Code No: RR220202

II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 MATHEMATICS-III

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Electronics & Control Engineering, Electronics & Telematics, Metallurgy & Material Technology, Aeronautical Engineering and Instrumentation & Control Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Evaluate $\int_{0}^{\pi/2} \sqrt{\cot \theta} \ d\theta$.
 - (b) prove that $\Gamma(n+\frac{1}{2}) = \frac{\sqrt{\pi}}{4n} \frac{\Gamma(2n+1)}{\Gamma(n+1)}$
 - (c) If m>0, n>0, then prove that $\frac{1}{n}\beta(m, n+1) = \frac{1}{m}\beta(n+1, m) = \frac{\beta(m, n)}{m+n}[5+5+6]$
- 2. (a) Prove that $\int_{-1}^{1} (x^2 1) P_{n+1} P'_n dx = \frac{2n(n+1)}{(2n+1)(2n+3)}$

(b) Prove that
$$J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{\sin x}{x} - \cos x \right]$$
 [8+8]

- 3. (a) Test for analyticity at the origin for $f(z) = \frac{x^3y(y-ix)}{x^6+y^2}$ for $z \neq 0$ = 0 for z = 0.
 - (b) Find all values of z which satisfy (i) $e^z = 1+i$ (ii) $\sin z = 2$. [8+8]
- 4. (a) Evaluate $\int_C \frac{z^2-2z-2}{(z^2+1)^{2z}} dz$ where C is $|z-i| = \frac{1}{2}$ using Cauchy's integral formula
 - (b) Evaluate $\int_{(0,0)}^{(1,1)} (3x^2 + 4xy + ix^2) dz$ along y=x².
 - (c) Evaluate $\int_{c} \frac{e^{2z} dz}{(z^2 + \prod^2)^3}$ where C is |z| = 4 using Cauchy's integral formula.
- 5. (a) Find the Laurent series expansion of the function $\frac{z^2-1}{z^2+5z+6}$ about z=0 in the region 2<|z|<3
 - (b) Expand $f(z) = \frac{a}{(2z+1)^3}$ about (i) z = 0 (ii) z = 2. [8+8]
- 6. (a) Find the poles and the corresponding residues of the function $\frac{1}{(z^2-1)^3}$
 - (b) Evaluate $\int_{c} \frac{(4-3z)}{z(z-1)(z-2)} dz$ where c is $|z| = \frac{3}{2}$ by residues theorem. [8+8]
- 7. (a) Evaluate $\int_{0}^{2\pi} \frac{\sin^2 \theta \, d\theta}{a^+ b \cos \theta}$ using residue theorem.

Set No. 1

- (b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using residue theorem. [8+8]
- 8. (a) show that the function w=4/z transforms the straight line x=a in the z-plane into a circle in the w-plane
 - (b) Find the bilinear transformation which maps the points z= ∞ , i,0 onto the points w=0,1, ∞ [8+8]

II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 MATHEMATICS-III

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Electronics & Control Engineering, Electronics & Telematics, Metallurgy & Material Technology, Aeronautical Engineering and Instrumentation & Control Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Evaluate $\int_{1}^{1} \frac{x^2 dx}{\sqrt{1-x^5}}$ in terms of β function.
 - (b) Prove that $\int_{0}^{1} (1-x^n)^{1/n} dx = \frac{1}{n} \frac{\left[\Gamma\left(\frac{1}{n}\right)\right]^2}{2\Gamma(2/n)}$
 - (c) Prove that $\Gamma\left(\frac{1}{n}\right)\Gamma\left(\frac{2}{n}\right)\Gamma\left(\frac{3}{n}\right)....\Gamma\left(\frac{n-1}{n}\right) = \frac{(2\pi)^{\frac{n-1}{2}}}{n^{1/2}}$ [5+5+6]
- 2. (a) Show that the coefficient of t^n in the power series expansion of $e^{\frac{x}{2}(t-\frac{1}{t})}$ is $J_n(x)$.
 - (b) Prove that $\int_{-1}^{1} x P_n(x) P_{n-1}(x) = \frac{2}{(4n^2-1)}$. [8+8]
- 3. (a) Find the analytic function f(z) = u + iv if $u-v = e^x(\cos y \sin y)$
 - (b) Find all principal values of $(1 + i\sqrt{3})^{1+i\sqrt{3}}$ [8+8]
- 4. (a) Evaluate using Cauchy's Integral Formula $\int_{c} \frac{(z+1)}{z^3-4z} dz$ where c is $|z+2| = \frac{3}{2}$
 - (b) Evaluate $\int_C z^3 dz$ where c is the curve x=t,y=t²
 - (c) Evaluate $\int_C \frac{e^{3z} dz}{(z+i)^4}$ where c is |z|=3 using Cauchy's integral formula [5+5+6]
- 5. (a) Find the Laurent series expansion of the function $\frac{z^2-1}{z^2+5z+6}$ about z=0 in the region 2<|z|<3
 - (b) Expand $f(z) = \frac{a}{(2z+1)^3}$ about (i) z = 0 (ii) z = 2. [8+8]
- 6. (a) Find the poles of the function $\frac{e^{iz}}{(z^2+1)}$ and corresponding residues.
 - (b) Evaluate $\int_c \frac{z}{(z-1)(z-2)^2}$ dz Where **c** is the circle $|z-2| = \frac{1}{2}$ using residue theorm. [8+8]
- 7. (a) Show that $\int_{0}^{\pi} \frac{ad\theta}{a^2 + \sin^2 \theta} = \frac{\pi}{\sqrt{1+a^2}}$, (a > 0) using residue theorem.
 - (b) Apply the calculus of residues to evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+a^2)(x^2+b^2)} dx$, a > b > 0. [8+8]

- 8. (a) Discuss the transformation w=cos z.
 - (b) Find the bilinear transformation which maps the points (l, i, -l) into the points $(0,1,\infty)$. [8+8]

Code No: RR220202

II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 MATHEMATICS-III

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Electronics & Control Engineering, Electronics & Telematics, Metallurgy & Material Technology, Aeronautical Engineering and Instrumentation & Control Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Evaluate $\int_{1}^{1} \frac{x^2 dx}{\sqrt{1-x^5}}$ in terms of β function.

(b) Prove that
$$\int\limits_0^1{(1-x^n)^{1/n}dx}=\frac{1}{n}\frac{\left[\Gamma\left(\frac{1}{n}\right)\right]^2}{2\Gamma(2/n)}$$

(c) Prove that
$$\Gamma\left(\frac{1}{n}\right)\Gamma\left(\frac{2}{n}\right)\Gamma\left(\frac{3}{n}\right)....\Gamma\left(\frac{n-1}{n}\right) = \frac{(2\pi)^{\frac{n-1}{2}}}{n^{1/2}}$$
 [5+5+6]

2. (a) Prove that $P_n(0)=0$ for n odd and $P_n(0)=\frac{(-1)^{\frac{n}{2}}n!}{2^n(\frac{n}{2}!)^2}$ if n is even.

(b) Prove that
$$J_2 - J_0 = 2 J_0''$$
 [8+8]

3. (a) If f(z) is an analytic function, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$.

(b) If tan log (x+iy) = a + i b where
$$a^2 + b^2 \neq 1$$
 prove that tan log (x²+ y²) = $\frac{2a}{1-a^2-b^2}$ [8+8]

4. (a) Evaluate $\int_{c} \frac{Cos z - \sin z \ dz}{(z+i)^3}$ with c: |z| = 2 using Cauchy's integral formula

(b) Evaluate
$$\int_{1-i}^{2+i} (2x+1+iy)dz$$
 along (1-i) to (2+i) using Cauchy's integral formula. [8+8]

5. (a) For the function $f(z) = \frac{2z^3+1}{z(z+1)}$ find Taylor's series valid in the neighbourhood of z=1

(b) Find Laurent's series for $f(z) = \frac{1}{z^2(1-z)}$ and find the region of convergence [8+8]

6. (a) Find the poles and corresponding residue at each pole of the function $\frac{z^2}{(z-1)^2(z+2)}$.

(b) Evaluate
$$\int_C \frac{z-dz}{(z^2+1)}$$
 where c is $|z+1| = 1$ by residue theorem. [8+8]

7. (a) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{(5-3\cos\theta)^2}$ using residue theorem.

(b) Evaluate
$$\int_{0}^{\infty} \frac{\sin mx}{x} dx$$
 using residue theorem. [8+8]

- 8. (a) Find the image of the region in the z-plane between the lines y=0 and y= $\Pi/2$ under the transformation $\omega=e^z$
 - (b) Find the image of the line x=4 in z-plane under the transformation w=z^2 $$[8\!+\!8]$$

Code No: RR220202

II B.Tech II Semester Supplimentary Examinations, Apr/May 2008 MATHEMATICS-III

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Electronics & Control Engineering, Electronics & Telematics, Metallurgy & Material Technology, Aeronautical Engineering and Instrumentation & Control Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Evaluate $4\int_{0}^{\infty} \frac{x^2 dx}{1+x^4}$ using $\beta \Gamma$ functions
 - (b) Prove that $\beta\left(m+\frac{1}{2},m+\frac{1}{2}\right)=\frac{\pi}{m,2^{4m-1}}$
 - (c) Evaluate $\int_{0}^{2} (8-x^3)^{1/3} dx$ using $\beta \Gamma$ functions [5+5+6]
- 2. Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$ [16]
- 3. (a) If f(z) is an analytic function, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$.
 - (b) If tan log (x+iy) = a + i b where $a^2 + b^2 \neq 1$ prove that tan log (x²+ y²) = $\frac{2a}{1-a^2-b^2}$ [8+8]
- 4. (a) Evaluate $\int_{c} \frac{ze^{z} dz}{(z+a)^{3}}$ where c is any simple closed curve enclosing the point z = -a using Cauchy's integral formula.
 - (b) Evaluate $\int x^2 + ixy$ from A(1,1) to B(2,8) along x=t y=t³
 - (c) Evaluate $\int_C \left[\frac{e^z}{z^3} + \frac{z^4}{(z+i)^2}\right] dz$ where c: |z| = 2 Using Cauchy's integral theorem [5+5+6]
- 5. (a) Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z=1 as a Laurent series. Also find the region of convergence.
 - (b) Find the Taylor series for $\frac{z}{z+2}$ about z=1, and find the region of convergence [8+8]
- 6. (a) Find the poles and residues at each pole tanhz.
 - (b) Evaluate $\int_C \frac{z^3 dz}{(3-1)^2(z-3)}$ where c is |z| = 2 by residue theorem. [8+8]
- 7. (a) State and prove Rouche's theorem
 - (b) Evaluate $\int_{0}^{2\pi} \frac{\sin 3\theta \, d\theta}{5-3\cos \theta}$ using residue theorem. [8+8]

Code No: RR220202

- 8. (a) Find the image of the straight lines x=0; y=0; x=1 and y=1 under the transformation $w=z^2$.
 - (b) Show that the relation $w=\frac{5-4z}{4z-2}$ transforms the circle $|\mathbf{z}|=1$ into a circle of radius unity in the w-plane. [8+8]