DE 2011 DPHYSICSTwo photons of energy 2.5 eV and 3.5 eV fall on a metal surface of work function1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted from1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted fromthe metal surface is :2.5 eV wdown 3.5 eV \$43_fre down \$P^{*}\$ works 1.5 eV with \$25\$		and the second se	
PHYSICSTwo photons of energy 2.5 eV and 3.5 eV fall on a metal surface of work function1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted fromthe metal surface is:2.5 eV మరియు 3.5 eV శక్తిగల రెండు ఫోటాన్ను 1.5 eV మని (వమేయంగల లో హాతలంపైపథనం చెందినవి. లో హాతలంపై నుండి వెలువడే కాంతి ఎలక్రామల గరిష వేగాల నివృత్తి:(1) 1:4(2) 2:1(3) 1:2Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} fora characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} అయిన ఒక అభిలక్షణ X-కిరణ వర్ధపడుంలో ని k_{α} దేఖ యొర్చతరంగదైర్థాన్ని గణించంది.(1) 1.33 Å(2) 1.33 nm		D	E 2011 D
Two photons of energy 2.5 eV and 3.5 eV fall on a metal surface of work function 1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted from the metal surface is : 2.5 eV మరియు 3.5 eV శక్తిగల రెండు ఫోటాన్ను 1.5 eV పని (పమేయంగల లో హాతలంపై వతనం చెందినవి. లో హాతలంపై నుండి వెలువడే కాంతి ఎలక్టానుల గరిష వేగాల నిష్పత్తి: (1) 1 : 4 (2) 2 : 1 (3) 1 : 2 (4) 1 : $\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} కాయిన ఒక అభిలక్షణ X-కిరణ వర్షపడులలో ని k_{α} దేఖ యొకర్భ తరంగదైర్థాల్లైన్ని గణించండి. (1) 1.33 Å (2) 1.33 nm		an a	
1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted from the metal surface is : 2.5 eV మరియు 3.5 eV కక్తిగల రెండు ఫోటాన్లు 1.5 eV పని (వమేయంగల లో హతలంపై వతనం చెందినవి. లో హతలంపై నుండి వెలువడే కాంతె ఎలక్షానుల గరిష వేగాల నిష్పత్తి: (1) 1 : 4 (2) 2 : 1 (3) 1 : 2 (4) 1 : $\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} కాయిన ఒక అభిలక్షణ X-కిరణ వర్తవటంలో ని k_{α} రేఖ యొర్చ తరంగవైర్హాత్రిన్ని గణించండి. (1) 1.33 Å (2) 1.33 nm		PHYSICS	
1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted from the metal surface is : 2.5 eV మరియు 3.5 eV కక్తిగల రెండు ఫోటాన్లు 1.5 eV పని (వమేయంగల లో హతలంపై వతనం చెందినవి. లో హతలంపై నుండి వెలువడే కాంతె ఎలక్షానుల గరిష వేగాల నిష్పత్తి: (1) 1 : 4 (2) 2 : 1 (3) 1 : 2 (4) 1 : $\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} కాయిన ఒక అభిలక్షణ X-కిరణ వర్తవటంలో ని k_{α} రేఖ యొర్చ తరంగవైర్హాత్రిన్ని గణించండి. (1) 1.33 Å (2) 1.33 nm	Two photons of energy 2.5	eV and 3.5 eV fall on a metal (surface of work function
the metal surface is : 2.5 eV మరియు 3.5 eV శక్తిగల రెండు ఫోటాన్లు 1.5 eV పని (వమేయంగల లో హతలం పై వతనం చెందినవి. లో హతలం పై నుండి వెలువడే కాంతి ఎలక్టానుల గరిష వేగాల నిష్పత్తి: (1) 1 : 4 (2) 2 : 1 (3) 1 : 2 (4) 1 : $\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} అయిన ఒక అభిలక్షణ X-కిరణ వర్షపటంలో ని k_{α} దేఖ యొకర్ర తరంగవైర్యాత్రిన్ని గణించండి. (1) 1.33 Å (2) 1.33 nm			
2.5 eV మరియు 3.5 eV కక్తిగల రెండు ఫోటాన్న 1.5 eV పని (వమేయంగల లో హతలర పై సతనం చెందినవి. లో హతలర పై నుండి వెలువడే కాంతి ఎలక్రామల గరిష వేగాల నివృత్తి: (1) 1:4 (2) 2:1 (3) 1:2 (4) $1:\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} అయిన ఒక అభిలక్షణ X-కిరణ వర్షపడంలో ని k_{α} దేఖ యొకర్ర తరంగదైర్యాల్లోన్ని గణించండి. (1) 1.33 Å (2) 1.33 nm		invinium venocines of the prove	
వతనం చెందనవి. ల్*హతలంపై నుండి వెలువడే కాంత్ ఎలక్రానుల గరిష వేగాల నిష్పత్తి: (1) 1:4 (2) 2:1 (3) 1:2 (4) 1: $\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} అయిన ఒక అభిలక్షణ X-కరణ వర్షవటంలోని k_{α} రేఖ యొరం తరంగదైర్యాల్లెన్ని గణించండి. (1) 1.33 Å (2) 1.33 nm			
(1) 1:4 (2) 2:1 (3) 1:2 (4) $1:\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} sound us whether a source λ_{α} dw dustr source λ_{α} dw dustr (1) 1.33 Å (2) 1.33 nm			
(3) $1:2$ (4) $1:\sqrt{2}$ Calculate the wavelength of the k_{α} line for $z = 31$ when $a = 5 \times 10^7$ Hz ^{1/2} for a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7$ Hz ^{1/2} sound as species X-2008 access k_{α} de alustr $\delta 0 \cap \overline{ac}_{\mu\nu}$ de alustr (1) 1.33 Å (2) 1.33 nm	వతనం చెందినవి. లో హతలం		ಬರ ಗಂಪ್ತೆ ವಗ್ ಅಪ್ಪಿಕ್ತ:
Calculate the wavelength of the k_{α} line for $z = 31$ when $\alpha = 5 \times 10^7 \text{ Hz}^{1/2}$ for a characteristic X-ray spectrum. $z = 31, \alpha = 5 \times 10^7 \text{ Hz}^{1/2} \mod \alpha \text{ spectrum}$. $z = 31, \alpha = 5 \times 10^7 \text{ Hz}^{1/2} \mod \alpha \text{ spectrum}$. $\delta 0 \circ har constants of the second of the sec$	(1) 1:4		
a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7 \text{ Hz}^{1/2} \mod a s person X-s or scales of 3 k_a d p dustsoon d \sigma_{ab} and k_a d p dust(1) 1.33 Å (2) 1.33 nm$	(3) 1:2	(4) $1:\sqrt{2}$	
a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7 \text{ Hz}^{1/2} \mod a s person X-s or scales of 3 k_a d p dustsoon d \sigma_{ab} and k_a d p dust(1) 1.33 Å (2) 1.33 nm$	Calculate the wavelength	of the k_a line for $z = 31$ whe	$a = 5 \times 10^7 \text{ Hz}^{1/2}$ for
$z = 31, a = 5 \times 10^7 \text{ Hz}^{1/2}$ అయిన ఒక అభిలక్షణ X-కిరణ వర్ధవటంలో స్ k_{α} రేఖ యొక్క తరంగదైర్మాత్రిన్ని గణించండి. (1) 1.33 Å (2) 1.33 nm			
తరంగదైర్హాత్రిమ్ని గణించండి. (1) 1.33 Å (2) 1.33 nm			రవటంలోని k, రేఖ యొక్క
(1) 1.33 Å (2) 1.33 nm			5. 1 2 P. M.
10		(9) 1.33 nm	
(3) 133×10^{-10} m (4) 133 m	10		
	(3) 133×10 m	(4) 135 min	and the second state of the second
If 200 MeV of energy is released in the fission of one nucleus of $\frac{235}{52}$ U, the number of nuclei that must undergo fission to release an energy of 1000 J is :			
of nuclei that must undergo fission to release an energy of 1000 J is : සු ²³⁵ U අද්ධත් කිසිටුමු බිරසින්තුරා බ්රාස්පණිදු අදු 200 MeV පොස් 1000 J	శక్తి విడుదలచేయుటకు ఎన్ని	ని కేందరాలు విచ్చిత్రికి లోనుకాన	కలెను?

- (i) 3.125×10^{13} (2) 6.25×10^{13}
- (3) 12.5×10^{13} (4) 3.125×10^{14}

Rough Work

81.

82.

83.

				D	18 miles			E 201
84.	In	a <i>p-n</i> junction o	liode the thickr	less of	l depletion	laver is	2 × 10 ⁻⁶ m	and he
	pot	ential is 0.3 V	. The intensity	of th	e electric	field at	the innetic	anu na
	(1)	0.6×10^{-6}	Vm^{-1} from <i>n</i> i	o P s	de		. me Junen	AL 15 .
	(2)	0.6×10^{-6}	Vm ⁻¹ from P t	o n si	de			
	(3)	1.5×10^{5} V	m^{-1} from <i>n</i> to	P sic	le			
	(4)	1.5×10^{5} V	m ⁻¹ from P to	n sic	e			
	65)	p-n నంధి డయోడీ	్ లేమి పొర మంద	602×1	0 ⁻⁶ m ము	రియు అవ	5్ద పొందిం	8.50.3
	4.5	్టది. అయిన నంభి	చద విద్యుత్ కేగ	8 8,5	¥ :		4	~~~
	(1)	0.6×10^{-6} \	√m ^{−1} n ∞oå 1	3 20	6			
	(2)	0.6×10^{-6} V	m^{-1} P mod 7	1 20 20 20	í.			
	(3)		m ⁻¹ n 2008 P					
	(4)	1.5×10^5 V	m^{-1} P $main$	వెపుకు				
85.	1-11	dimensional in agnetic field in	formula of $\frac{1}{2}$ intensity) is :	μ ₀ H ²	$\langle \mu_0 - P e \rangle$			
85.	1 2 μ δ(Δ)	dimensional) tagnetic field in t ₀ H ² බාාපු, ඛාව න්) : MLT ⁻¹	formula of $\frac{1}{2}$ intensity) is :	μ ₀ Η ² - స్వే	(p ₀ – Pe නා දුසුස්ත			
85.	1-1 2 2 2	dimensional tagnetic field in t ₀ H ² බොහු, ඛාව ර) :	formula of $\frac{1}{2}$ intensity) is :	μ ₀ Η ² - స్వే	$\langle \mu_0 - P e \rangle$			
, en 1	1-m 1 μ δ(3) (1)	dimensional tagnetic field in ₀ H ² කියනු, කිය න) : MLT ⁻¹ ML ⁻¹ T ⁻²	formula of $rac{1}{2}$ ntensity) is : సహాత్రము (μ_0	$\mu_0 H^2$ - 5_{23} (2) (4)	(µ ₀ – Pe ಸ್ಟ್ ಟ್ರವೆಕ ML ² T ⁻² ML ² T ⁻¹	(బదిశ్యక	లత H-అయ	>,₀a
<u>معنی</u>	1-m 1/2 μ δ(3) (1) (3)	dimensional hagnetic field in h ₀ H ² ඔොරු, ඛාද රෝ : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in	formula of $rac{1}{2}$ ntensity) is : i నూర్షతము (µ ₀ the xy plane h	$\mu_0 H^2$ - 3_{22} , (2) (4) as an	(µ ₀ – Pe නා යුක්ෂ ML ² T ⁻² ML ² T ⁻¹ r compon	(వచెళ్యకి ent of 4	වර H-ෂැතා) m and a y c	≫ _∂ oð
<u>معني</u>	1-m 1 2 μ δ(Δ) (1) (3) A ce of 1(dimensional hagnetic field in h ₀ H ² ඔොරු. ඩාව න්) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is then	formula of $rac{1}{2}$ ntensity) is :) నూరైతము (µ ₀ the xy plane h rotated in the	$\mu_0 H^2$ $= 3_{22}$ (2) (4) as an xy pla	(µ ₀ – Pe කා යුත්ෂ ML ² T ⁻² ML ² T ⁻¹ r compon	(వచెళ్యకి ent of 4	වර H-ෂැතා) m and a y c	≫ _∂ oð
<u>معني</u>	1-m 1 2 μ δ(Δ) (1) (3) A ce of 10 Then	dimensional hagnetic field in h ₀ H ² ඔොරු, ඛාද රෝ : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in	formula of $rac{1}{2}$ ntensity) is :) నూరైతము (µ ₀ the xy plane h rotated in the	$\mu_0 H^2$ -32 (2) (4) as an xy plu proxim	(µ ₀ – Pe කා යුත්ත ML ² T ⁻² ML ² T ⁻¹ r compon me so the	(వచెళ్యకి ent of 4	වර H-ෂැතා) m and a y c	≫ _∂ oð
86.	1-m 1 2 μ δ(5) (1) (3) A ce of 10 Then (1)	dimensional hagnetic field in t ₀ H ² ເປັນອັງ. ລິມຄ ອັ) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is then i its new y cor	formula of $rac{1}{2}$ ntensity) is :) నూరైతము (µ ₀ the xy plane h rotated in the	$\mu_0 H^2$ $- \overline{2} (2)$ (4) as an xy plz proxim (2)	(µ ₀ - Pe ³ ි (නිස් ML ² T ⁻² ML ² T ⁻¹ r compon ine so the nately) : 7.2 m	(వచెళ్యకి ent of 4	වර H-ෂැතා) m and a y c	≫ _∂ oð
86.	1-m 1 2 μ δ (Σ) (1) (3) A ce of 1(Ther (1) (3)	dimensional hagnetic field in hagnetic field in hagnetic field in hagnetic field in both field in the MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is then h its new y cor 20 m 5.0 m	formula of $rac{1}{2}$ ntensity) is :) నూరైతము (µ ₀ the xy plane h rotated in the nponent is (ap	$\mu_0 H^2$ $= 32$ (2) (4) (4) as an proxim (2) (4) (4)	$(\mu_0 - Perind Perind$	(పవిశ్యక ent of 4 at its x-c	oð H-scai m and a y c omponent i	≫ _∂ oĕ sompor
86.	1-m 1 2 μ δ (Δ) (1) (3) A ce of 1(Then (1) (3) xy č	dimensional hagnetic field in toH ² ເປັນຮັງ. ລິມຄ ອັ) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is then h its new y cor 20 m 5.0 m ແລະເຮົ້າ 2 ແຮ້ ສ	formula of $\frac{1}{2}$ ntensity) is :) నూర్షతము (µ ₀ the xy plane h rotated in the nponent is (ap	μ ₀ H ² - うご (2) (4) as an xy plz proxim (2) (4) soをあい	(μ_0 — Pe デン (認認来 ML ² T ⁻² ML ² T ⁻¹ x component intely): 7.2 m 4.5 m 4.5 m	(బవిశ్యక ent of 4 at its x-0 90ళము 1	වර H-පැරාබ m and a y c omponent i 0 කි. කිතුතු	> _∂ oĕ compos s doub
86.	1.m 1 2 μ â(5) (1) (3) A ce of 1(Ther (1) (3) xy čí δ do	dimensional hagnetic field in hagnetic field in hagnetic field in hagnetic field in both field in the MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is then h its new y cor 20 m 5.0 m	formula of $\frac{1}{2}$ ntensity) is :) నూర్షతము (µ ₀ the xy plane h rotated in the nponent is (ap	μ ₀ H ² - うご (2) (4) as an xy plz proxim (2) (4) soをあい	(μ_0 — Pe デン (認認来 ML ² T ⁻² ML ² T ⁻¹ x component intely): 7.2 m 4.5 m 4.5 m	(బవిశ్యక ent of 4 at its x-0 90ళము 1	වර H-පැරාබ m and a y c omponent i 0 කි. කිතුතු	bgoĕ compon s doub
86.	1 1 2 μ 3 (3) A ce of 1(Then (1) (3) XY 3 (3) C d o (3) (3) (3) (3) (3) (3) (3) (3)	dimensional hagnetic field in toH ² ເປັນຮັງ. ລິມຄ ອັ) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in 0 m. It is then 1 its new y cor 20 m 5.0 m 5.0 m ຈຸລມອ້ຽງ ພຣ ;	formula of $\frac{1}{2}$ ntensity) is :) నూర్షతము (µ ₀ the xy plane h rotated in the nponent is (ap	μ ₀ H ² - シッ (2) (4) as an xy plz proxim (2) (4) soをあい	(μ_0 — Pe デン (認認来 ML ² T ⁻² ML ² T ⁻¹ x component intely): 7.2 m 4.5 m 4.5 m	(బవిశ్యక ent of 4 at its x-0 90ళము 1	වර H-පැරාබ m and a y c omponent i 0 කි. කිතුතු	bgoĕ compon s doub

D

87.

A police party is moving in a jeep at a constant speed v. They saw a thief at a distance x on a motorcycle which is at rest. The moment the police saw the thief, the thief started at constant acceleration a. Which of the following relations is true if the police is able to catch the thief ?

ఒక జీవులో 🗸 నదువేగముతో చెలించుచున్న పోలీసులు 🛪 దూరములో నిశ్చల స్థితిలోనున్న మోటరు సైకిల్పై ఉన్న ఒక దొంగను చూశారు. పోలీసులు చూసిన వెంటనే దొంగ α నమత్వరణముతో పారిపోయాడు. పోలీనులు ఆ దొంగను చట్టకొనినట్రయితే (కింది నంబంధాలలో పడి నరియొనది ? $v^2 < \alpha x$

- $-(2) v^2 < 2\alpha x$ (1)(4) $v^2 = \alpha x$ $v^2 > 2\alpha x$ (3)
- 88. A 1 N pendulum bob is held at an angle 0 from the vertical by a 2 N horizontal force F as shown in the figure. The tension in the string supporting the pendulum bob (in Newtons) is

ఒక 1 N లోలకవు గుండును, 2 N పెలువగల F అనే క్షితిజ నమాంతర బలము ద్వారా నిలువుతలముతో 0 కోడాము చేయునట్ల (పటములో చూపినట్ల) ఉంచబడినది. లోలకపు తీగలో గల తన్నత (మ్యాటన్లో) :

15

(1)

(3)

D

89.

The maximum tension a rope can withstand is 60 kg wt. The ratio of maximum acceleration with which two boys of masses 20 kg and 30 kg can climb up the rope at the same time is :

ఒక తాడు తట్టుకో కలిగిన గరిష్ఠ తన్యత 60 kg wt. 20 kg మరియు 30 kg ద్రవ్యరాశులు గల ఇద్దరు బాలురు బకేసారి తాడు మీదకు పారుచున్న, వారి గరిష్ఠ త్వరణాల నిష్పత్తి:
(1) 1:2
(2) 2:1
(3) 4:3
(4) 3:2

90.

A ball is let fall from a height h_0 . It makes *n* collisions with the earth. After '*n*' collisions it rebounds with a velocity ' v_n ' and the ball rises to a height h_n , then coefficient of restitution is given by :

h₀ ఎత్తు నుండి ఒక బంతి (కిందపడునట్లు చేయబడినది. అది భూమితో n అభిభూతాలు చేసినది. 'n' అభిభూతాల తరువాత వేగము 'v_n' తో అది పైకి లేచింద మరియు ఆ బంతి h_n ఎత్తుకు ఎగిరినచో (వత్యావ్యస్తాన గుజకము :

(1)
$$e = \left[\frac{h_n}{h_0}\right]^{1/2n}$$

(2) $e = \left[\frac{h_0}{h_n}\right]^{1/2n}$
(3) $e = \frac{1}{n}\sqrt{\frac{h_n}{h_0}}$
(4) $e = \frac{1}{n}\sqrt{\frac{h_0}{h_n}}$

91. A circular disc of radius 'R' is removed from a bigger circular disc of radius '2R' such that the circumferences of the discs touch. The centre of mass of the new disc is at a distance 'αR' from the centre of the bigger disc. The value of 'α' is.

'R' వ్యాసార్థము గల ఒక చృత్తార దిర్శను 2R' వ్యాసార్థము గల ఒక పెద్ద బిళ్ళ నుండి వాని పరిధులు తాకునట్ల తొలగించినారు. పెద్ద బిళ్ళ కేంద్రము నుండి కొత్త బిళ్ళ యొక్క ద్రవ్యరాశి కేంద్రము దూరం 'αR' అయిన 'α' బిలువ :

(1)	$\frac{1}{2}$	(2) $\frac{1}{3}$
(3)	$\frac{1}{4}$	(4) $\frac{1}{6}$

A uniform chain of length L is lying on the horizontal table. If the coefficient of friction between the chain and the table top is ' μ ', what is the maximum length of the chain that can hang over the edge of the table without disturbing the rest of the chain on the table ?

L పొడవు గల ఒక ఏకరీతి గొలును క్రితిజ నమాంతర బల్లపై నున్నది. గొలును మరియు బల్లపై భాగముల మధ్య ఘర్షణ గుణకము 'µ' అయిన, బల్లపై గల మిగిలిన గొలును స్థితిని మార్చకుండా, బల్ల అంచు నుండి (వేలాడవలసిన గొలును గరిష పొడవ) ఎంత?

(1)	$\frac{L}{(1+\mu)}$	(2)	$\frac{\mu L}{(1+\mu)}$
105	L		μL
(3)	$(1 - \mu)$	(4)	$\overline{(1-\mu)}$

93. Two uniform circular discs having the same mass and the same thickness but different radii are made from different materials. The disc with the smaller rotational inertia is :

(1) the one made from the more dense material

(2) the one made from the less dense material

(3) the disc with the larger angular velocity

(4) the disc with the larger torque

ఒకే దవ్యరాళి ఒకే మందము గల రెండు ఎకరీతి వృత్తాకార బిళ్ళలు చిభిన్ను పదార్శాలతో చేయబడినవి. కాని వాటి వ్యాసార్థములు వేరు. తక్కువ జడత్వ (భామకము గల బిళ్ళ:

ఎక్కువ సాందర గల వదార్గముతో చేయబడినది

(2) తక్కువ సాందర్ గల వదార్థముతో చేయబడినద

(3) ఎక్కువ కోణియ వేగము గల దిళ్ళ

(4) ఎక్కువ బలభామకము (భార్క్) గల బిళ్ళ

Rough Work

92.

D

A thin hollow sphere of mass 'm' is completely filled with a liquid of mass 'm'. 94. When the sphere rolls with a velocity 'c', kinetic energy of the system is (neglect friction) :

'm' దవ్యరాశి గల ఒక పలుచని బోణు గోశము 'm' దవ్యరాశి గల దవముతో పూర్తిగా నింథబడినది. గోళము 'ల' వేగముతో దొర్తుచున్న, ఆ వ్యవస్థ గతిజ శక్తి (ఘరణను పరిగతించుల きな):

(1)	$\frac{1}{2}$ mv ²	(2)	mv^2
(3)	$\frac{4}{3} mv^2$	(4)	$\frac{4}{5}mv^2$

95.

Reason

Assertion (A) : An astronaut inside a massive spaceship orbiting around the earth will experience a finite but small gravitational force. (R) : The centripetal force necessary to keep the spaceship in orbit around the earth is provided by the gravitational force between the earth and the spaceship.

Both (A) and (R) are true and (R) is the correct explanation of (A) (1)

Both (A) and (R) are true and (R) is not the correct explanation of (A) (2)

(A) is true but (R) is not true (3)

(A) is not true but (R) is true (4)

నిళ్ళితము (A) : భూమి చుట్నా వర్శిథమించుచున్న బరువైన అంతరిక్ర నౌకలో గల వ్యోమగామి వరిమీత తక్కువ గురుత్వాకరణ జలాన్ని అనుభూతి చెందును.

కారణము (R) : అంతరిర్ష నౌకను భూమిచుట్నా కర్ష్యలో వుంచులకు అవనరమైన అధికేంద్ర బలాన్ని, భూమి మరియు అంతరికై నౌక మధ్య గల గురుల్చాకరణ జలం సమహారుస్తుంది.

- (A) మరియు (R) రెండూ పరియొనపి (A) కు (R) పరియొన పేవరణ (1)
- (A) మరియు (R) రెండూ సరియైనపి (A) కు (R) పరియైన వివరణ కాదు (2)

(A) నరియొనది, కాని (R) నరియొనది కాదు (3)

(A) నరియెనది కాదు, కాని (R) నరియెనది (4)

Rough Work

E 2011 D

ఒక నరళ పారాత్మక డోలకం 'm' స్రవ్యరాశి గల ఒక కణమును మరియు బలస్త్రిరాంకము 'k' కలిగిన ఒక అదర్శ స్ప్రింగును కలిగియున్నది. ఆ కణము T' డోలనావర్షన కాలముతో డోలనాలు చేస్తుంది. ఆ స్ప్రింగును రెండు నమాన భాగములుగా చేసినారు. ఒక భాగము అదే కణముతో డోలనాలు చేస్తే, డోలనావర్షన కాలము :

(1)	2T	(2)	$\sqrt{2}T$
105	T/√2	(4)	$\frac{T}{2}$
(9)	17√2	(4)	2

97. Two blocks of masses 1 kg and 2 kg are connected by a metal wire going over a smooth pulley. The breaking stress of metal is $\frac{40}{3\pi} \times 10^6 \text{ Nm}^{-2}$. What should be the minimum radius of wire used if it should not break ? $(g = 10 \text{ ms}^{-2})$

1 kg మరియు 2 kg ద్రవ్యరాశులు గల రెండు దిమ్మలు ఒక లోపావు తీగతో కలువబడి. ఒక నునుపైన కప్పేపుడుగా పోనిచ్చారు. ఆ లోపాపు పిచ్చేదన (పతిజలము $\frac{40}{3\pi} \times 10^6 \ {\rm Nm}^{-2}$. తీగ తెగకుండా ఉండవలెనన్న తీగ కనిష్ వ్యాసాధ్యు ఎంత? (g = 10 ms⁻²)

(1) 0.5 mm (2) 1 mm (3) 1.5 mm (4) 2 mm

98.

If two soap bubbles of different radii are connected by a tube, then :

- Air flows from bigger bubble to the smaller bubble till sizes become (1)equal
- Air flows from bigger bubble to the smaller bubble till sizes are inter-(2)changed
- Air flows from smaller bubble to bigger (3)
- (4) There is no flow of air
- రెండు విభిన్న వ్యాసారాలు గల రెండు పబ్బు నీటి బుడగలను ఒక గొట్టముతో కలిపిన:
- వాటి పరిమాణాలు ఒకటయ్యే వరకు గాలి పెద్ద బుడగ నుండి చిన్న బుడగకు (1)|వవహించును
- వాటి పరిమాణాలు తారుమారు అయ్యేవరకు గాలి పెద బుడగ నుండి చిన్న (2)బుడగకు | పవహించును
- గాలి చిన్న బుడగ నుండి పెద్ద బుడగకు (వవహించును (3)
- గాల్ (వవాహము ఉండదు (4)
- A large open tank has two holes in the wall. One is a square hole of side 'L' 99. at a depth 'y' from the top and the other is a circular hole of radius R at a depth '4y' from the top. When the tank is completely filled with water, the quantities of water flowing out per second from the two holes are the same. Then value of R is :

ఒక తెరచి ఉన్న పెద్ద తొట్టి గోడకు రెండు రంద్రాలను కల్లియున్నది. ఒకటి పైభాగము నుండి 'y' లో తులో 'L' పొడవు గల చతుర్రసాకార రంద్రము, రెండవది పైభాగము నుండి '4y' లో శులో 🕆 వ్యాసార్థము గల వృత్తాకార రంద్రము. తొట్టిని, పూర్తిగా నీటితో నింపినపుడు రెండు రంభాల నుండి సెకనులో (భవహించే సీటి పరిమాణాలు నమానము. అయిన R విలువ :

(1)	$\frac{L}{\sqrt{2\pi}}$	(2)	2πL
(3)	$L\sqrt{\frac{2}{\pi}}$	(4)	$\frac{L}{2\pi}$

Rough Work

E 2011 D

A non-conducting body floats in a liquid at 20°C with $\frac{2}{3}$ of its volume immersed 100. in the liquid. When liquid temperature is increased to 100°C, $\frac{3}{4}$ of body's volume is immersed in the liquid. Then the coefficient of real expansion of the liquid is (neglecting the expansion of container of the liquid) : 20°C ఉష్యోగత వద్ద ఉన్న గ్రదములో ఒక వాపాఠత్వము లేని వస్తువు. దాని ఘనవరిమాణములో వంతు మునిగినది. ద్రవ ఉష్యోగతను 100°C కు పెంచినవుడు ఆ వస్తువు. దాని 2 3 ఘనపరిమాణములో $rac{3}{4}$ వంతు మునిగినది. ద్రవము యొక్క నిజ ప్యారోచ గూడకము, (ద్రదము ఉన్న హెత్ర యొక్క వ్యాకోచాన్ని పరిగణించుల లేదు) : $15.6 \times 10^{-4} \, {}^{\circ}\mathrm{C}^{-1}$ (2) $156 \times 10^{-4} {}^{\circ}\mathrm{C}^{-1}$ (1)(4) $0.156 \times 10^{4} \text{°C}^{-1}$ $1.56 \times 10^{-4} \text{ C}^{-1}$ (3)

D

An insulated cylindrical vessel filled with an insulated piston of negligible weight 101. and negligible thickness at the mid point of the vessel. The cylinder contains a gas at 0°C. When the gas is heated to 100°C, the piston moves through a length of 5 cm. Length of the cylindrical vessel in cm is :

ఒక ఉపలంధక నూపాకార ప్రాతయందు వరిగణించలేని భారము మరియు వరిగణించలేని మందముగల ఉచ్చ బంధక ముషలకము ఆ ప్రాత మధ్య బిందువు దగ్గర బిగించబడినది. ఆ న్యూవము 0°C వద్ద వాయువును కలిగి యున్నది. వాయువును 100°C కు వేడిచేసినపుడు ముషలకము 5 సెం.మీ. పొడవు చరించినది. ద్రూపాకార పొత్ర పొడవు (సెం.మీ.లలో) (1)

64.6

- (2) 27.3 13.65
- (8)38.6

Rough Work

35 P

(4)

	D	E 2011 D
102.		, the efficiency of the engine is doubled. k are : [త్కమణియ యంత్రము పనిగా మార్పును.
103.	During an adiabatic process, the pressure of its temperature. The value of C_p/C_v ພຣ ກັບປີ ລະ (ລະເລີຍ ເລຍ ເລຍ ເລຍ ເລຍ ເລຍ ເລຍ ເລຍ ເລຍ ເລຍ ເລ	for that gas is :
	అనులో మానుహేతములో ఉన్నది. ఆ వాయు	వునకు C _p /C _v పెలువ :
	(1) $\frac{7}{5}$ (2)	$\frac{4}{5}$
	(3) $\frac{5}{3}$ (4)	$\frac{3}{2}$
104.	end to end to form a composite slab. The	thermal conductivities of A and B are
	$k_1^{i'}$ and $k_2^{i'}$ respectively. A steady temper	
	across the composite slab. If $k_1 = \frac{k_2}{2}$,	the temperature difference across slab
	A is : విధిన్న వదారాలతో చేయటడిన ఒకే మందన నంయుక్త దిమ్య అగునట్లగా కొనకు కొన వరునగా 'k ₁ ' చురియు 'k ₂ ' ఆ నంయుక్త ది	టు గల రెండు దిమ్మలు A మరియు B, ఒర కలుపబడినవి. A, B ఉద్దవహన గుజరాలు మ్యకు నిలకడగా 12°C ఉహ్బేగతా బేధము
	A is: పెధిన్న వదారాలతో చేయటడిన ఒకే మందన నంచున దేవు జరునటుగా కొనకు కొన	టు గల రెండు దిమ్మలు A మరియు B, ఒక కలుపబడినవి. A, B ఉద్దవహన గుజకాల మ్మకు నిలకడగా 12°C ఉహ్బేగతా బేధమ
	A is : పెధిన్న వదారాలతో చేయటడిన ఒకే మందన నంయుక్త దిమ్మ అగునట్లగా కొనకు కొన వరునగా k_1 చురియు k_2 ఆ నంయుక్త ది కటుగచేయటడినది. $k_1 = \frac{k_2}{2}$ అయిన A చి	టు గల రెండు దిమ్మలు A మరియు B, ఒర కలుపబడినవి. A, B ఉద్దవహన గుజరాలు మ్యకు నిలకడగా 12°C ఉహ్బేగతా బేధము

- D
- 105. The wavelengths of two sound notes in air are $\frac{40}{195}$ m and $\frac{40}{193}$ m. Each note produces 9 beats per second separately with a third note of fixed frequency. The velocity of sound in air in m/s is :

గాలలో రెండు ధ్వవి స్వరాలు $\frac{40}{195}$ m మరియు $\frac{40}{193}$ m తరంగదైర్థాన్రాలను కళిగి ఉన్నాయి. (పతి స్వరం, స్థిర పౌనంపున్యం గల ఒక మూడవ స్వరంతో సెకనుకు 9 విన్ఫందనాలు నృష్టిస్తోంది. గాలిలో ధ్వవి వేగము (మీ. సెలలో): (1) 360 (2) 320

- (3) 300 (4) 340

The focal length of a lens of dispersive power 0.45 which should be placed in 107. contact with a convex lens of focal length 84 cm and dispersive power 0.21 to make the achromatic combination from the two lenses, in cm is : 0.45 విక్షేషణ సామర్యం గల కటకాన్ని, 84 సెం.మీ.ల నాధ్యంతరం మరియు 0.21 విక్షేషణ సామర్యం గల కుంభాకార కటకంతో స్పర్శిన్నూ ఉన్నవ్పుడు. ఆ రెండు కటకాలు ఒక అవర్షక సంయోగంగా వనిచేయవలెనం ఓ. కటఠానికి ఉండవలసిన నాభ్యంతరం విలువ (Too. 20.00°) : (2) 90 (1)45 (4) -180 180 (3)108. Which of the following statements are true in the context of a Compound Microscope ? Each lens produces a virtual and inverted image (A) The objective has a very short focal length (B) The eyepiece is used as a simple magnifying glass (C) The objective and eyepiece are convex and concave lenses respectively (D) (B) and (C) (2)(A), (B) and (D) (1)(4) (B) and (D) (3)(A), (C) and (D) నంయుక్త సూక్ష్మదర్శిని సందర్భానికి ఈ (కింది వివరణంలో ఏవి 'యదార్గము'? ఒక్కొక్క కటకం, తలకిందులైన మథ్యా (భతిబిందాన్ని ఏర్పరుస్తుంది (A) వస్తు కటకానికి అతి అల్ప నాధ్యంతరం ఉంటుంది (B) అక్షి కటరాన్ని ఒక నరళ అవరైనం కలిగించే గాజాగా వాడతారు (C) వస్తు, అక్షికటకాలు వరునగా కుంభాకార, పుటాకార కటకాలు (D) (2) (B) あいものかい (C) (A), (B) మరియు (D) (1) (4) (B) あるない (D) (A), (C) ಮರಿಯು (D) (3)

Rough Work

D

109. A ray of light refracts from medium 1 into a thin layer of medium 2, crosses the layer and is incident at the critical angle on the interface between the medium 2 and 3 as shown in the figure. If the angle of incidence of ray is θ, the value of θ is :

ఒక కాంతి కిరణం యానకం 1 నుంచి యానకం 2 యొక్క పలుచని పొరలోనికి వడ్రీభవనం చెందిన తర్వాత దానిని దాటి యానకం 2 మరియు యానకం 3 ల మధ్య గల అంతర ఫలకంపై నంధిగ్ధ కోణం చేన్నూ `వతనం చెందుతుంది. రాంతి కిరణం వతన కోణం 9 అయితే, 9 విలువ :

E 2011 D

- 111. If a bar magnet of pole strength m and magnetic moment M is cut equally 5 times parallel to its axis and again 3 times perpendicular to its axis, then the pole strength and magnetic moment of each piece are respectively : (ధువనత్వం m, అయస్కాంత బ్రామకము M గల దండాయస్కంతాన్ని దాని అక్రానికి నమాంతరముగా 5 సార్లు నమానంగాను, అక్రానికి అంబంగా 3 సార్లు నమానంగాను కోసినవుడు. ఏర్పడే ఒక్కొక్క అయస్కాంతవు ముక్క యొక్క (ధువ నత్వము, అయస్కాంత బ్రామకముల

ఏలువలు చరునగా :

ab	$\frac{m}{20}, \frac{\mathrm{M}}{4}$	(2)	$\frac{m}{5}, \frac{\mathrm{M}}{20}$
(3)	$\frac{m}{6}, \frac{M}{24}$	(4)	$\frac{m}{5}, \frac{M}{24}$

113. A fully charged capacitor has a capacitance 'C'. It is discharged through a small coil of resistance wire, embedded in a block of specific heat 's' and mass 'm' under thermally isolated conditions. If the temperature of the block is raised by 'AT', the potential difference V across the capacitor initially is :

నంపూర్తంగా ఆవేళితం చేసిన కెపాసిటర్ యొక్క కెపాసి ఓస్స్ 'C'. దీనిని ఉచ్చదియక్త చరిస్తికుంలో. విశిషోషం 's', దవ్యరాశి 'm' గల ఒక దిమ్మలో పొదిగిన నిరోథం గల చిన్న 'తీగచుట్ట ద్వారా ఉత్సరం చేసినవుడు దిమ్మ ఆష్మోగత 'AT' పెరిగితే, కెపాసిటర్ కొడల మద్య కొలిగా ఉన్న పొటన్లియల్ తేడా, V పిలుచ :

(1)	$\left(\frac{2 ms \Delta T}{C}\right)^2$	(2) $\left(\frac{2 ms \Delta T}{C}\right)^{1/2}$	
(8)	$\left(\frac{2\ ms\ \Delta T}{C}\right)$	(4) 2 ms $\Delta T, C$	

Rough Work

114. Two identical condensers M and N are connected in series with a battery. The space between the plates of M is completely filled with a dielectric medium of dielectric constant 8 and a copper plate of thickness $\frac{d}{2}$ is introduced between the plates of N. (d is the distance between the plates). Then potential differences across M and N are, respectively, in the ratio : $\overline{0}040 \ \overline{0}5 \ \overline{0}45 \ \overline{0}45 \ \overline{0}65 \ \overline{0}45 \ \overline{0}65 \ \overline{0}45 \ \overline{0}75 \ \overline{0}75$

D

నింపినారు. N కండెన్సర్ పలకల మధ్య $\frac{d}{2}$ మందం గల రాగి పలకను ఉంచినారు. (d అనేది వలకల మధ్య దూరం). అయితే, M, N ల కొనల మధ్య పొలన్నియల్ తేడాల నివృత్తి, /వరునగా:

(1) /	1	: 4	(2)	4	; 1
1000		: 8	(4)	1	: 6

115. The electric current i in the circuit shown is : తింద చూపిన చలయంలో విద్యుత్పవాహం i విలువ :

Rough Work

(1)

(3)

116. In the circuit shown below, the ammeter reading is zero. Then the value of the resistance R is :

D

ర్రింద చూపిన చలయంలో అమ్మీటర్ రీడింగు దున్నా. అయితే నిరోధం ${f R}$ విలువ :

117. The thermo e.m.f. of a hypothetical thermocouple varies with the temperature θ of hot junction as $E = a\theta + b\theta^2$ in volts, where the ratio a/b is 700°C. If the cold junction is kept at 0°C, then the neutral temperature is :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) no neutral temperature is possible for this thermocouple

ఒక వరికల్పిత ఉష్ణయుగ్యం యొక్క ఉష్ణ విద్యుచ్చాలక బలం, వేడి నంధి ఉష్మోగత 0 తో, $\mathbf{E} = a0 + b0^2$ (వోల్యలలో)గా మారుతుంది. ఇక్కడ నిష్పత్తి a/b 700°C. చల్లని నంధి ఉష్మోగతను 0°C వద్ద ఉంచితే, తటన్న ఉష్మోగత :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) ఈ ఉష్ఠయుగ్మానికి తటన్న ఉష్యోగ్రత ఉండటం సాధ్యం కాదు

Rough Work

10		
	ാ	
्रम	R	

118,	Mate	h the following and find the	correct pairs :	
		List I		List II
	(a)	Fleming's left hand rule	(e)	Direction of induced current
	(b)	Right hand thumb rule	(f)	Magnitude and direction of magnetic
				induction
	(c)	Biot-Savart law	(g)	Direction of force due to magnetic
				induction
	(d)	Fleming's right hand rule	(<i>h</i>)	Direction of magnetic lines due to current
	50 j	కింది జాదికాలలో నరియైన జ	ంటలన	స గుర్తించండి :
		జాదిలా I		ertor II
	(a)	్ళామింగ్ ఎడమచేతి నిబంధన	(e)	(పేరితి విద్యుత్ (వవాహ దశ
	(b)	కుడిచేతి దొటనవేలు నిబంధన	(f)	అయస్కాంత (పేరణ పరిమాణం మరియు దిశ
	(c)	జయాట్-సావర్డ్ నియమం	(g)	అయస్కాంత శ్రేతంవల్ల కలిగే బలడిక
	(d)	్ళామింగ్ కుడిచేతి విజంధన	(<i>h</i>)	విద్యుత్ (వవాహంవల్ల కలిగే అయస్కాంత రేఖం
				2 4
	(1)	(a) - (g), (b) - (e), (c) - (f), (d) - (h)	(2)	(a)-(g),(b)-(h),(c)-(f),(d)-(e)
	(3)	$(a)\!\!-\!\!(f),(b)\!\!-\!\!(h),(c)\!\!-\!\!(g),(d)\!\!-\!\!(e)$	(4)	(a)-(h),(b)-(g),(c)-(e),(d)-(f)

E 2011 D

119. A constant voltage of 25 V is applied to a series L-R circuit at t = 0, by closing a switch. What is the potential difference across the resistor and the inductor at time t = 0?

D

 L-R ලිසී නలయానికి t = 0 వద్ద స్పిత్న మూసివేయటం ద్వారా 25 V స్థిర వోల్లేజిని

 అనువర్తితం చేసినారు. t = 0 కాలం వద్ద సిరోధం కొనల మధ్య మరియు (పేరకం

 కొనల మధ్య పొటెన్నయల్ తేతా ఎంతంత ఉంటుంది?

 (1) 0 V, 25 V
 (2) 12.5 V, 12.5 V

 (3) 10 V, 15 V
 (4) 25 V, 0 V

120. The sensitivity of a galvanometer is 60 divisions/Amp. When a shunt is used, its sensitivity becomes 10 divisions/Amp. If the galvanometer is of resistance 20 Ω , the value of shunt used is :

ఒక గాల్ఫనామీటర్ యొక్క నూన్ని గ్రాహ్యత 60 విభాగాలు/అంపియర్. ఒక వంట్ సరోధందు వాడినవుడు, దాని నూన్నిగావ్యాత 10 విభాగాలు/అంపియర్ అవుతుంది. గాల్వనామీటరు సరోధం 20 Ω లు అయితే, ఉపయోగించిన వంట్ సరోధం విలువ :

(1) 4 Ω
(2) 5 Ω
(3) 20 Ω
(4) 2 Ω

PHYSICS

Two photons of energy 2.5 eV and 3.5 eV fall on a metal surface of work function 81. 1.5 eV. The ratio of the maximum velocities of the photoelectrons emitted from the metal surface is : 2.5 eV మరియు 3.5 eV శక్తిగల రెండు ఫోటాన్ను 1.5 eV వని (వమేయంగల లో హాతలంపై వతనం చెందినవి. లో హతలంపై నుండి వెలువడే కాంతి ఎలక్రామల గరిష వేగాల నిష్పత్తి: (2) 2:1 (1)1:4 (4) 1: $\sqrt{2}$ (3)1:2Calculate the wavelength of the h_{α} line for z = 31 when $\alpha = 5 \times 10^7 \text{ Hz}^{1/2}$ for 82. a characteristic X-ray spectrum. $z = 31, a = 5 \times 10^7 \text{ Hz}^{1/2}$ అయిన ఒక అభిలక్షణ X-కిరణ వర్షపటంలో ని k_{α} రేఖ యొర్చ తరంగదెర్యాన్ని గణించండి. (2) 1.33 nm 1.33 Å (1) 133×10^{-10} m (4) 133 nm (3)If 200 MeV of energy is released in the fission of one nucleus of $^{236}_{\ 92}\mathrm{U}$, the number 83. of nuclei that must undergo fission to release an energy of 1000 J is : ²³⁵92 U కేంద్రకం విచ్చిత్తి, చెందినవుడు విడుదలయ్యే శక్తి 200 MeV అయితే 1000 J ES విడుదలచేయుటకు ఎన్ని కేందరాలు విచ్చిత్తికి లోనుకావలెను? 33 (2) 6.25×10^{13} 3.125×10^{13} (1)

(3) 12.5×10^{13} (4) 3.125×10^{14}

Rough Work

			D		E 201
84.	In	a p-n junction d	iode the thickness o	 f depletion lave	r is 2×10^{-6} m and bar
	pot	tential is 0.3 V.	The intensity of t	he electric field	d at the junction is :
	(1)	0.6×10^{-6} \	$2m^{-1}$ from <i>n</i> to P	side	a we the Junction is :
	(2)	0.6×10^{-6} V	$7m^{-1}$ from P to n	side	
	(3)		m^{-1} from <i>n</i> to P s		
	(4)		m^{-1} from P to n si		
	68,	p-n సంధి చయోడ్	లేమి పొర మందం 2 x	10 ⁻⁶ m 558.000	అవరోథ పొరుగయల్ 0.31
	ch.5	గ్రది. అయిన నండి	వద్ద విద్యుత్ క్రేత్ర తీడ్ర	18 :	eee φ ω. αυαιρίου, γ
	(1)	0.6×10^{-6} V	m ⁻¹ n Asod P 3 a	150	
	(2)	0.6×10^{-6} V	m ⁻¹ P నుండి n వేష	تۇن	
	(3)	1.5×10^5 Vm	n ⁻¹ n నుండి P వైపు	ί.	
	(4)	$1.5 \times 10^{5} \text{ Vm}$	n ⁻¹ P నుండి n వైవుక	6	
85.	$\frac{1}{2}$	nagnetic field in	tensity) is :		ability of free space a දෙදිවර H-රොටාලංර ද
85.	1 2 2 2 2 4 (1)	hagnetic held in 1 ₀ H ² యొక్క మిత్ త) : MLT ⁻¹	tensity) is : సూత్రము (µ ₀ – స్వే	్రహ్పా (మదేశ (మచే	
85.	1-0 1 2 5 5	lagnetic held in 1 ₀ H ² యొక్క మిత్ త) :	tensity) is : సూత్రము (µ ₀ – స్వే		
	$\frac{1}{2}$ μ $\delta_{(3)}$ (1) (3)	nagnetic held in 1 ₀ H ² యొక్క మత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t	tensity) is : సూత్రవరు (µ ₀ – ెస్త్ర (2) (4) the xy plane has an	ుర్పా (దదిశ (దవి ML ² T ⁻² ML ² T ⁻¹ x component o	මාදිතම H-කරෝබාලංක ව f 4 m and a y compone
1	$\frac{1}{2} \frac{P}{P}$	nagnetic held in ₁₀ H ² යියාපු, කාම ජ) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t 0 m. It is then i	tensity) is : సూత్రవరు (µ ₀ – స్వె (2) (4) the xy plane has an rotated in the xy p	ుార్పై (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its	මුම්පම H-කොටාලාංම වූ f 4 m and a y compone
1	$\frac{1}{2} \frac{P}{P}$	nagnetic held in HoH ² ඔොහු, ඩාම නි) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t 0 m. It is then in h its new y com	tensity) is : సూత్రవరు (µ ₀ – ెస్త్ర (2) (4) the xy plane has an	ుార్పై (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its	මාදිතම H-කරෝබාලංක ව f 4 m and a y compone
1	$\frac{1}{2} \frac{P}{P}$	nagnetic held in ₁₀ H ² යියාපු, කාම ජ) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t 0 m. It is then i	tensity) is : సూత్రవరు (µ ₀ – స్త్రె (2) (4) the xy plane has an rotated in the xy p sponent is (approxi	ుార్పై (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its	මාදිතම H-කරෝබාලංක ව f 4 m and a y compone
86,	1 - n $\frac{1}{2}$ p $\hat{a}(z)$ (1) (3) A ce of 16 Ther (1) (3)	nagnetic field in I ₀ H ² ಡೆಬುತ್ರ, ಮಿತಿ 参) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t 0 m. It is then in n its new y com 20 m 5.0 m	tensity) is : సూత్రవరు (µ ₀ – స్త్రె (2) (4) the xy plane has an rotated in the xy p sponent is (approxi (2) (4)	ుర్పై (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its mately) : 7.2 m 4.5 m	శ్వళీలత H-అయస్కాంత సై f 4 m and a y compone x-component is double
86,	1-n 1 p 2 p 2 (5) (1) (3) A ce of 14 Ther (1) (3) 20 6	agnetic held in H ² యొక్క మత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t 0 m. It is then i n its new y com 20 m 5.0 m	tensity) is : సూత్రవరు (µ ₀ - ెర్ద (2) (4) the xy plane has an rotated in the xy p sponent is (approxi (2) (4) దేళ యొక్క x అంశమ	ుర్పా (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its mately) : 7.2 m 4.5 m 4.5 m	శ్వశీలత H-అయస్కాంత సై f 4 m and a y compone i x-component is double a 10 మీ. దీనిని x అంకం
86,	1-n 1 2 P $\hat{\vartheta}(\vec{\omega})$ (1) (3) A ce of 10 Ther (1) (3) $\vec{\omega}$ $\vec{\omega}$ $\vec{\omega}$ $\vec{\omega}$	agnetic held in I ₀ H ² యొక్క మత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in t 0 m. It is then in n its new y com 20 m 5.0 m 5.0 m	tensity) is : సూత్రవరు (µ ₀ - ెర్ద (2) (4) the xy plane has an rotated in the xy p sponent is (approxi (2) (4) దేళ యొక్క x అంశమ	ుర్పా (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its mately) : 7.2 m 4.5 m 4.5 m	శ్వశీలత H-అయస్కాంత సై f 4 m and a y compone i x-component is double a 10 మీ. దీనిని x అంకం
86,	1-n 1 2 P $\hat{\vartheta}(\vec{\omega})$ (1) (3) A ce of 10 Ther (1) (3) $\vec{\omega}$ $\vec{\omega}$ $\vec{\omega}$ $\vec{\omega}$	agnetic held in H ² యొక్క మత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² ertain vector in t 0 m. It is then i n its new y com 20 m 5.0 m	tensity) is : సూత్రవరు (µ ₀ - ెర్ద (2) (4) the xy plane has an rotated in the xy p sponent is (approxi (2) (4) దేళ యొక్క x అంశమ	ుర్పా (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its mately) : 7.2 m 4.5 m 4.5 m	శ్వశీలత H-అయస్కాంత సై f 4 m and a y compone i x-component is double a 10 మీ. దీనిని x అంకం
86.	1-n 1 2 P 2 (3) (1) (3) A ce of 10 Ther (1) (3) E c c c c c c c c c c c c c c	agnetic held in I ₀ H ² యొక్క మత్ త) : MLT ⁻¹ ML ⁻¹ T ⁻² rtain vector in t 0 m. It is then in n its new y com 20 m 5.0 m 5.0 m	tensity) is : సూత్రము (µ ₀ - స్త్రె (2) (4) the xy plane has an rotated in the xy p sponent is (approxi (2) (4) దిక యొక్క x అంకమ xy తలమంభా (s	ుర్పా (వదేశ (వచే ML ² T ⁻² ML ² T ⁻¹ x component o lane so that its mately) : 7.2 m 4.5 m 4.5 m	శ్వళీలత H-అయస్కాంత సై f 4 m and a y compone x-component is double

D

87.

A police party is moving in a jeep at a constant speed v. They saw a thief at a distance x on a motorcycle which is at rest. The moment the police saw the thief, the thief started at constant acceleration α . Which of the following relations is true if the police is able to catch the thief ?

ఒక జీవులో v నమవేగముతో చెలించుచున్న పోలీసులు x దూరములో నిశ్చల స్థితిలోనున్న మోటరు సైకిల్పై ఉన్న ఒక దొంగను దూశారు. పోలీసులు చూసిన వెంటనే దొంగ a నమత్వరణముతో పారిపోయారు. పోలీసులు ఆ దొంగను వట్టుకొనినట్లయితే (కింది నంబంధాలలో పది నరియైనది ?

- (1) $v^2 < \alpha x$ (2) $v^2 < 2\alpha x$ (3) $v^2 \ge 2\alpha x$ (4) $v^2 = \alpha x$
- 88. A 1 N pendulum bob is held at an angle 0 from the vertical by a 2 N horizontal force \vec{F} as shown in the figure. The tension in the string supporting the pendulum bob (in Newtons) is

ఒక 1 N లోలకవు గుండును, 2 N ఎలువగల F అనే క్రితిజ నమాంతర బలము ద్వారా నిలువుతలముతో 0 కోణము చేయునట్లు (పటములో చూపినట్ల) ఉంచబడినది. లోలకవు తీగలో గల తన్నత (న్యూటన్లలో) :

Rough Work

(1)

(3)

D

89.

The maximum tension a rope can withstand is 60 kg wt. The ratio of maximum acceleration with which two boys of masses 20 kg and 30 kg can climb up the rope at the same time is :

ఒక తాడు తట్టుకోకరిగిన గరిష్ఠ తన్యత 60 kg wt. 20 kg మరియు 30 kg ద్రవ్యరాకులు గల ఇడ్డరు బాలురు ఒకేసారి తాడు మీదకు పొరుచున్న, వారి గరిష్ఠ త్వరణాల నిమృత్తి: (1) 1:2 (2) 2:1 (3) 4:3 (4) 3:2

90.

A ball is let fall from a height h_0 . It makes *n* collisions with the earth. After '*n*' collisions it rebounds with a velocity ' v_n ' and the ball rises to a height h_n , then coefficient of restitution is given by :

h₀ ఎత్తు నుండి ఒక బంతి (కిందపడునట్లు చేయబడినది, అది చూమితో n అభిభూతాలు చేసినది. 'n' అభిభూతాల తరువాత వేగము 'v_n' తో అది పైకి లేచింది మరియు ఆ బంతి h_n ఎత్తుకు ఎగిరినచో (వత్యావ్యస్తాన గుజకము :

(1)
$$e = \left[\frac{h_n}{h_0}\right]^{1/2n}$$

(2) $e = \left[\frac{h_0}{h_n}\right]^{1/2n}$
(3) $e = \frac{1}{n}\sqrt{\frac{h_n}{h_0}}$
(4) $e = \frac{1}{n}\sqrt{\frac{h_0}{h_0}}$

91. A circular disc of radius 'R' is removed from a bigger circular disc of radius '2R' such that the circumferences of the discs touch. The centre of mass of the new disc is at a distance 'αR' from the centre of the bigger disc. The value of 'α' is.

'R' వ్యాసార్థము గల ఒక వృత్తార దిళ్ళను 2R' వ్యాసార్థము గల ఒక పెద్ద బిళ్ళ నుండి వాని పరిధులు తారునట్ల తొలగించినారు. పెద్ద బిళ్ళ కేంద్రము నుండి కొత్త బిళ్ళ యొక్క ద్రవ్యరాశ్ కేంద్రము దూరం αR' అయిన 'a' పెలువ :

(1)	$\frac{1}{2}$	(2)	$\frac{1}{3}$
(3)	$\frac{1}{4}$	(4)	$\frac{1}{6}$

A uniform chain of length L is lying on the horizontal table. If the coefficient of friction between the chain and the table top is ' μ ', what is the maximum length of the chain that can hang over the edge of the table without disturbing the rest of the chain on the table ?

L పొడవు గల ఒక ఏకరీతి గొలును క్రితిజ నమాంతర బల్లపై నున్నది. గొలును మరియు బల్లపై భాగముల మధ్య ఘర్తణ గుణకము 'µ' అయిన. బల్లపై గల మిగిలిన గొలును స్థితిని మార్చకుండా, బల్ల అంచు నుండి (వేలాడవలసిన గొలును గరిష్ఠ పొడవ) ఎంత?

115	L	L		μL
(1)	$(1 + \mu)$		(2)	$\overline{(1 + \mu)}$
105	L			μL
(3)	$\overline{(1-\mu)}$		(4)	$\overline{(1-\mu)}$

93. Two uniform circular discs having the same mass and the same thickness but different radii are made from different materials. The disc with the smaller rotational inertia is :

(1) the one made from the more dense material

(2) the one made from the less dense material

(3) the disc with the larger angular velocity

(4) the disc with the larger torque

ఒకే దవ్యరాళ్ ఒకే మందము గల రెండు ఏకరీతి వృత్తాకార బిళ్ళలు విభిన్న పదార్శాలతో చేయబడినవి. కాని వాటి వ్యాసార్థములు వేరు. తక్కువ జడత్వ భూమకము గల బిళ్ళ:

ఎక్కువ సాందర గల పదారముతో చేయబడినది

(2) తక్కువ సాందర్ గళ వదార్గముతో చేయబడినది

(3) ఎక్కువ కోజీయ వేగము గల దిళ్ళ

(4) ఎక్కువ బల్గరామకము (లార్క్) గల పిళ్ళ

Rough Work

92.

D

94. A thin hollow sphere of mass 'm' is completely filled with a liquid of mass 'm'. When the sphere rolls with a velocity 'c', kinetic energy of the system is (neglect friction) :

'm' దవ్యరాశి గల ఒక పలుచని బోణు గో కము 'm' దవ్యరాశి గల దవముతో పూర్తిగా నింపబడినది. గో కము 'v' వేగముతో దొర్హుచున్న, ఆ వ్యవస్థ గతిజ శక్తి (ఘర్తణను పరిగతించుల లేదు).

(1)	$\frac{1}{2}mv^2$	$(2) = mv^2$
(3)	$\frac{4}{3}$ mv ²	(4) $\frac{4}{5}m$

95. Assertion (A) :

Reason

(A) : An astronaut inside a massive spaceship orbiting around the earth will experience a finite but small gravitational force.
 (R) : The centripetal force necessary to keep the spaceship in orbit around the earth is provided by the gravitational force between the earth and the spaceship.

2

(1) Both (A) and (R) are true and (R) is the correct explanation of (A)

(2) Both (A) and (R) are true and (R) is not the correct explanation of (A)

(3) (A) is true but (R) is not true

(4) (A) is not true but (R) is true

నిళ్ళితము (A) : దూమి చుట్నా వర్శిధమించుదున్న అదుదైన అంతరిక్ర సౌకలో గల వ్యోమగామి వరిమీత తక్కువ గురుత్వాకరణ బలాన్ని అనుభూతి చెందును.

కారణము (R) : అంతరిక్ష నౌకను భూమిదుట్టూ కక్ర్యలో వుంచుబరు అవనరమైన అధికేంద బలాన్ని, భూమి మరియు అంతరిక్ష నౌక మధ్య గల గురుల్చాకర్తడ బలం సమకూరుస్తుంది.

- (1) (A) మరియు (R) రెండూ పరియైనపి (A) కు (R) పరియైన వివరణ
- (2) (A) మరియు (R) రెండూ నరియైనపి (A) కు (R) చరియైన చివరణ కాదు

(3) (A) నరియెనది, అని (R) నరియెనది కాదు

(4) (A) න්රිණින්සි පක්, පති (R) න්රිණින්සි

Rough Work

D

E 2011 D

96. A simple harmonic oscillator consists of a particle of mass 'm' and an ideal spring with spring constant 'k'. The particle oscillates with a time period 'T'. The spring is cut into two equal parts. If one part oscillates with the same particle, the time period will be :

ఒక నరళ పారాత్మక డోలకం 'm' స్రవ్యరాశ్ గల ఒక కణమును మరియు జలస్థిరాంకము 'k' కరిగిన ఒక ఆదర్శ స్ప్రింగును కరిగియున్నడి. ఆ కణము T' డోలనావర్తన కాలముతో డోలనాలు చేస్తుంది. ఆ స్ప్రింగును రెండు నమాన భాగములుగా చేసినారు. ఒక భాగము అదే కణముతో డోలనాలు చేస్తే, డోలనావర్తన కాలము :

(1)	2T	(2)	$\sqrt{2}T$
(3)	$T/\sqrt{2}$	(4)	$\frac{\mathrm{T}}{2}$

97. Two blocks of masses 1 kg and 2 kg are connected by a metal wire going over a smooth pulley. The breaking stress of metal is $\frac{40}{3\pi} \times 10^6$ Nm⁻². What should be the minimum radius of wire used if it should not break ? $(g = 10 \text{ ms}^{-2})$

1 kg మరియు 2 kg ద్రవ్యరాశులు గల రెండు దిమ్మలు ఒక లో హావు తీగతో కలువబడి. ఒక నునుపైన కెప్పిపుడుగా పోనిచ్చారు. ఆ లో హావు విచ్చేదన (పతిధలము $\frac{40}{3\pi}$ × 10^6 Nm⁻². తీగ తెగకుండా ఉండవలెనన్న తీగ కనిష్ఠ వ్యాసాధము ఎంత? (g = 10 ms⁻²)

(1) 0.5 mm (2) 1 mm (3) 1.5 mm (4) 2 mm

98.

If two soap bubbles of different radii are connected by a tube, then :

- Air flows from bigger bubble to the smaller bubble till sizes become (1)equal
- Air flows from bigger bubble to the smaller bubble till sizes are inter-(2)changed
- Air flows from smaller bubble to bigger (3)
- There is no flow of air (4)
- రెండు విభిన్న వ్యాసారాలు గల రెండు సబ్బు నీటి బుడగలను ఒక గొట్టముతో కలిపిన:
- వాటి పరిమాణాలు ఒకటయ్యే వరకు గాలి పెద్ద బుడగ నుండి చిన్న బుడగకు (1)(వవహించును
- వాటి పరిమాణాలు తారుమారు అయ్యేవరకు గాలి పెద్ద బుడగ నుండి చిన్న (2)బుడగకు (భవహించును
- గాలి చిన్న బుడగ నుండి పెద్ద బుడగకు వ్రవహించును (3)
- గాలి (వవాహము ఉండదు (4)
- A large open tank has two holes in the wall. One is a square hole of side 'L' 99. at a depth 'y' from the top and the other is a circular hole of radius R at a depth '4y' from the top. When the tank is completely filled with water, the quantities of water flowing out per second from the two holes are the same. Then value of R is :

ఒక తెరచి ఉన్న పెద్ద తొటి గోడకు రెండు రంద్రాలను కల్లియున్నది. ఒకటి పైభాగము నుండి 'y' లో తులో 'L' పాడవు గల చతుర్గసాకార రంద్రము, రెండవది పైభాగము నుండి '4y' లో తులో 'R' వ్యాసార్థము గల వృత్తాకార రంధ్రము. తొట్టిని, పూర్తిగా నీటితో నింపినపుడు రెండు రంభాల నుండి సెకనులో (పవహించే నీటి పరిమాణాలు నమానము. అయిన R విలువ :

(1)	$\frac{L}{\sqrt{2\pi}}$	*	(2)	2nL
(3)	$L\sqrt{\frac{2}{\pi}}$		(4)	$\frac{L}{2\pi}$

Rough Work

E 2011 D

100. A non-conducting body floats in a liquid at 20°C with $\frac{2}{3}$ of its volume immersedin the liquid. When liquid temperature is increased to 100°C, $\frac{3}{4}$ of body's volumeis immersed in the liquid. Then the coefficient of real expansion of the liquidis (neglecting the expansion of container of the liquid) :20°C ఉష్యోగత వద్ద ఉన్న (దవములో ఒక వాహరత్వము లేని వన్నవు, దాని ఘనవరిమాణములో $\frac{2}{3}$ వంతు మునిగినది. (దవ ఉష్యోగతను 100°C కు ెఎంచినవుడు ఆ వన్నవు, దానిఘనవరిమాణములో $\frac{3}{4}$ వంతు మునిగినది. (దవము యొక్క నిజ వాహ్రకోచి గుణకము.(దవము ఉన్న పాత్ యొక్క వాస్టరోచాన్ని పరిగడించుల లేదు) :(1) 15.6 × 10⁻⁴°C⁻¹(2) 156 × 10⁻⁴⁰C⁻¹(3) 1.56 × 10⁻⁴⁰°C⁻¹(4) 0.156 × 10⁴⁰°C⁻¹

D

101. An insulated cylindrical vessel filled with an insulated piston of negligible weight and negligible thickness at the mid point of the vessel. The cylinder contains a gas at 0°C. When the gas is heated to 100°C, the piston moves through a length of 5 cm. Length of the cylindrical vessel in cm is :

ఒక ఉష్ణుంధక న్యూపాకార హెత్రయందు వరిగణించలేని భారము మరియు వరిగణించలేని మందముగల ఉష్ణ బంధక ముషలకము ఆ ప్రొత మధ్య బిందువు దగ్గర బిగించబడినది. ఆ న్యూపము 0°C వద్ద వాయువును కలిగి యున్నది. వాయువును 100°C కు వేడిచేసినవుడు ముషలకము 5 ెసెం.మీ. పొడవు చలించినది, మ్యాపాకార పాత్ర పొడవు (ెసెం.మీ.లలో)

64.6

- (1) 13.65 (2) 27.3
- (3) 38.6

Rough Work

35 P

(4)

	E 2011 L
	D
102.	A reversible ongine converts one-sixth of the heat supplied into work. When the temperature of the sink is reduced by 62°C, the efficiency of the engine is doubled. The temperatures of the source and sink are : ఇవ్వటడిన ఉష్టమలో 1/6 వంతును ఒక ఆత్రమణియ యంత్రము వనిగా మార్చును సంకు ఉష్ణోగతను 62°C తగ్గించినవుడు యంత్రము యొక్క దక్షత రెట్టించగుడు. జనకమ మరియు / సింకు ఉష్ణోగతలు వదునగా : (1) / 99°C, 37°C (2) 80°C, 37°C (3) 95°C, 37°C (4) 90°C, 37°C
103.	During an adiabatic process, the pressure of a gas is proportional to the cub
2.5005	of its temperature. The value of C_p/C_y for that gas is :
	ఒక స్థిభోష్టక బ్రక్రియనందు, ఒక వాయు పడనం దాని పరమ ఉద్భోగత ఘనాని.
	అనులో చూడుపొతములో ఉన్నద. ఆ వాయువునకు C_p/C_q చిలువ :
	4
	$(1)' = \frac{1}{5}$ (2) $\frac{1}{5}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	-3 -4
	the second s
104.	Two slabs A and B of different materials but of the same thickness are joine
104.	end to end to form a composite slab. The thermal conductivities of A and B and
104.	end to end to form a composite slab. The thermal conductivities of A and B at k_1^{\dagger} and k_2^{\dagger} respectively. A steady temperature difference of 12°C is maintained
104.	end to end to form a composite slab. The thermal conductivities of A and B as k_1^{\dagger} and k_2^{\dagger} respectively. A steady temperature difference of 12°C is maintained across the composite slab. If $k_1 = \frac{k_2}{2}$, the temperature difference across slap
104.	end to end to form a composite slab. The thermal conductivities of A and B as k_1' and k_2' respectively. A steady temperature difference of 12°C is maintained across the composite slab. If $k_1 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_1 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is a slab. A i
104.	end to end to form a composite slab. The thermal conductivities of A and B as k_1' and k_2' respectively. A steady temperature difference of 12°C is maintained across the composite slab. If $k_1 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_1 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slab. A is : $\Delta k_2 = \frac{k_2}{2}$.
104.	end to end to form a composite slab. The thermal conductivities of A and B at k_1' and k_2' respectively. A steady temperature difference of 12°C is maintained across the composite slab. If $k_1 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_1 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across across slap A is : $\Delta k_2 = \frac{k_2}{2}$, the temperature difference across

36 P

1965

- D
- 105. The wavelengths of two sound notes in air are $\frac{40}{195}$ m and $\frac{40}{193}$ m. Each note produces 9 beats per second separately with a third note of fixed frequency. The velocity of sound in air in m/s is :

గాలిలో రెండు ధ్వవి న్వరాలు $\frac{40}{195}$ m మరియు $\frac{40}{193}$ m తరంగదైర్థ్యాలను కలిగి ఉన్నాయి. డ్రతి న్వరం, స్థిర పౌనువున్యం గల ఒక మూడవ న్వరంతో సెకనుకు 9 విన్ఫందనాలు నృష్టిస్తోంది. గాలిలో ధ్వవి వేగము (మీ/సె.లలో):

320

-(2)

(3)	300	(4)	340

360

(1)

106. Two uniform stretched strings A and B, made of steel, are vibrating under the same tension. If the first overtone of A is equal to the second overtone of B and if the radius of A is twice that of B, the ratio of the lengths of the strings is : u ම රෙදුමෙම බංගති රාත්ර කර්ග B ම බ ටංකා බහර්ම කරාදුම කොතාධ්රාවකීන් මහතාධ්රාවකීන් මහතාධ්රාවකීන් මහතාධ්රාවකීන් මහතාධ්රාවකීන් මහතාධ්රාවකීන් මහතාධ්රාවකීන් විද්යාන්ත කරන්න වන්නේ පැවති විද්යාන්ත කරන්නේ සංකානයක් කරන්නේ කරන්නේ සංකානයක් කරන්නේ සංකානයක් සංක

	E 2011 D
07.	The focal length of a lens of dispersive power 0.45 which should be placed in
	contact with a convex lens of focal length 84 cm and dispersive power 0.21 to
	make the achromatic combination from the two lenses, in cm is ;
	0.45 విశ్లేషణ సామర్థ్యం గల కటరాన్ని. 84 ెసం.మీ.ల నాధ్యంతరం మరియు 0.21 విశ్లేషణ
	సామర్యం గల కుంభాకార కటకంతో నృర్శిన్నూ ఉన్నప్పుడు. ఆ రెండు కటకాలు ఒక
	అవర్షక సంయోగంగా పనిచేయవలెనంతే, కటరానికి ఉండచలసిన నాభ్యంతరం విలువ
	(7ఎం.మీ.లలో) :
	(1) 45 (2) 90
	(3) 180 (4) -180
	Microscope ? (A) Each lens produces a virtual and inverted image
	(A) Each lens produces a virtual and inverted image
	(A) Each lens produces a virtual and inverted image(B) The objective has a very short focal length
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C)
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D)
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C)
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) Nocking మాక్ష్మదర్శని సందర్భాధిక ఈ డ్రించి చివరణలలో, ఏవి 'యదారము'? (A) ఒక్కొత్త, కటరం, తలక్రిందులైన మధాక్ష పరిచిదానిపై ఏర్పరుగుంది
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) నండుుక్త నూక్షుదర్శిని నండర్భానికి ఈ డ్రించి విదరణలలో, ఏవి 'యదారము'? (A) ఒక్కొత్త కటకం, తలక్రిందులైన మధాక్ష డుతివిందాన్ని ఏర్పడునుంది
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) నంయుక్త నూక్ష్మదర్శివి నందర్భానికి ఈ డింది వివరణలల్లో ఏవి 'యదార్గము'? (A) ఒక్కోళ్ళ, కటకం, తలడిందులైన మధాక్ష (పరిచిందాన్ని ఏర్పడునుంది (B) చన్న కటకానికి అతి అల్ప నాధ్యంతరం ఉంటుంది
	 (A) Each lens produces a virtual and inverted image (B) The objective has a very short focal length (C) The eyepiece is used as a simple magnifying glass (D) The objective and eyepiece are convex and concave lenses respectively (1) (A), (B) and (D) (2) (B) and (C) (3) (A), (C) and (D) (4) (B) and (D) సంయుక్త సూక్ర్మదర్శిని సందర్భానికి ఈ డ్రించి వివరణలలో, ఏవి 'యదారము'? (A) ఒక్కొక్క కటకం, తలక్రిండులైన మిథాక్ష ప్రతివిరణాన్ని ఏర్పడున్నండి (B) వన్ను కటకానికి అతి అల్ప రాధ్యంతరం ఉంటుంది (C) అక్ష కటకాన్ని ఒక సరక అవరనం కలిగించే గాజాగా వాడతారు

D

109. A ray of light refracts from medium 1 into a thin layer of medium 2, crosses the layer and is incident at the critical angle on the interface between the medium 2 and 3 as shown in the figure. If the angle of incidence of ray is θ , the value of θ is :

ఒక కాంతి కిరణం యానకం 1 నుంచి యానకం 2 యొక్క పలుచని పొరలోనికి వ్రక్తిభవనం చెందిన తర్వాత దానిని దాటి యానకం 2 మరియు యానకం 3 ల మధ్య గల అంతర ఫలకంపై నంధిగ్ధ కోణం చేన్నూ `వతనం చెందుతుంది. కాంతి కిరణం వతన కోణం 9 అయితే, 9 విలువ :

E 2011 D

- 111. If a bar magnet of pole strength m and magnetic moment M is cut equally 5 times parallel to its axis and again 3 times perpendicular to its axis, then the pole strength and magnetic moment of each piece are respectively : (దువనత్వం m, అయస్కాంత బ్రామకము M గల దండాయస్కాంతాన్ని దాని అక్రానికి సమాంతరముగా 5 సార్లు నమానంగాను, అక్రానికి అంబంగా 3 సార్లు నమానంగాను కోసినవుడు. ఏర్పడే ఒక్కొక్క అయస్కాంతవు ముక్క యొక్క (ధువ నత్వము, అయస్కాంత బ్రామకముల

ఏలువలు వరున**గా** :

ab	$\frac{m}{20}, \frac{\mathrm{M}}{4}$	(2)	$\frac{m}{5}, \frac{M}{20}$
(3)	$\frac{m}{6}, \frac{M}{24}$	(4)	$\frac{m}{5}, \frac{M}{24}$

coil of resistance wire, embedded in a block of specific heat 's' and mass 'm' under thermally isolated conditions. If the temperature of the block is raised by 'AT', the potential difference V across the capacitor initially is : నంపూర్తంగా అవేళతం చేసిన కెపాసిటర్ యొక్క కెపాసిడెన్స్ 'C'. దీనిని ఉద్దవియుక్త వరిస్తికుంలో.

విశిష్టోస్టం 's' (దవ్యరాశి 'm' గల ఒక దిమ్మలో పొదిగిన నిరోధం గల చిన్న తీగచుబ్ వ్యారా ఉత్సరం చేసినపుడు దిమ్మ ఉష్యాగికి 'AT పెరిగితే, ఇపాసిటర్ కొనల మద్య తొలిగా ఉన్న పొటన్లియల్ తేడా, V పిలువ :

(1)	$\left(\frac{2\ ms\ \Delta T}{C}\right)^2$	(2) $\left(\frac{2 ms \Delta T}{C}\right)^{1/2}$
(3)	$\left(\frac{2 ms \Delta T}{C}\right)$	(4) 2 ms $\Delta T, C$

114. Two identical condensers M and N are connected in series with a battery. The space between the plates of M is completely filled with a dielectric medium of dielectric constant 8 and a copper plate of thickness $\frac{d}{2}$ is introduced between the plates of N. (*d* is the distance between the plates). Then potential differences across M and N are, respectively, in the ratio : రెండు వర్వ నమాన కెపాసిటర్లు M మరియు N లను ఒక ఘటంతో తేజీ నంథానం చేసినారు. M కండెన్సర్ పలకల మధ్య ప్రదేశాన్ని రోధక స్థాంకం 8 గల రోధక యానకంతో పూర్తిగా సంపినారు. N కండెన్సర్ పలకల మధ్య $\frac{d}{2}$ మందం గల రాగి వలకను ఉంచినారు.

D

(జి.జనేది పలకల మధ్య దూరం). అయితే, M, N ల కొనల మధ్య పొెటర్షియల్ తేదాల నిష్పత్తి, / వరుసగా:

(1) /	1:4	(2)	4:1
1000	3:8	(4)	1 : 6

115. The electric current i in the circuit shown is : తింద చూపిన చలయంలో బద్యుత్నవాహం i బలువ :

Rough Work

(1)

(3)

6A

3A

 θ of hot junction as $E = a\theta + b\theta^2$ in volts, where the ratio a/b is 700°C. If the cold junction is kept at 0°C, then the neutral temperature is :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) no neutral temperature is possible for this thermocouple

ఒక వరికల్పిత ఉష్ణయుగ్యం యొక్క ఉష్ణ విద్యుచ్చాలక బలం, వేడి నంధి ఉష్యోగత 0 తో, $\mathbf{E} = a0 + b0^2$ (వోల్డులలో)గా మారుతుంది. ఇక్కడ నిష్పత్తి a/b 700°C. చల్లని నంధి ఉష్యోగతను 0°C వద్ద ఉంచితే, తటన్న ఉష్యోగత :

- (1) 700°C
- (2) 1400°C
- (3) 390°C
- (4) ఈ ఉచ్దయుగ్మానికి తటన్న ఉష్యోగ్రత ఉండటం సాధ్యం కాదు

-	-	-	-	-	٤.
152		1-			F.
185	1		ы		
			у.		L
62	e	9	51		
1	-	_		_	8

118.	Match	the	following	and	find	the	correct	pairs :	
------	-------	-----	-----------	-----	------	-----	---------	---------	--

	List I		List II			
(a)	Fleming's left hand rule	(e)	Direction of induced current			
(b)	Right hand thumb rule	(4)	Magnitude and direction of magnetic			
			induction			
(c)	Biot-Savart law	(g)	Direction of force due to magnetic			
			induction			
(d)	Fleming's right hand rule	(<i>h</i>)	Direction of magnetic lines due to current			
60	ఈ క్రింది జాబితాలలో నరియైన జంబలను గుర్తించండి :					
	ສານິອາ I		sedar II			
(a)	్టామింగ్ ఎడమచేతి నిభంధన	(e)	(పేరితి విద్యుత్ (వవాహ దశ			
(b)	కుడిచేతి బొటనవేలు నిబంధన	(f)	అయస్కాంత [పేరణ వరిమాణం మరియు దిశ			
(c)	జయాట్ సావర్డ్ నియమం	(g)	అయస్కాంత శ్రేశంవల్ల కరిగే బలదిశ			
(d)	్యామింగ్ కుడిచేతి నిజంధన	(<i>h</i>)	విద్యుత్ (వచాపాంచల్ల కలిగే అయస్కాంత రేఖల			
			2 4			
(1)	$(a)\!\!-\!\!(g),(b)\!\!-\!\!(e),(c)\!\!-\!\!(f),(d)\!\!-\!\!(h)$	(2)	(a)-(g),(b)-(h),(c)-(f),(d)-(c)			
(3)	$(a) - (f), (b) - (\hbar), (c) - (g), (d) - (e)$	(4)	(a)-(h),(b)-(g),(c)-(e),(d)-(f)			

E 2011 D

119. A constant voltage of 25 V is applied to a series L-R circuit at t = 0, by closing a switch. What is the potential difference across the resistor and the inductor at time t = 0?

D

 L-R ලිස් නවාගතාබරි t = 0 නසු බුදුම්හා කාශ්‍යිතාවක සිදුලා 25 V බුර බිද්දීස්බ

 කතානපුතා ගින්නාවක සිදුලාවක සිද

120. The sensitivity of a galvanometer is 60 divisions/Amp. When a shunt is used, its sensitivity becomes 10 divisions/Amp. If the galvanometer is of resistance 20 Ω , the value of shunt used is :

ఒక గాల్వచామీటర్ యొక్క నూక్ష్మ గ్రాహ్యత 60 విభాగాలు/అంపియర్. ఒక చంట్ నిరోధంను వాడినవుడు, దావి నూక్ష్మగ్రాహ్యత 10 విభాగాలు/అంపియర్ అవుతుంది. గాల్వనామీటరు నిరోధం 20 Ω లు అయితే, ఉపయోగించిన పంట్ నిరోధం బిలువ :

(1) 4 Ω
(2) 5 Ω
(3) 20 Ω
(4) 2 Ω