frac{1}{2})}$	් (µ ₀ – Pe ගොු (සත්ර		of free space § H-නෙයාබංදු ෙම	
85.	The H-m 1 µ 2 µ 2 (3) (1)	1.5×10^8 dimensional agnetic field $_0$ H ² \Im_{33} \mathfrak{S}_{32} \mathfrak{S}_{33} \mathfrak{S}_{33} : MLT ⁻¹	Vm ⁻¹ P నుండి formula of intensity) is	$\frac{1}{2} \frac{1}{\mu_0 H^2}$ $\frac{1}{(\mu_0 - \frac{1}{2})}$	් (µ ₀ – Pe ගොු (සත්ර			
85.	The H-m 1 2 μ δ(33	1.5×10^8 dimensional agnetic field $_0$ H ² شنعي ش ف) :	Vm ⁻¹ P నుండి formula of intensity) is	$\frac{1}{2} \frac{1}{\mu_0 H^2}$ $\frac{1}{(\mu_0 - \frac{1}{2})}$	(µ ₀ – Pe			
, en 1	The $H-m$ $\frac{1}{2}\mu_{0}$ $\hat{\Phi}_{1}SS$ (1) (3)	1.5 × 10 ⁸ dimensional agnetic field oH ² యొక్క వ క) : MLT ⁻¹ ML ⁻¹ T ⁻²	Vm ⁻¹ P నుండి formula of intensity) is బతి నూగ్రతము	$\frac{1}{2} n = \frac{1}{2} = \frac{1}{2} \mu_0 H^2$ $(\mu_0 - \frac{1}{2})$ (2) (4)	ు (µ ₀ – Pe రాస్త్రి (వదిళ ML ² T ⁻² ML ² T ⁻¹	(వవేశ్యశీలం	ు _{ల్లో} ర్కయిజ-H క	ð 18
85.	The H-m $\frac{1}{2}$ μ δ [35] (1) (3)	1.5×10^8 dimensional agnetic field $_0$ H ² \Im_{10} s _b \Im_{2} \Im_{10} s \Im_{11} \Im_{11} \Im_{12} MLT ⁻¹ T ⁻² rtain vector in	Vm ⁻¹ P నుండి formula of intensity) is రితి నూర్రతము n the xy plan	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 2$ (2) (4) e has an	ు (µ ₀ - Pe హార్షె (వదేశ ML ² T ⁻² ML ² T ⁻¹ x compone	(వవేశ్యకిలు mt of 4 m	§ H-නෙරාබාදු ෙ and a y comp	ð ĝ
, en 1	The H-m 1/2 μ/ θ [54] (1) (3) A cent of 10	1.5 × 10 ⁸ dimensional agnetic field oH ² ඔයනු, ක හි) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in) m. It is the	Vm ⁻¹ P నుండి formula of intensity) is రత్ నూర్రతము n the xy plan n rotated in i	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 32$ (2) (4) e has an the xy pl	ు (µ ₀ - Pe హెల్ల (వదిశ ML ² T ⁻² ML ² T ⁻¹ x compone ane so that	(వవేశ్యకిలు mt of 4 m	ు _{ల్లో} ర్కయిజ-H క	ð ĝ
, en 1	The H-m 1/2 μ/ θ [54] (1) (3) A cent of 10	1.5 × 10 ⁸ dimensional agnetic field oH ² ඔයනු, ක හි) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in) m. It is the	Vm ⁻¹ P నుండి formula of intensity) is రితి నూర్రతము n the xy plan	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 3 2$ (2) (4) e has an the xy pl (approximation of the second seco	ు (µ ₀ - Pe హై్టనిశ ML ² T ⁻² ML ² T ⁻¹ x compone ane so the nately) :	(వవేశ్యకిలు mt of 4 m	§ H-නෙරාබාදු ෙ and a y comp	ð ĝ
86,	The $\frac{H-m}{2}$ $\frac{1}{2}$ μ $\frac{5}{2}$ (1) (3) A cert of 10 Then (1)	1.5 × 10 ⁸ dimensional agnetic field oH ² යාපු, ක හි) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in) m. It is then i its new y o	Vm ⁻¹ P నుండి formula of intensity) is రత్ నూర్రతము n the xy plan n rotated in i	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 3g$ (2) (4) e has an the xy pl (approxim) (2)	$(\mu_0 - Pe$ ෙල (යස් ML^2T^{-2} ML^2T^{-1} x compone ane so the nately) : 7.2 m	(వవేశ్యకిలు mt of 4 m	§ H-නෙරාබාදු ෙ and a y comp	ð ĝ
86,	The $H-m$ $\frac{1}{2}\mu$ $\hat{\phi}_{1}$ (1) (3) A cert of 10 Then (1) (3)	1.5 × 10 ⁸ dimensional agnetic field ₀ H ² Clusy, 2 S) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in) m. It is the its new y co 20 m 5.0 m	Vm ⁻¹ P నుండి formula of intensity) is రిత్ నూర్రతము n the xy plan n rotated in omponent is	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 32$ (2) (4) e has an the xy pl (approxim) (2) (4) (4)	ري (µ ₀ – Pe سي الملكة ML ² T ⁻² ML ² T ⁻¹ x compone ane so tha nately) : 7.2 m 4.5 m	(వచేశ్యక్రిలు mt of 4 m t its x-con	ම H-කොබං _ල ංශ and a y comp nponent is dor	one able
86,	The H-m $\frac{1}{2}\mu$ $\hat{\phi}_{(5)}$ (1) (3) A cent of 10 Then (1) (3) xy $\phi_{(1)}$	1.5 × 10 ⁸ dimensional agnetic field oH ² యొక్క మ E) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is the 1 its new y co 20 m 5.0 m	Vm ⁻¹ P నుండి formula of intensity) is రిత్ నూత్రమం n the xy plan n rotated in omponent is	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 3g$ (2) (4) (4) $(approxim)$ (2) (4) $x = 0 \forall \Delta x$	$(\mu_0 - Pe)$ $(\mu_0 - Pe)$ ML^2T^{-2} ML^2T^{-1} x component and so the nately) : 7.2 m 4.5 m 4.5 m	్రవమేశ్వక్షిలు ent of 4 m t its x-con రశము 10 ;	8 H-කොටාලාලා and a y comp nponent is dor හා රාධා x ∞	ම ම් one uble
86.	The H-m ¹ / ₂ μ ³ / ₅ (3) (1) (3) A cea of 10 Then (1) (3) xy δ(³ / ₅ ³ / ₅)	1.5 × 10 ⁸ dimensional agnetic field oH ² యొక్క మ E) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is the 1 its new y co 20 m 5.0 m	Vm ⁻¹ P నుండి formula of intensity) is రిత్ నూత్రమం n the xy plan n rotated in omponent is	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 3g$ (2) (4) (4) $(approxim)$ (2) (4) $x = 0 \forall \Delta x$	$(\mu_0 - Pe)$ $(\mu_0 - Pe)$ ML^2T^{-2} ML^2T^{-1} x component and so the nately) : 7.2 m 4.5 m 4.5 m	్రవమేశ్వక్షిలు ent of 4 m t its x-con రశము 10 ;	ම H-කොබං _ල ංශ and a y comp nponent is dor	e g
86.	The H-m ¹ / ₂ μ ^β (354 (1) (3) A cess of 10 Then (1) (3) X) 50 ^α c ^α c ^α	1.5 × 10 ⁸ dimensional agnetic field oH ² యొక్క మ E) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in) m. It is the i its new y or 20 m 5.0 m 5.0 m	Vm ⁻¹ P నుండి formula of intensity) is రిత్ నూత్రమం n the xy plan n rotated in omponent is	$\frac{1}{2} \mu_0 H^2$ $\frac{1}{2} \mu_0 H^2$ $(\mu_0 - 3g$ (2) (4) (4) (2) (2) (4) $x = 0 \forall \Delta \omega$ (2) (4)	$(\mu_0 - Pe)$ $(\mu_0 - Pe)$ ML^2T^{-2} ML^2T^{-1} x components and so the nately) : 7.2 m 4.5 m 4.5 m	్రవమేశ్వక్షిలు ent of 4 m t its x-con రశము 10 ;	8 H-කොටාලාලා and a y comp nponent is dor හා රාධා x ∞	e g

D

87.

A police party is moving in a jeep at a constant speed v. They saw a thief at a distance x on a motorcycle which is at rest. The moment the police saw the thief, the thief started at constant acceleration a. Which of the following relations is true if the police is able to catch the thief ?

ఒక జీవులో 🗸 నచువేగముతో చెలించుచున్న పోలీసులు 🗴 దూరములో నిశృల సితిలోనున్న మోటరు సైకిల్పై ఉన్న ఒక దొంగను చూశారు. పోలీసులు చూసిన వెంటనే దొంగ α నమత్వరణముతో పారిపోయాడు. పోలీసులు ఆ దొంగను చట్టుకొనినట్రయితే క్రింది నంబంధాలలో పది నరియెనది ?

- $v^2 < \alpha x$ $-(2) v^2 < 2\alpha x$ (1)(4) $v^2 = \alpha x$ $v^2 > 2\alpha x$ (3)
- A 1 N pendulum bob is held at an angle 0 from the vertical by a 2 N horizontal 88. force F as shown in the figure. The tension in the string supporting the pendulum bob (in Newtons) is

ఒక 1 N లోలకవు గుండును, 2 N ఎలువగల F అనే క్రితిజ నమాంతర బలము ద్వారా నిలువుతలముతో 0 కోడాము చేయునట్ల (పటములో చూపినట్ల) ఉంచబడినది. లోలకవు తీగలో గల తన్యత (మ్యాటన్లలో) :

Rough Work

(1)

(3)

V5

D

89.

The maximum tension a rope can withstand is 60 kg wt. The ratio of maximum acceleration with which two boys of masses 20 kg and 30 kg can climb up the rope at the same time is :

ఒక తాడు తట్టుకోకరిగిన గరివ్త తన్యత 60 kg wt. 20 kg మరియు 30 kg ద్రవ్యరాకులు గల ఇడ్డరు బాలురు ఒకేసారి తాడు మీదకు పొరుచున్న, వారి గరిష్ఠ త్వరణాల నివృత్తి: (1) 1 : 2 (2) 2 : 1 (3) 4 : 3 (4) 3 : 2

90.

A ball is let fall from a height h_0 . It makes *n* collisions with the earth. After '*n*' collisions it rebounds with a velocity ' v_n ' and the ball rises to a height h_n , then coefficient of restitution is given by :

h₀ ఎత్తు నుండి ఒక బంతి (కేందవడునట్లు చేయబడినది, అది దూమితో n అభిభూతాలు చేసినది. 'n' అభిభూతాల తరువాత వేగము 'v_n' తో అది పైకి లేచింది మరియు ఆ బంతి h_n ఎత్తుకు ఎగిరినచో (వత్యావ్యస్తాన గుజకము :

(1)
$$e = \left[\frac{h_0}{h_0}\right]^{1/2n}$$
(2)
$$e = \left[\frac{h_0}{h_0}\right]^{1/2n}$$
(3)
$$e = \frac{1}{n}\sqrt{\frac{h_0}{h_0}}$$
(4)
$$e = \frac{1}{n}\sqrt{\frac{h_0}{h_0}}$$

91. A circular disc of radius 'R' is removed from a bigger circular disc of radius '2R' such that the circumferences of the discs touch. The centre of mass of the new disc is at a distance 'αR' from the centre of the bigger disc. The value of 'α' is .

"R' వ్యాసార్థము గల ఒక వృత్తార దిళ్ళను "2R' వ్యాసార్థము గల ఒక పెద్ద బిళ్ళ నుండి వాని పరిధులు తారునట్ల తొలగించినారు. పెద్ద బిళ్ళ కేంద్రము నుండి కొత్త బిళ్ళ యొక్క దవ్యరాశి కేంద్రము దూరం 'αR' అయిన 'α' పెలువ :

(1)	$\frac{1}{2}$	(2)	$\frac{1}{3}$	
(3)	$\frac{1}{4}$	(4)	$\frac{1}{6}$	

A uniform chain of length L is lying on the horizontal table. If the coefficient of friction between the chain and the table top is ' μ ', what is the maximum length of the chain that can hang over the edge of the table without disturbing the rest of the chain on the table ?

L పొడవు గల ఒక ఏకరీతి గొలును క్రితిజ నమాంతర బల్లపై నున్నది. గొలును మరియు బల్లపై భాగముల మధ్య ఘర్షణ గుణకము 'µ' అయిన, బల్లపై గల మిగిలిన గొలును స్థితిని మార్చకుండా, బల్ల అంచు నుండి (వేలాడవలసిన గొలును గరిష పొడవ) ఎంత?

244	L		μL
(1)	$(1 + \mu)$	(2)	$\overline{(1 + \mu)}$
105	L		μL
(3)	$(1 - \mu)$	(4)	$\overline{(1-\mu)}$

93. Two uniform circular discs having the same mass and the same thickness but different radii are made from different materials. The disc with the smaller rotational inertia is :

(1) the one made from the more dense material

(2) the one made from the less dense material

(3) the disc with the larger angular velocity

(4) the disc with the larger torque

ఒకే (దవ్యరాళ్ ఒకే మందము గల రెండు ఏకరీతి వృత్తాకార బిళ్ళలు విభిన్న పదార్శాలతో చేయబడినవి. కాని వాటి వ్యాసార్థములు వేరు. తక్కువ జడత్వ బ్రామకము గల బిళ్ళ:

ఎక్కువ సాందర గల పదార్గముతో చేయబడినది

(2) తక్కువ సాందర్ గల వదారముతో చేయబడినది

(3) ఎక్కువ కోణియ వేగము గల దిళ్ళ

(4) ఎక్కువ బలభామకము (భార్క్) గల పికృ

Rough Work

92.

94. A thin hollow sphere of mass 'm' is completely filled with a liquid of mass 'm'. When the sphere rolls with a velocity 'c', kinetic energy of the system is (neglect friction) :

'm' దవ్యరాశి గల ఒక పటుచని బోణు గో కము 'm' దవ్యరాశి గల దవముతో పూర్తిగా నింపబడినది. గో కము 'v' వేగముతో దొర్హుచున్న, ఆ వ్యవస్థ గతిజ శక్తి (ఘర్తణను వరిగతించుట లేదు).

 mv^2

 $\frac{4}{\pi}$ mv²

(1)	$\frac{1}{2}$ mv^2	(2)
(3)	$\frac{4}{3}$ mv ²	(4)

95. Assertion (A) :

Reason

(A) : An astronaut inside a massive spaceship orbiting around the earth will experience a finite but small gravitational force.
 (R) : The centripetal force necessary to keep the spaceship in orbit around the earth is provided by the gravitational force between the earth and the spaceship.

(1) Both (A) and (R) are true and (R) is the correct explanation of (A)

(2) Both (A) and (R) are true and (R) is not the correct explanation of (A)

(3) / (A) is true but (R) is not true

(4) (A) is not true but (R) is true

నిళ్ళితము (A) : ధూమి చుట్నా పర్శిధమించుచున్న లదువైన అంతరిక్ర సౌకలో గల వ్యోచుగామి పరిమీత తక్కువ గురుత్వాకరణ బలాన్ని అనుభూతి చెందును.

రారణము (R) : అంతరిర్ష నౌకను భూమిదుట్టూ కర్ర్యలో వుంచుటరు అవనరమైన అధికేంద బలాన్ని, భూమి మరియు అంతరిక్ష నౌక మధ్య గల గురుల్చాకర్తడ బలం సమకూరుస్తుంది.

- (1) (A) మరియు (R) రెండూ సరియెదవి (A) కు (R) సరియొన విదరణ
- (2) (A) మరియు (R) రెండూ సరియైనపి (A) కు (R) సరియైన చివరణ కాదు
- (3) (A) నరియొనది, అని (R) నరియొనది కాదు
- (4) (A) నరియెనది కాదు, కాని (R) నరియెనది

Rough Work

ఒక నరళ పారాత్మక డోలకం 'm' స్రవ్యరాశ్ గల ఒక కణమును మరియు బలస్థిరాంకము 'k' కరిగిన ఒక ఆదర్శ స్ప్రింగును కరిగియున్నది. ఆ కణము T డోలనావర్తన కాలముతో డోలనాలు చేస్తుంది. ఆ స్ప్రింగును రెండు నమాన భాగములుగా చేసినారు. ఒక భాగము అదే కణముతో డోలనాలు చేస్తే, డోలనావర్తన కాలము :

(1)	2T	(2)	$\sqrt{2}\mathrm{T}$
(3)	T/√2	(4)	$\frac{\mathrm{T}}{2}$
contract	1/12	(4)	2

97. Two blocks of masses 1 kg and 2 kg are connected by a metal wire going over a smooth pulley. The breaking stress of metal is $\frac{40}{3\pi} \times 10^6 \text{ Nm}^{-2}$. What should be the minimum radius of wire used if it should not break ? $(g = 10 \text{ ms}^{-2})$

1 kg మరియు 2 kg ద్రవ్యరాశులు గల రెండు దిమ్మలు ఒక లో హావు తీగతో కలువబడి. ఒక నునుపైన కప్పేపించుగా పోనిచ్చారు. ఆ లో హావు విచ్చేదన (పతిధలము $\frac{40}{3\pi}$ × 10^6 Nm⁻². తీగ తెగకుండా ఉండవలెనన్న తీగ కనిష్ఠ వ్యాసార్థము ఎంత? (g = 10 ms⁻²)

(1) 0.5 mm (2) 1 mm (3) 1.5 mm (4) 2 mm

98.

If two soap bubbles of different radii are connected by a tube, then :

- Air flows from bigger bubble to the smaller bubble till sizes become (1)equal
- Air flows from bigger bubble to the smaller bubble till sizes are inter-(2)changed
- Air flows from smaller bubble to bigger (3)
- There is no flow of air (4)
- రెండు విభిన్న వ్యాసారాలు గల రెండు సబ్బు నీటి బుడగలను ఒక గొట్టముతో కలిపిన:
- వాటి పరిమాణాలు ఒకటయ్యే వరకు గాలి పెద్ద బుడగ నుండి చిన్న బుడగకు (1)(వవహించును
- వాటి పరిమాణాలు తారుమారు అయ్యేవరకు గాలి పెద బుడగ నుండి చిన్న (2)బుడగకు (పవహించును
- గాలి చిన్న బుడగ నుండి పెద్ద బుడగకు వ్రవహించును (3)
- గాలి (వవాహము ఉండదు (4)
- A large open tank has two holes in the wall. One is a square hole of side 'L' 99. at a depth 'y' from the top and the other is a circular hole of radius R at a depth '4y' from the top. When the tank is completely filled with water, the quantities of water flowing out per second from the two holes are the same. Then value of R is :

ఒక తెరచి ఉన్న పెద్ద తొట్టి గోడకు రెండు రంద్రాలను కల్లియున్నది. ఒకటి పైభాగము నుండి 'y' లోతులో 'L' పొడవు గల చతుర్గసాకార రంద్రము, రెండవది పైభాగము నుండి '4y' లో శులో 'R' వ్యాసారము గల వృత్తాకార రంధ్రము. తొట్టిని పూర్తిగా నీటితో నింపినపుడు రెండు రంభాల నుండి సెకనులో (వవహించే నీటి పరిమాణాలు నమానము. అయిన R విలువ :

(1)	$\frac{L}{\sqrt{2\pi}}$	(2)	2πL
(3)	$L\sqrt{\frac{2}{\pi}}$	(4)	$\frac{L}{2\pi}$

Rough Work

100. A non-conducting body floats in a liquid at 20°C with $\frac{2}{3}$ of its volume immersedin the liquid. When liquid temperature is increased to 100°C, $\frac{3}{4}$ of body's volumeis immersed in the liquid. Then the coefficient of real expansion of the liquidis (neglecting the expansion of container of the liquid) :20°C ఉష్యోగత వద్ద ఉన్న (దవములో ఒక వాహరత్వము లేని వన్నువు, దాని ఘనవరిమాణములో $\frac{2}{3}$ వంతు మునిగినది. (దవ ఉష్యోగతను 100°C కు ెఎంచినవుడు ఆ వన్నువు, దానిఘనవరిమాణములో $\frac{3}{4}$ వంతు మునిగినది. (దవము యొక్క నిజ వాస్టర్*చ గణశము,(దవము ఉన్న పాత దేయక్క వాస్టర్*చాన్ని పరిగణించుల లేదు) :(1) 15.6 × 10⁻⁴°C⁻¹(2) 156 × 10⁻⁴°C⁻¹(3) 1.56 × 10⁻⁴°C⁻¹(4) 0.156 × 10⁴°C⁻¹

D

101. An insulated cylindrical vessel filled with an insulated piston of negligible weight and negligible thickness at the mid point of the vessel. The cylinder contains a gas at 0°C. When the gas is heated to 100°C, the piston moves through a length of 5 cm. Length of the cylindrical vessel in cm is :

ఒక ఉష్ణుంధక న్యూపాకార హెత్రయందు వరిగణించలేని భారము మరియు వరిగణించలేని మందముగల ఉష్ణ బంధక ముషలకము ఆ పాత్ర మధ్య బిందువు దగ్గర బిగించబడినది. ఆ న్యూపము 0°C వద్ద వాయువును కలిగి యున్నది. వాయువును 100°C కు వేడిచేసినవుడు ముషలకము 5 ెఎం.మీ. పొడవు చెలించినది. న్యూపాకార పాత్ర పొడవు (ెఎం.మీ.లలో)

64.6

- (1) 13.65 (2) 27.3
- (3) 38.6

Rough Work

35 P

(4)

		72 0011 D
	D	E 2011 D
102.	A reversible ongine converts one-sixth of the heat supplied into we temperature of the sink is reduced by 62°C, the efficiency of the eng The temperatures of the source and sink are : ఇవ్వబడిన ఉష్ణములో 1/6 వంతును ఒక ఉత్రచ్దుణియ యంత్రము ప సంకు ఉష్ణోగతను 62°C తగ్గించినవుడు యంత్రము యొక్క దక్షత రెట్టించ మరియు సంకు ఉష్ణోగతలు వడునగా : (1) 99°C, 37°C (2) 80°C, 37°C (3) 95°C, 37°C (4) 90°C, 37°C	ine is doubled నిగా మార్పును
103.	During an adiabatic process, the pressure of a gas is proportion	al to the cub
	of its temperature. The value of C_p/C_p for that gas is :	
	ఒక స్థిర్లో ష్ణక (బక్రియనందు, ఒక వాయు పీడనం దాని చరమ ఉది	ല്കര കുത്തം ന
	అనులో మానుపాతములో ఉన్నది. ఆ వాయువునకు C_p/C_q చిలువ :	
	(1) $\frac{7}{5}$ (2) $\frac{4}{5}$	
	(1) $\frac{7}{5}$ (2) $\frac{4}{5}$ (3) $\frac{5}{2}$ (4) $\frac{3}{2}$	
	0	Contractor of the
104.	. Two slabs A and B of different materials but of the same thick	ness are joine
	end to end to form a composite slab. The thermal conductivities k_1 and k_2 respectively. A steady temperature difference of 12°C	is maintaine
	across the composite slab. If $k_1 = \frac{k_2}{2}$, the temperature different	лсе пстова зна
	A is : విధిన్న వదారాలతో చేయబడిన ఒకే మందము గల రెండు దిమ్మలు A నంయుర్త దిమ్మ అగునటుగా కొనకు కొన కలువబడినవి. A, B ఉష్ణ వరునగా 'k ₁ ' చురియు 'k ₂ ' ఆ నంయుర్త దిమ్మకు నిలకడగా 12°C ఉ	ವರ್ಷನ ಗರಣಾಗ
	కలుగచేయబడినది. $k_1=rac{k_2}{2}$ అయిన A చివరల వద్ద ఉష్యోగతా దేవ	
	(1) 4°C (2) 6°C	

- D
- 105. The wavelengths of two sound notes in air are $\frac{40}{195}$ m and $\frac{40}{193}$ m. Each note produces 9 beats per second separately with a third note of fixed frequency. The velocity of sound in air in m/s is :

గాలిలో రెండు ధ్వవి న్వరాలు $\frac{40}{195}$ m మరియు $\frac{40}{193}$ m తరంగదైర్థాన్రాలను కలిగి ఉన్నాయి. స్థతి న్వరం, స్థిర పౌనువున్యం గల ఒక మూడవ వ్వరంతో సెకనుకు 9 విన్ఫందనాలు నృష్టిస్తోంది. గాలిలో ధ్వవి వేగము (మీ/సె.లలో): (1) 360 (2) 320

- (3) 300 (4) 340
- 106. Two uniform stretched strings A and B, made of steel, are vibrating under the same tension. If the first overtone of A is equal to the second overtone of B and if the radius of A is twice that of B, the ratio of the lengths of the strings is : සේ රෙදුණම් බංග්‍රී රාත්‍රී රාත්‍රී රාත්‍රී විට කර්ට්‍රී රාත්‍රී ර

	E 2011 D
107.	The focal length of a lens of dispersive power 0.45 which should be placed in
	contact with a convex lens of focal length 84 cm and dispersive power 0.21 to
	make the achromatic combination from the two lenses, in cm is :
	0.45 విశ్రేషణ సామర్థ్యం గల కటకాన్ని. 84 సెం.మీ.ల నాధ్యంతరం మరియు 0.21 విశ్రేషం
	సామర్యం గల కుంభాకార కటకంతో స్పర్శిన్నూ ఉన్నప్పుడు. ఆ రెండు కటకాలు ఒక
	అవర్షక పంయోగంగా పనిచేయవలైనం ఓ కటరానికి ఉండవలసిన నాభ్యంతరం విలువ
	(సం.మీ.లలో) :
	(1) 45 (2) 90
	(3) 180 (4) -180
	and a provide the second s
	(B) The objective has a very short focal length
	(C) The eyepiece is used as a simple magnifying glass
	(C) The eyepiece is used as a simple magnifying glass(D) The objective and eyepiece are convex and concave lenses respectivel
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectivel (1) (A), (B) and (D) (2) (B) and (C)
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectivel (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D)
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectivel (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) ಸಂಯುಕ್ತ ನೋತ್ಟದರ್ಭಿನಿ ಸಂದರ್ಭಾನಿತೆ ಈ ಡೆಂದಿ ವಿವರಣಾಲ್, ವಿವಿ 'ಯರಾಧಮು'?
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectivel (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) సంయుక్త నూక్రైదర్శిని నందర్భానికి ఈ క్రించి విదరణలలో, ఏవి 'యదారము'? (A) ఒక్కొత్త కటకం, తలక్రిందులైన మిథాక్రై ప్రతిపించాన్ని ఏర్పడునుంది
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectivel (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) నంయుక్త నూక్ర్మదర్శిని నందర్భానికి ఈ క్రించి విదరణలలో, ఏవి 'యదారము'? (A) ఒక్కొత్త కటకం, తటకిండులైన మిథాక్ష పరిపెరుబాన్ని ఏర్పడునుంది (B) చచ్చ కటకానికి అతి అల్ప భాధ్యంతరం ఉంటుంది
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectivel (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) నండుక్త నూక్ష్మదర్శిని నండర్ళానికి ఈ క్రించి చివరణలలో పేవి 'యదారము'? (A) ఒక్కొళ్ళ కటకం, తలకిండులైన మిథాక్ష కవిపిందాన్ని ఏర్పడున్నుంది (B) వన్ను కటకానికి అతి అల్ప నాధ్యంతరం ఉంటుంది (C) అక్షి కటకాన్ని ఒక నరక అవరనం కలిగించే గాజాగా వాదతాదు
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectivel. (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) సంయుక్త నూక్ర్మదర్శిని నందర్భానికి ఈ డ్రించి విచరణలలో ఏవి 'యదారము'? (A) ఒకొస్టాక్క కటకం, తలడ్రిందులైన మిధాక్ష [పతిచిందాన్ని ఏర్పడున్నుంది (B) చన్ను కటకానికి అతి అల్ప భాధ్యంతరం ఉంటుంది (C) అక్షి కటకాన్ని ఒక నరక ఆచరనం కలిగించే గాజుగా వాదతాడు (D) వన్ను, అక్షికటకాలు చడునగా కుంభాకార, పుటాకార కటకాలు
	 (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) నంయుక్త నూక్ష్మదర్శిని సందర్భానికి ఈ తింది చివరణంలో, ఏవి 'యదారము'? (A) ఒక్కొళ్ళ, కటకం, తలకిండులైన మిధాక్ష (పతిబిందాన్ని ఏర్పరున్నుంది (B) వన్ను కటకానికి అతి అల్ప నాధ్యంతరం ఉంటుంది (C) అక్షి కటకాన్ని ఒక నరక అవరనం కలిగించే గాజాగా వాదతాదు

D

109. A ray of light refracts from medium 1 into a thin layer of medium 2, crosses the layer and is incident at the critical angle on the interface between the medium 2 and 3 as shown in the figure. If the angle of incidence of ray is θ , the value of θ is :

ఒక కాంతి కిరణం యానకం 1 నుంచి యానకం 2 యొక్క పలుచని పొరలోనికి వ్రక్తిభవనం చెందిన తర్వాత దానిని దాటి యానకం 2 మరియు యానకం 3 ల మధ్య గల అంతర ఫలకంపై నంధిగ్ధ కోణం చేన్నూ పతనం చెందుతుంది. కాంతి కిరణం వతన కోణం 9 అయితే, 9 విలువ :

E 2011 D

- 111. If a bar magnet of pole strength *m* and magnetic moment M is cut equally 5 times parallel to its axis and again 3 times perpendicular to its axis, then the pole strength and magnetic moment of each piece are respectively : (దువసత్వం *m*, అయస్కాంత (ఖామకము M గల దండాయస్కాంతాన్ని దాని అర్ధానికి సమాంతరముగా 5 సార్లు సమాచంగాను, అర్ధానికి అంబంగా 3 సార్లు సమానంగాను కోసినవుడు, ఏర్పడే ఒక్కొక్క అయస్కాంతవు ముక్క యొక్క (ధువ సత్వము, అయస్కాంత (ఖామకముల విలువలు వరునగా :

ap	$\frac{m}{20}, \frac{\mathrm{M}}{4}$	(2)	$\frac{m}{5}, \frac{\mathrm{M}}{20}$
(3)	$\frac{m}{6}, \frac{M}{24}$	(4)	$\frac{m}{5}, \frac{M}{24}$

coil of resistance wire, embedded in a block of specific heat 's' and mass 'm' under thermally isolated conditions. If the temperature of the block is raised by 'AT', the potential difference V across the capacitor initially is : බංකුපරංඥ කම්මර ස්රීන් මඩාර්ඩර් සොහු, මඩාර්ඩර්ටු 'C', බ්බඩ අනුඩන්ගුණු සර්දීණාවෙල්',

విశిష్టోస్టర్ ', (దవ్యరాశి 'm' గల ఒక దిమ్మరో పొదిగిన సిరోధం గల చిన్న తీగచుల్ల వ్వారా ఉత్పరం చేసినపుడు దిమ్మ ఉష్యోగత 'AT పరిగితే, ఇపాసిటర్ కొడల మద్య తొలిగా ఉన్న పొటినియల్ తేదా, V పిలువ :

(1)	$\left(\frac{2 ms \Delta T}{C}\right)^2$	(2) $\left(\frac{2 ms \Delta T}{C}\right)^{1/2}$
(3)	$\left(\frac{2 ms \Delta T}{C}\right)$	(4) $2 ms \Delta T C$
		2

Rough Work

114. Two identical condensers M and N are connected in series with a battery. The space between the plates of M is completely filled with a dielectric medium of dielectric constant 8 and a copper plate of thickness $\frac{d}{2}$ is introduced between the plates of N. (d is the distance between the plates). Then potential differences across M and N are, respectively, in the ratio : $\overline{0}0\Delta i \ \Delta\delta_{2} \ \Delta\Delta m \ \delta$ $\overline{\Delta}m \ \Delta\delta \Delta m \ \delta$ $\Delta m \ \delta m \ \delta$ $\Delta m \ \delta m \ \delta$ $\overline{\Delta}m \ \delta m \ \delta m \ \delta$

D

నింపినారు. N కండెన్సర్ పలకల మధ్య $\frac{d}{2}$ మందం గల రాగి పలకను ఉంచినారు. (d అనేది పలకల మధ్య దూరం). అయితే, M, N ల కొనల మధ్య పొొటర్షియల్ తేడాల నిష్పత్తి, / వరునగా:

(1)	1	: 4	(2)	4	-	1
(8)			(4)	1	÷	6

115. The electric current i in the circuit shown is : తింద చూపిన చలయంలో చిద్యుత్నవాహం i విలువ :

Rough Work

(1)

(3)

6A

3A

ఒక వరికల్పిత ఉష్ణయుగ్యం యొక్క ఉష్ణ విద్యుచ్చాలక బలం, వేడి నంధి ఉద్యోగత 0 తో, E = a0 + b0² (వోల్మలలో)గా మారుతుంది. ఇక్కడ నిష్పత్తి a/b 700°C. చల్లని నంధి ఉష్యోగతను 0°C వద్ద ఉంచితే, తటన్న ఉష్యోగత :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) ఈ ఉచ్చయుగ్మానికి తటన్న ఉష్యోగ్రత ఉండటం సాధ్యం కాదు

			Ð.
12	w		
		8 D	
	л	9	

118,	Match	the	following	and	find	the	correct	pairs :	
------	-------	-----	-----------	-----	------	-----	---------	---------	--

	List I		List II				
(a)	Fleming's left hand rule	(e)	Direction of induced current				
(b)	Right hand thumb rule	(4)	Magnitude and direction of magnetic				
			induction				
(c)	Biot-Savart law	(g)	Direction of force due to magnetic				
			induction				
(d)	Fleming's right hand rule	(h)	Direction of magnetic lines due to current				
ఈ (కింది జాబితాలలో నరియైన జంజలను గుర్తించండి :							
	කංඛන I		ertor II				
(a)	్లామింగ్ ఎడమచేతి నిభంధన	(e)	(పేరితి విద్యుత్ చ్రవాహ దశ				
(b)	కుడిచేతి బొటనవేలు నిబంధన	(f)	అయస్కాంత (పేరణ వరిమాణం మరియు దిశ				
(c)	అయాట్ సావర్డ్ నియమం	(g)	అయస్కాంత క్షేతంవల్ల కరిగే బలదిశ				
(d)	్షామింగ్ కుడిచేతి విజంధన	(<i>h</i>)	విద్యుత్ (వవాపాంవల్ల కలిగే అయస్కాంత రేఖల				
			24				
(1)	$(a)\!\!-\!\!(g),(b)\!\!-\!\!(e),(c)\!\!-\!\!(f),(d)\!\!-\!\!(h)$	(2)	(a)-(g),(b)-(h),(c)-(f),(d)-(c)				
(3)	(a) - (f), (b) - (h), (c) - (g), (d) - (e)	(4)	(a)-(h),(b)-(g),(c)-(e),(d)-(f)				

119. A constant voltage of 25 V is applied to a series L-R circuit at t = 0, by closing a switch. What is the potential difference across the resistor and the inductor at time t = 0?

D

 L-R (del about 25 V) of a big day and an harmonic angles 25 V) of a big day where d_{1} and d_{2} and d_{3} an

120. The sensitivity of a galvanometer is 60 divisions/Amp. When a shunt is used, its sensitivity becomes 10 divisions/Amp. If the galvanometer is of resistance 20 Ω, the value of shunt used is :

ఒక గాల్వచామీటర్ యొక్క నూక్ష్మ గ్రాహ్యత 60 విభాగాలు/అంపియర్. ఒక చంట్ సరోధందు వాడినవుడు, దాని నూక్ష్మగాహ్యత 10 విభాగాలు/అంపియర్ అవుతుంది. గాల్వచామీటరు సరోధం 20 Ω లు అయితే, ఉపయోగించిన చంద్ సరోధం పిలువ :

- 4 Ω
 5 Ω
- (3) 20 Ω

(4) 2 Ω