ELECTRO CHEMISTRY UNIT-I (OBJECTIVE MATERIAL)

 Which of the following constitutes Daniel cell? a. Zn-Cu cell b. Zn-Ag cell c. Cu-Ag cell 	[] d. none
2. The EMF of a cell isa. Sum of the two oxidation potentialb. Sum of the two reduction potentialc. Difference of two electrode potentiald. None	[]
 3. An electrochemical cell stops working after sometime becau a. electrode potential of the both the electrodes become equal b. Electrode potential of the both the electrode goes on decreas c. Electrode potential of the both the electrode goes on increas d. None 	in magnatitude but opposite in sign sing.
 4. Four metals A,B,C,D are having standard electrode potential respectively. Which one will be the most reducing? a. A b. B c. C d. D 	als as -3.05 V,-1.66v,40 V, and 0.80 V []
5. The standard EMF for the cell reaction $Zn + Cu^{++} \rightarrow Zn^{++} + Is 1.1 V at 25^{\circ}C$ The EMF of the cell reaction when 0.1 M Cu^{++} and 0.1 M Zn^{++} a. 1.10V b. 0.10V c1.10V	
6. in an electrochemical cella. potential energy decreasesb. kinetic energy decreases.c. potential energy changes into electrical energyd. chemical energy changes into electrical energy.	[]
7. Cell reaction is spontaneous when A E^0 Red is positiveb. G^0 is negativec. G^0 is positive	e d. E^0 red is negative
8. Electrode potential of the both the electrode goes on decreasia. 1b 2c. 1.018d. 0	ing []
9. In the concentration cells, the electrical energy is due to a. oxidation of fuel b. heat energy c. chemical reaction d. transfanother.	[] Fer of substance from one solution to
	[] netic energy to potential energy tential energy to kinetic energy
11. If a salt bridge is removed between the half cells, the voltag a. decreases to zero b. increases rapidly c. increases d. do no	
	[] om anode to the solution om the solution to cathode

13. For a galvanic cell, wa. anode is negatively chab. cathode is positively cl	arged	c. reduction takes d. reduction takes			
 14. In the cell Zn/Zn⁺⁺//C A. copper gets reduced b. Zinc gets oxidized c. Zinc gets oxidized and d. copper gets oxidized 			[]	
a. the size if the electrode	nic cell can be calculated from b. the pH of the solution the anode d. The E0 values o		[]	
16. The difference of thea. potential differencec. EMF	potentials of two electrodes of b. ionic difference d. electrode difference	of the galvanic cells is	called []	
17. Nernest equation is a. $E=E^{0} - 0.0591/n \log [F]$ b. $E=E^{0} + 0.0591/n \log [$	Red n]/[Oxd n] Oxd n]/Red n]	c. $E=E^0 - 0.0591/r$ d. $E=E^0 + 0.0591/r$	[n log [Ro n log [O] ed n]/[O 0xd n]/ [F	vxd n] Red n]
18. Which atom forms an a. F b. I	i ion that would migrate towa c. Na d. C	rds the cathode in a el	ectrolyti	c cell? []
	on for a galvanic cell, a vertic gas boundary c. a metal con		resents	[]
-	-		ge	[]
21. In the salt bridge, KC a. KCl is an electrolyte b. K^+ and Cl^- ions are iso		c. K ⁺ and Cl ⁻ have d. none	[same m] obility	
22. A,B,C, and D are four and -2.87 V . The stronge a . A b. B c. C d. D	r elements whose standard ox est reducing agent is	idation potentials are	+2.82V, [+2.17V,]	, +1.67V
23. The reactions that tak a. reduction , oxidation c. reduction, hydrolysis	es place at anode and cathode b. Oxidation, reducti d. Oxidation , hydrol	on	[]	
24. Electrolytes can conduct	electricity, because				

- a) Their molecules contain unpaired electrons, which are mobile
- b) Their molecules contain loosely held electrons, which become free under the influence of voltage.
- c) The molecules break up into ions, when a voltage is applied.
- d) The molecules are broken up into ions, when the electrolyte is fused (or) dissolved in the solvent.

- 25. Which one of the following is an electrolyte?
 - a) $C_6 H_6$ b) $CHC1_3$ c) C_6H_5Cl d) NaCN
- 26. Ionization of an electrolyte in aqueous solution is due to
 - a) Instability of the compound in aqueous medium.
 - b) Hydrolysis of the electrolyte
 - c) Decrease in the electrostatic forces of attraction between appositely charged ions.
 - d) Increase in the electrostatic forces of attraction between the ions.
- 27. Specific conductance is the conductance of solution of volume
 - a) 1000 Cm^3 b) 1000 Cm^3 c) 1000 Cm^3 d) 1000 Cm^3
- 28. The unit of specific conductance is
 - a) ohm Cm^{-1} b) Ohm⁻¹ cm c) Ohm Cm d) Ohm⁻¹ Cm⁻¹
- 29. Which of the following features is correct, when concentrated solution of an electrolyte is diluted?
 - a) Its equivalent conductance decreases.
 - b) Its specific conductance decreases
 - c) Both equivalent and specific conductance increase.
 - d) Its specific conductance decreases and equivalent conductance increases.
- 30. Which of the following features is correct, when concentrated solution of an electrolyte is diluted.
 - a) Its equivalent conductance decreases.
 - b) Its specific conductance decreases
 - c) Both equivalent and specific conductance increase.
 - d) Its specific conductance decreases and equivalent conductance increases.
- 31. The relationship between specific conductivity and equivalent equivalent conductance is
 - a) $\lambda eq = C \ge 100 / K$ c) $\lambda eq = C \ge 1000 / K$
 - b) $\lambda eq = K.C / 1000$ d) $\lambda eq = K \times 1000 / C$

32. Specific conductance of 0.1 M nitric acid is 6.3×10^{-2} Ohm⁻¹ Cm⁻¹. The molar conductance of the solution in [Ohm⁻¹ Cm² mol⁻¹] is

a) 630 b) 315 c) 100 d) 6300

33. Specific conductance of a decinormal solution of KCl is $0.0112 \text{ ohm}^{-1} \text{ Cm}^{-1}$. The resistance of a cell containing the solution was found to be 56. The cell constant is in Cm⁻¹

a) 2 Cm^{-1} b) 1.5231 Cm^{-1} c) 0.6272 Cm^{-1} d) 3.123 Cm^{-1}

34. A solution of salt 1.ON surrounding two pt electrodes 2.1 Cm apart and 4.2 Cm2 in area was found to go offer a resistance of 50 ohms. The equivalent conductivity of the solution is in Ohm-1 Cm-2 eq-1

- a) 10 b) 20 c) 30 d) 40
- 35. A galvanic cell converts
 - a) Electrical energy into chemical energy c) Electrical energy into heat energy
 - b) Chemical energy into electrical energy d) Chemical energy into heat energy
- 36. In the electrochemical series, elements are arranged in the
 - a) Decreasing order of SRP (Standard reduction potential)
 - b) Increasing order of SRP
 - c) Increasing order of Oxidation potential
 - d) Increasing order of equivalent weights

37. The standard reduction potential of Zn and Fe are -0.76V and -0.41V respectively. The emf for the cell reaction; Fe⁺² + Zn \rightarrow Zn⁺² + Fe is

a) -0.35V b) +0.35V c) +1.17V d) -1.17V

38. The conductivity of 0.1 N KCl is 0.01120 Mho Cm-1 if the cell constant is equal to 0.5 Cm-1, the conductance is equal to A. 2.24 x 10^{-3} eq⁻¹ B. 5.6 x 10^{-3} mhos C. 224 mhos D. 560 mhos

- 39. The quantity of electricity transported in one second by a current of One ampere is
 - a) Volt b) Ohm c) Coulomb d) Mhos

40. The resistance of a conductor is $5 \times 10-2$ ohms conductance is

a) 200 b) 20 mhos c) 500 Mhos d) 50 Mhos

- 41. If a salt bridge is removed between the half cells the voltage
 - a) Increases rapidly c) Increases
 - b) Decreases to Zero d) Do not change
- 42. Li^+ has a smaller ionic mobility than K^+ because of the
 - a) Larger size of Li⁺ ^{c)} smaller nuclear charge of Li⁺
 - b) Larger radius to charge ratio of Li⁺ d) Greater degree of hydration of Li
- 43. In the concentration cells, the electrical energy is due to
 - a) Oxidation of fuel
 - b) hear energy
 - c) Chemical reaction
- 44. Cell constant of a conduct metric cell
 - a) In increases with dilution
 - b) Decrease with dilution
- 45. In the salt bridge, KCl is used because
 - a) KCl is an electrolyte
 - b) K+ and Cl- ions are isoelectronic
 - c) K+ and Cl- have the same mobility
 - d) None

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	c	c	a	d	a	d	b	d	d	a	a	b	c	c	d	c	b	c	d	c
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
c	a	b	d	d	c	a	d	c	c	d	a	c	a	b	b	b	a	c	b	b
42	43	44	45																	
d	d	d	c																	

- d) Transfer of substance from one solution to another
- c) Depends on the nature of electrolyte
- d) Independent of the nature of electrolyte

12. 13. Which of a. NH₄OH b. NaOH d. NaCl c. HCl 1

7. A fuel cell convertsa. chemical energy of fuels directly to electricityb. chemical energy of fuels directly to pressurec. chemical energy of fuels directly to pressured. none
8. When hydrogen is used as fuel in hydrogen-oxygen fuel cell, the electrode are made ofa. an alloy of palladium and silverb. aluminumc. irond. cadmium
9. When storage cell is operating as voltaic cell it is said to bea. chargingb. dischargingc. neutrald. none
10. in lead-acid storage cell during discharging operation the concentration of H2SO4a. increasesb. decreasesc. increase-decreased. none
 11. Electrolyte can conduct electricity because a. Their molecules contains unpaired electrons which are mobile b. their molecules contains loosely held electrons which become free under the influence of voltage. C. their molecules are broken up into ions, when the electrolyte is fused or dissolved in a solvent. D. their molecules break up into ions when voltage is applied.
 12. HCl is called an electrolyte because a. Its molecules are made of electrically charged particles b. its breaks up into ions when current is passed through it c. it ionizes when electric current is passed through it
d. it ionizes when dissolved in a proper solvent.13. Which of the following is a weak electrolyte?

ANSWER THE FOLLOWING MULTIPLE CHOICE QUESTIONS: 1. Calomel electrode is constructed using a solution of

c. saturated NH₄Cl

d. Fe⁺³

c. mercurous chloride

c. as electrical cell

2. The standard reduction potential at 298K for Zn⁺², Cr⁺³, H⁺ an dFe⁺³ are 0.76V, -0.74V, -0.0V and

b. as voltaic cell

c. electrolytic cell

c. paste of NiO(OH)

5. An electrochemical cell or several electrochemical cells connected in series, that can be used as a

c. Zn⁺²

b. mercurous sulphate

ELECTRO CHEMITRY

b. saturated CaCl₂

0.77V respectively, the strongest reducing agent among there is

source or direct electric current at a constant voltage is called b. voltaic cell

b. nickel

h Cr^{+3}

4. A storage cell is a device that can operate a. both as voltage cell & electrical cell

6. The cathode of Ni-Cd battery is composed of

d. none

d. none

d. saturated NaCl

d. metal conductor

d. paste of $Cd(OH)_2$

UNIT-I

a. saturated KCl

a H^+

3. Calomel is

a. battery

a. cadmium

a. mercuric sulphide

UNIT-I	ELECTRO CHEMITRY	
a. Hydrolys c. instabil	an electrolyte in aqueous soluti is of electrolyte b. incr lity of the compound in aqueous between the oppositely charged	ease in electrostatic forces of attraction between the ions s medium d. decrease in the electrostatic forces of
	solvent has e of dielectric constant melting point	b. a dielectric constant equal to one d. a high value of dielectric constant
16. Which of the a. Molten N	following does not conduct ele aCl b. solution of N	•
	conductance of solution increas in concentration b. decrease ir	es with a concentration c. decrease in temperature d. none.
18. The ionizatio by	n of a strong electrolyte increas	es when the solution is diluted and the relation is given
a. nernst equ	uation b. Ostwald,s law	c. arrhennius equation d. law of mass action
a. Its molec	s a weak electrolyte because ular weight is high covalent compound	b. it is weakly ionized d. it is highly unstable.
a. By adding	f dissociation of acetic acid in a g a pinch of NaCl ting with water	n aqueous solution of the acid is practically unaffected. b. by adding a drop of concentrated HCl d. by raising the temperature.
a. it contain	s a bad conductor of electricity l s only molecules not possess ions	b. the ions present in its are not free to move d. it does not contain free molecules.
		$25 {}^{0}$ C is 25.2 mho cm2 eq-1. the equivalent nho m2 eq-1. the degree of ionization of the 0.1N NaCl
a. 0.5	b. 0.2	c. 0.4 d. 0.1
23. Pure water do a. Acidic	bes not conduct electricity becau b. low boiling c. al	use, it is most not ionize d. decomposed easily
a. Specific of solution of a	onductivity of a solution of any of conductivity with molecular we containing 1 gm mole of the elect c conductivity with equivalent w	ctrolyte. C. reciprocal of conductivity with volume
	ell converts gy into chemical energy gy into heat energy	b. chemical energy into electrical energy d. chemical energy into heat energy.

UNIT	-I ELEC	TRO CHEMITRY		OBJECTIVE MATERIAL
26. Th	e potential of standard	hydrogen electrode dipr	ped in a solution of	¹ M concentration and hydrogen
	passed at 1 atm pressu			, ₍
-	1 volt	b. 10 volt	c. 0 volt	d. 100 volts
27. Th	e potentials of two me	tals electrodes used in a	cell are 0.35V and	0.8 V. the emf of the cell formed
by con	nbining them is			
a.	1.2 V	b. 1.15 V	c0.5 V	d. 0.5V
	Decreasing order of s reduction potentials	the elements are arrange standard reduction potent c. increase f oxidation potentials.	tials b. inc	reasing order of standard llent weights
29. Ca	lomel electrode is reve	ersible with respect to		
	Mercury ion	-	c. both ions	d. none.
30. Th	e electrode potential is	s the tendency of a metal		
	1	b. to lose electrons		ose or gain electrons d. none.
	C			0
FILL	IN THE BLANKS:			
1.	On dilution the speci	fic conductivity of an ele	ectrolyte	
2.	Specific conductivity	of an electrolyte is calcu	ulated by the	
3.		is expressed in		
4.	The units or resistivit	y are		
5.	The total conductanc	e of 1 gm equivalent of a	an electrolyte at a g	iven dilution is called
6.	The unit of equivalen	t conductance is		
7.	The total conductanc	e of all ions is present in	one mole of an ele	ectrolyte in the solution is called
8.		nductivity is		
9.		activity is related to norm		equation.
10.	-	nolar conductivities are re	•	equation.
11.	A device which conv	erts electrical energy to o	chemical energy is	called
12.	-	lectrode reaction is		
13.		ictance on c		
14.		the electrode potential E		
15.	The standard electroc	ls le potential of saturated of	calomel electrode a	ut 25 0C is
16.				lyte is calculated by
law.	-			
17.	The transport number	r of an anion is calculated	d by	
18.		ation and anion is given b		
19.		n is not reversible is calle		
20.	are the c	cells which do not store e	energy.	
21.	The resistance of a m	etallic conductor	as the temp	erature is increased.
22.	A substance which in	aqueous solution or in r	nolten liberates ior	ns and allows electronic current
to pa	uss through is called			
23.	The substance which	conduct electricity with	out decomposition	is called
24.	Graphite is a	conductor.		
25.	A substance which al	lows the electric current	to pass through it i	is called

ANSWERS:

Q.NO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	А	С	С	А	А	С	А	Α	В	В	С	D	А	D	D
Q.NO	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	С	А	С	В	С	В	В	В	В	В	С	В	В	В	С

FILL IN THE BLANKS:

3. Ohm-1, cm-1 1. DECREASES 2. K = $1/P = 1/R \times 1/S$ 4. ohm 6. ohm-1, cm2, gm eq-1 7. MOLAR CONDUCTANCE 5. EQUIVALENT CONDCUTANCE 8. ohm-1, cm2, gm, mol-1 9. = k x 1000/N 10. = normality / molarity 11. Electrolytic cell 12. $E = E0 - 0.0591/n \times \log(ion)$ 13. INCREASES 14. A. NERNST B. E= 0.0592/nc X log (ion) 15. 0.24 or 0.338 16. KOHLRAUSCH'S LAW 17. n = v / (u+v)18. = (1-n)/n19. Primary cell 20. Fuel cell 21. Decreases 22. Electrolyte 23. metallic conductor 24. metallic 25. conductor

UNIT-IICORROSION SCIENCE1. an inhibitor which when added in small quantities to a effectively decreases the corrosion of the metal b. increases the corrosion of a metal c. no effect on the corrosion of metal d. increases the corrosion nature of the environment.	2 & ITS CONTROL METHO aqueous corrosive environm	
2. in the electrochemical corrosiona. anode undergoes oxidationb. cathode undergoes oxidationc. anode undergoes reductiond. both cathode and anode under goes oxidation		
3. The deciding factor in atmospheric corrosion is a presence of oxygen in airb. presence of gases like SO₂	c. humidity of air d. frequency of rainfall	
 4. during corrosion of iron in aqueous solution a corrosion occurs at cathode b. corrosion product is deposited at anode c. corrosion occurs at anode d. corrosion occurs at cathode with deposition of rust at 	cathode.	
5. The metal at the top of the electrochemical series is a. most stable b. most noble	c. least active	d. more active
6. The following metal is used for the cladding of aluma. 99.5% pure Alb. 100% pure Al	inum c. 98.5 % pure Al d. 99% pure Al	
7. Opacity and desired colour to paint is provided by a. pigments b. extenders c. dries d. thin	ners	
8. The oxygen carriers of the paint is provided by a. drier b. pigments c. thinner d. drying oil		
 9. Cathodic coatings if punctured a. have affect on the base metal b. causes less corrosion of the base metal c. causes accelerated corrosion of the base metal d. Cathodic coating corrodes first followed by the corr 	rosion of base metal.	
 D. The rusting of iron is catalyzed by one of the following a. Fe b. O₂ c. Zn d. H⁺ 		
. Corrosion is an example of a. oxidation b. reduction	c. electrolysis	d. erosion
2. For the corrosion of iron one of the following factors isa. presence of moistureb. presence of both moisture and oxygen	essential c. presence3 of hydrogen d. presence of strong aci	
 B. The buried pipeline is protected from corrosion by conn a. impressed voltage protection 	ecting to Mg block it is calle b. sacrificial cathodic pro	

- c. sacrificial anodic protection
- 14. during wet corrosion
 - a. the anodic part undergoes oxidation
 - b. the cathodic part undergoes oxidation
 - c. the anodic part undergoes reduction
- 15. The rate of corrosion of iron in atmosphere depends on
 - a. Humidity of atmosphere b. degree of pollution in atmosphere c. frequency of rain fall d. all the above.
- 16. In water line corrosion the maximum amount of corrosion takes place
 - a. Along the line just above the level of water meniscus b. along the line at the level of water meniscus c. along the line just below the level of water meniscus d. at the bottom of the vessel.
- Addition of hydrazine hydrate to corrosive environment

 a. Retards anodic reaction b. prevents diffusion of proton to cathode c. retards cathodic reaction by consuming dissolved oxygen. D. increases hydrogen over voltage.
- 18. Anodic coating protects the underlined metala. Due to its nobel character b. sacrificially c. due to its higher electrode potential d. none.
- 19. Drying oils supply to paint film a. main film forming constituents b. medium or vehicle c. water proof-ness d. all the above
- The function of ammonium chloride used as flux in galvanization is to

 a. Prevent oxide formation. B. prevent deposition of impurities c. reduce the content of base metal and coating metal. D. none.
- 21. The process of covering steel with tin to prevent it from corrosion is called a. galvanizing b. tinning c. metal cladding d. electro plating
- 22. Sand blasting is used for removing the following from the metal surfaces a. oxide scale b. oils c. greases d. old paints
- Acid pickling of steel is carried out by dipping in
 a. dil HCl b. warm Dil HCl. C. warm Dil H₂SO₄ d. dil H₂SO₄
- 24. The following reagents are used for solvent cleaning of metal surface a. Naphtha b. acid c. alkali d. sodium carbonate.
- 25. Electroplating is process of depositing a thin layer of a. Superior metal over inferior base metal. B. inferior metal over superior base metal c. superior metal over superior base metal d. inferior metal over inferior base metal
- 26. Anodic coating protects underlined metal a. due to noble character b. higher oxidation potential c. due to its lower oxidation potential d. due to its higher reduction potential

1. A 2. A 3.A 4.C 5.D 6.A 7.A 8. A 9. C 10.D 11. A 12.B 13.C 14.A 15. D 16. C 17. C 18. B 19. D 20. A 21. B 22. A 23. B 24. A 25. B 26.B

d. Neither cathodic nor anodic part undergoes any change.

d. any of these

FILL IN THE BLANKS:

- 1. Galvanization means coating of ______ on the iron and steel objects.
- 2. In chromium plating the electrolytic solution contains as electrolyte.
- Sheeting consists of plate of duraluminium sandwitched between two layers of aluminium of 3. 99.5% pure.
- 4. An example of cathodic coating _____.
- 5. corrosion is a gradual decay of metal by the attack of .
- 6. soil corrosion is pure _____ in character.
- 7. the phenomenon of a metal or an alloy exhibiting a much higher corrosion resistance than expected is called as
- 8. the corrosion that results in the formation of pin holes, pits and cavities in the metal is
- 9. the type of corrosion which occurs along grain boundarys is called .
- 10. the rate of corrosion increases with in pH.
- 11. impurities in metal causes_____.12. the mechanical dispersion of mixture of one or more pigments in a vehicle is called ____.
- 13. oils are used as vehicle in paints.
- 14. the oxygen carriers in paints are called _____.
 15. ____ coating are produced from coating metals which are anodic to the base metal.
- 16. Cathodic coatings are obtained by coating a _____ metal than the base metal.
- 17. The process by which coating metal is deposited on the base metal by passing a direct current through an electrolytic solution containing soluble salt of the metal is
- 18. is used to remove oils, greases, buffing compounds and fatty substances from the base metal surfaces.
- 19. sand blasting is used for removing scales.
- 20. _____ method is more widely used for common metal spraying.
- 21. During colorizing the composition of the protecting layer formed is
- 22. is produced by the interaction of a mixture of volatile chromos chloride and hydrogen with steel parts at 1050°C.
- 23. are inorganic surface barrier, produced by chemical or electrochemical reaction, brought at the surface of the base metal.
- 24. An example of anodic corrosion inhibitor
- 25. when the ratio of anodic to cathodic area decreases the rate of corrosion .
- 26. the chemical composition of the corrosion prodect of iron is
- 27. in acidic environment lower the value of hydrogen over voltage is the rate of corrosion.
- 28. in galvanic corrosion the metal having relatively _____ Eo value will undergo corrosion.
 29. formation of _____ type of metal oxide causes rapid and continous corrosion.
- 30. pickling method is used for the removal of ______ deposits on the metal surface

Answers: 1. Zinc 2. H₂CrO₄ + H₂SO₄ 3. Alclad 4. Tinning 5.Environment 6.Electrochemical 7.Passivity 8.Pitting corrosion 9.Intergranular 10. increases 11.Heterogenisity 12. Paint 13.Drying oils 14. Driers 15. Anodic 16. Noble 17. Electroplating 18. Solvent Cleaning 19. Oxide 20. Wire Gun method 21. Al₃F₂ 22. Chromising 23. Chemical conversion coating 24.Chromate or Phosphate 25.Increase 26.Fe₂O₃.3H₂O 27.Higher 28.Lower 29. Volatile and porous 30. Scale or rust