PH : PHYSICS

Duration : Three Hours

Maximum Marks :100

Read the following instructions carefully.

- 1. This question paper contains 16 printed pages including pages for rough work. Please check all pages and report discrepancy, if any.
- 2. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the Optical Response Sheet (ORS).
- 3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All questions in this paper are of objective type.
- 5. Questions must be answered on Optical Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as an incorrect response.
- 6. <u>There are a total of 60 questions carrying 100 marks.</u> Questions 1 through 20 are 1-mark questions, questions 21 through 60 are 2-mark questions.
- 7. Questions 51 through 56 (3 pairs) are common data questions and question pairs (57, 58) and (59, 60) are linked answer questions. The answer to the second question of the above 2 pairs depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- 8. Un-attempted questions will carry zero marks.
- 9. Wrong answers will carry NEGATIVE marks. For Q.1 to Q.20, ¹/₃ mark will be deducted for each wrong answer. For Q. 21 to Q. 56, ²/₃ mark will be deducted for each wrong answer. The question pairs (Q.57, Q.58), and (Q.59, Q.60) are questions with linked answers. There will be negative marks only for wrong answer to the first question of the linked answer question pair i.e. for Q.57 and Q.59, ²/₃ mark will be deducted for each wrong answer. There is no negative marking for Q.58 and Q.60.
- 10. Calculator (without data connectivity) is allowed in the examination hall.
- 11. Charts, graph sheets or tables are NOT allowed in the examination hall.
- 12. Rough work can be done on the question paper itself. Additionally, blank pages are given at the end of the question paper for rough work.

Some Useful Symbols

Speed of light in free space:	С
Boltzmann constant:	k_B
Electron charge :	е
Planck's constant:	h
Rest mass of electron:	m_e
Rest mass of proton:	m_p
Rest mass of neutron:	m_n
Permeability of free space:	μ
Permittivity of free space:	E,

All other symbols have their usual meanings unless otherwise specified.

Q. 1 - Q. 20 carry one mark each.

Q.1	The value of th	e contour integral,	$\left \int_{C} \vec{r} \times d\vec{\theta}\right ,$	for a circle C of r	radius r with center at the origin is
	(A) 2πr	(B) $r^2/2$		(C) πr ²	(D) r

Q.2 An electrostatic field \vec{E} exists in a given region R. Choose the WRONG statement.

(A) Circulation of \vec{E} is zero

(B) \vec{E} can always be expressed as the gradient of a scalar field

(C) The potential difference between any two arbitrary points in the region R is zero

(D) The work done in a closed path lying entirely in R is zero

Q.3

The Lagrangian of a free particle in spherical polar co-ordinates is given by $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\dot{\phi}^2\sin^2\theta)$. The quantity that is conserved is

(A)
$$\frac{\partial L}{\partial \dot{r}}$$

(B) $\frac{\partial L}{\partial \dot{\theta}}$
(C) $\frac{\partial L}{\partial \dot{\phi}}$
(D) $\frac{\partial L}{\partial \dot{\phi}} + \dot{r}\dot{\theta}$

Q.4

A conducting loop L of surface area S is moving with a velocity \vec{v} in a magnetic field $\vec{B}(\vec{r},t) = \vec{B}_o t^2$, B_o is a positive constant of suitable dimensions. The emf induced, V_{emf} , in the loop is given by

$$(A) - \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

$$(B) \oint_{L} \left(\vec{v} \times \vec{B} \right) \cdot d\vec{L}$$

$$(B) - \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} - \oint_{L} \left(\vec{v} \times \vec{B} \right) \cdot d\vec{L}$$

$$(D) - \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} + \oint_{L} \left(\vec{v} \times \vec{B} \right) \cdot d\vec{L}$$

2009

The eigenvalues of the matrix $A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ are Q.5 (A) real and distinct (B) complex and distinct (C) complex and coinciding (D) real and coinciding σ_i (*i* = 1, 2, 3) represent the Pauli spin matrices. Which one of the following is NOT true? Q.6 (A) $\sigma_i \sigma_i + \sigma_i \sigma_i = 2\delta_{ii}$ (B) $Tr(\sigma_i) = 0$ (C) The eigenvalues of σ_i are ± 1 (D) det $(\sigma_i) = 1$ Which one of the functions given below represents the bound state eigenfunction of the operator Q.7 $-\frac{d^2}{dr^2}$ in the region, $0 \le x < \infty$, with the eigenvalue -4? (A) $A_o e^{2x}$ (B) $A_{a} \cosh 2x$ (C) $A_{e}e^{-2x}$ (D) $A_{a} \sinh 2x$ Q.8 Pick the WRONG statement. (A) The nuclear force is independent of electric charge (B) The Yukawa potential is proportional to $r^{-1} \exp\left(\frac{mc}{\hbar}r\right)$, where r is the separation between two nucleons (C) The range of nuclear force is of the order of $10^{-15}m - 10^{-14}m$ (D) The nucleons interact among each other by the exchange of mesons If p and q are the position and momentum variables, which one of the following is NOT a canonical Q.9 transformation? (A) $Q = \alpha q$ and $P = \frac{1}{\alpha} p$, for $\alpha \neq 0$ (B) $Q = \alpha q + \beta p$ and $P = \beta q + \alpha p$ for α, β real and $\alpha^2 - \beta^2 = 1$ (C) Q = p and P = q(D) Q = p and P = -qThe Common Mode Rejection Ratio (CMRR) of a differential amplifier using an operational amplifier is Q.10 100 dB. The output voltage for a differential input of 200 µV is 2 V. The common mode gain is (A) 10 (B) 0.1 (C) 30 dB (D) 10 dB In an insulating solid which one of the following physical phenomena is a consequence of Pauli's Q.11 exclusion principle ? (A) Ionic conductivity (B) Ferromagnetism (C) Paramagnetism (D) Ferroelectricity

2009

PH

Group I

Group II

3. Lifetime of the energy level

1. Moment of inertia

2. Refractive index

4. Pressure

- P. Doppler Broadening
- O. Natural Broadening
- R. Rotational spectrum
- Total internal reflection S.
- (A) P 4, Q 3, R 1, S 2(B) P - 3, Q - 2, R - 1, S - 4(C) P-2, Q-3, R-4, S-1(D) P-1, Q-4, R-2, S-3
- The separation between the first Stokes and corresponding anti-Stokes lines of the rotational Raman 0.15 spectrum in terms of the rotational constant, B is

(C) 6B (D) 12B (B) 4B (A) 2B

A superconducting ring is cooled in the presence of a magnetic field below its critical temperature (T_c). 0.16 The total magnetic flux that passes through the ring is

(A) zero	(B) $n\frac{h}{2e}$
(C) $\frac{nh}{4\pi e}$	(D) $\frac{ne^2}{hc}$

4/16

Q.17 In a cubic crystal, atoms of mass M_1 lie on one set of planes and atoms of mass M_2 lie on planes interleaved between those of the first set. If C is the force constant between nearest neighbour planes, the frequency of lattice vibrations for the optical phonon branch with wavevector $\mathbf{k} = 0$ is

(A) $\sqrt{2C\left(\frac{1}{M_1}+\frac{1}{M_2}\right)}$
$(B)\sqrt{C\left(\frac{1}{2M_1} + \frac{1}{M_2}\right)}$
(C) $\sqrt{C\left(\frac{1}{M_1} + \frac{1}{2M_2}\right)}$
(D) 0

Q.18 In the quark model which one of the following represents a proton?

- (A) udd
- (B) uud
- (C) $u\overline{b}$
- (D) $c\overline{c}$

Q.19

The circuit shown above

(A) is a common-emitter amplifier

- (B) uses a *pnp* transistor
- (C) is an oscillator
- (D) has a voltage gain less than one
- Q.20 Consider a nucleus with N neutrons and Z protons. If m_p , m_n and *BE* represent the mass of the proton, the mass of the neutron and the binding energy of the nucleus respectively and *c* is the velocity of light in free space, the mass of the nucleus is given by
 - (A) $Nm_n + Zm_p$ (B) $Nm_p + Zm_n$ (C) $Nm_n + Zm_p + \frac{BE}{c^2}$ (D) $Nm_p + Zm_n + \frac{BE}{c^2}$

PH

5/16

Q. 21 to Q. 60 carry two marks each.

Q.21 The magnetic field (in $A m^{-1}$) inside a long solid cylindrical conductor of radius a = 0.1 m is,

 $\vec{H} = \frac{10^4}{r} \left[\frac{1}{\alpha^2} \sin(\alpha r) - \frac{r}{\alpha} \cos(\alpha r) \right] \hat{\phi}, \text{ where } \alpha = \frac{\pi}{2a}. \text{ What is the total current (in A) in the conductor ?}$

(A)
$$\frac{\pi}{2a}$$
 (B) $\frac{800}{\pi}$ (C) $\frac{400}{\pi}$ (D) $\frac{300}{\pi}$

Q.22

Which one of the following current densities, \vec{J} , can generate the magnetic vector potential $\vec{A} = (y^2\hat{i} + x^2\hat{j})$?

(A)
$$\frac{2}{\mu_o} (x\hat{i} + y\hat{j})$$

(B) $-\frac{2}{\mu_o} (\hat{i} + \hat{j})$
(C) $\frac{2}{\mu_o} (\hat{i} - \hat{j})$
(D) $\frac{2}{\mu_o} (x\hat{i} - y\hat{j})$

Q.23 The value of the integral $\int_C \frac{e^z}{z^2 - 3z + 2} dz$, where the contour C is the circle |z| = 3/2 is

A)
$$2\pi i e$$
 (B) $\pi i e$ (C) $-2\pi i e$ (D) $-\pi i e$

Q.24 In a non-conducting medium characterized by $\varepsilon = \varepsilon_o$, $\mu = \mu_o$ and conductivity $\sigma = 0$, the electric field (in $V m^{-1}$) is given by $\vec{E} = 20 \sin \left[10^8 t - kz \right] \hat{j}$. The magnetic field, $\vec{H} (\ln A m^{-1})$, is given by

(A)
$$20k \cos \left[10^8 t - kz \right] \hat{i}$$

(B) $\frac{20k}{10^8 \mu_o} \sin \left[10^8 t - kz \right] \hat{j}$
(C) $-\frac{20k}{10^8 \mu_o} \sin \left[10^8 t - kz \right] \hat{i}$
(D) $-20k \cos \left[10^8 t - kz \right] \hat{j}$

Q.25 A cylindrical rod of length L and radius r, made of an inhomogeneous dielectric, is placed with its axis along the z direction with one end at the origin as shown below.

If the rod carries a polarization, $\vec{P} = (5z^2 + 7)\hat{k}$, the volume bound charge inside the dielectric is

(A) Zero (B) $10\pi r^2 L$ (C) $-5\pi r^2 L$ (D) $-5\pi r^2 L^2$

PH

PH

6/16

- Q.26 Let $T_{ij} = \sum_{k} \varepsilon_{ijk} a_k$ and $\beta_k = \sum_{i,j} \varepsilon_{ijk} T_{ij}$, where ε_{ijk} is the Levi-Civita density, defined to be zero if two of the indices coincide and +1 and -1 depending on whether ijk is even or odd permutation of 1,2,3. Then β_3 is equal to
 - (A) $2a_3$ (B) $-2a_3$ (C) a_3 (D) $-a_3$
- Q.27 The dependence of the magnetic susceptibility (χ) of a material with temperature (*T*) can be represented by $\chi \propto \frac{1}{T-\theta}$, where θ is the Curie-Weiss temperature. The plot of magnetic susceptibility versus temperature is sketched in the figure, as curves P, Q and R with curve Q having $\theta = 0$. Which one of the following statements is correct?

- (A) Curve R represents a paramagnet and Q a ferromagnet
- (B) Curve Q represents a ferromagnet and P an antiferromagnet
- (C) Curve R represents an antiferromagnet and Q a paramagnet
- (D) Curve R represents an antiferromagnet and Q a ferromagnet
- Q.28 The dielectric constant of a material at optical frequencies is mainly due to
 - (A) ionic polarizability
 - (B) electronic polarizability
 - (C) dipolar polarizability
 - (D) ionic and dipolar polarizability
- Q.29 An electron of wavevector \vec{k}_e , velocity \vec{v}_e and effective mass m_e is removed from a filled energy band. The resulting hole has wavevector \vec{k}_h , velocity \vec{v}_h , and effective mass m_h . Which one of the following statements is correct?
 - (A) $\vec{k}_{h} = -\vec{k}_{e}; \ \vec{v}_{h} = -\vec{v}_{e}; \ m_{h} = -m_{e}$ (B) $\vec{k}_{h} = \vec{k}_{e}; \ \vec{v}_{h} = \vec{v}_{e}; \ m_{h} = m_{e}$ (C) $\vec{k}_{h} = \vec{k}_{e}; \ \vec{v}_{h} = -\vec{v}_{e}; \ m_{h} = -m_{e}$
 - (D) $\vec{k}_h = -\vec{k}_e$; $\vec{v}_h = \vec{v}_e$; $m_h = -m_e$

PH

2009

Q.30 In a diatomic molecule, the internuclear separation of the ground and first excited electronic state are the same as shown in the figure. If the molecule is initially in the lowest vibrational state of the ground state, then the absorption spectrum will appear as

Q.31 Five energy levels of a system including the ground state are shown below. Their lifetimes and the allowed electric dipole transitions are also marked.

Which one of the following transitions is the most suitable for a continuous wave (CW) laser ?

(A) $1 \rightarrow 0$ (B) $2 \rightarrow 0$ (C) $4 \rightarrow 2$ (D) $4 \rightarrow 3$

- Q.32 Assuming the mean life time of a muon (in its rest frame) to be $2 \times 10^{-6} s$, its life time in the laboratory frame, when it is moving with a velocity 0.95c is
 - (A) $6.4 \times 10^{-6} s$ (B) $0.62 \times 10^{-6} s$ (C) $2.16 \times 10^{-6} s$ (D) $0.19 \times 10^{-6} s$
- Q.33 Cesium has a nuclear spin of 7/2. The hyperfine spectrum of the D lines of the cesium atom will consist of

(A) 10 lines (B) 4 li	nes (C) 6 lines	(D) 14 lines	
-----------------------	-----------------	--------------	--

Ś

2009

8/16

The second

9/16

Q.34 The probability that an energy level ε at a temperature T is *unoccupied* by a fermion of chemical potential μ is given by

(A)
$$\frac{1}{e^{(\varepsilon-\mu)/k_BT}+1}$$
 (B) $\frac{1}{e^{(\varepsilon-\mu)/k_BT}-1}$ (C) $\frac{1}{e^{(\mu-\varepsilon)/k_BT}+1}$ (D) $\frac{1}{e^{(\mu-\varepsilon)/k_BT}-1}$

Q.35 Consider the following expression for the mass of a nucleus with Z protons and A nucleons: $M(A,Z) = \frac{1}{c^2} (f(A) + yZ + zZ^2).$ Here f(A) is a function of A,

$$y = -4a_A,$$

 $z = a_c A^{-1/3} + 4a_A A^{-1},$

 a_A and a_c are constants of suitable dimensions. For a fixed A, the expression of Z for the most stable nucleus is

(A)
$$Z = \frac{A/2}{1 + \left(\frac{a_c}{a_A}\right) A^{2/3}}$$
 (B) $Z = \frac{A/2}{1 + \left(\frac{a_c}{4a_A}\right) A^{2/3}}$
(C) $Z = \frac{A}{1 + \left(\frac{a_c}{4a_A}\right) A^{2/3}}$ (D) $Z = \frac{A}{1 + A^{2/3}}$

Q.36 The de Broglie wavelength of particles of mass m with average momentum p at a temperature T in three dimensions is given by

(A)
$$\lambda = \frac{h}{\sqrt{2mk_BT}}$$
 (B) $\lambda = \frac{h}{\sqrt{3mk_BT}}$ (C) $\lambda = \frac{h}{\sqrt{2k_BT}}$ (D) $\lambda = \frac{h}{\sqrt{3m}}$

Assuming an ideal voltage source, Thevenin's resistance and Thevenin's voltage respectively for the above circuit are

(A) 15Ω and 7.5 V (B) 20Ω and 5 V (C) 10Ω and 10 V (D) 30Ω and 15 V

2009

Q.40

Q.38 Let $|n\rangle$ and $|p\rangle$ denote the isospin states with $I = \frac{1}{2}$, $I_3 = \frac{1}{2}$ and $I = \frac{1}{2}$, $I_3 = -\frac{1}{2}$ of a nucleon respectively. Which one of the following two-nucleon states has I = 0, $I_3 = 0$?

(A)
$$\frac{1}{\sqrt{2}}(|nn\rangle - |pp\rangle)$$
 (B) $\frac{1}{\sqrt{2}}(|nn\rangle + |pp\rangle)$
(C) $\frac{1}{\sqrt{2}}(|np\rangle - |pn\rangle)$ (D) $\frac{1}{\sqrt{2}}(|np\rangle + |pn\rangle)$

- Q.39 An amplifier of gain 1000 is made into a feedback amplifier by feeding 9.9 % of its output voltage in series with the input opposing. If $f_L = 20$ Hz and $f_H = 200$ kHz for the amplifier without feedback, then due to the feedback
 - (A) the gain decreases by 10 times
 - (B) the output resistance increases by 10 times
 - (C) the f_H increases by 100 times
 - (D) the input resistance decreases by 100 times

Pick the correct statement based on the above circuit.

- (A) The maximum Zener current, $I_{Z(max)}$, when $R_L = 10 \text{ k}\Omega$ is 15 mA
- (B) The minimum Zener current, $I_{Z(\text{min})},$ when R_L = 10 k Ω is 5 mA
- (C) With $V_{in} = 20V$, $I_L = I_Z$, when $R_L = 2 k\Omega$
- (D) The power dissipated across the Zener when R_L = 10 $k\Omega$ and V_{in} = 20 V is 100 mW
- Q.41 The disintegration energy is defined to be the difference in the rest energy between the initial and final states. Consider the following process :

 $^{240}_{94}Pu \rightarrow^{236}_{92}U +^{4}_{2}He$.

The emitted α particle has a kinetic energy 5.17 MeV. The value of the disintegration energy is

(A) 5.26 MeV (B) 5.17 MeV (C) 5.08 MeV (D) 2.59 MeV

Q.42 A classical particle is moving in an external potential field V(x, y, z) which is invariant under the following infinitesimal transformations

$$\begin{array}{l} x \to x' = x + \delta x, \\ y \to y' = y + \delta y, \\ \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} x' \\ y' \end{pmatrix} = R_z \begin{pmatrix} x \\ y \end{pmatrix}$$

where R_z is the matrix corresponding to rotation about the z axis. The conserved quantities are (the symbols have their usual meaning)

(A)
$$p_x, p_z, L_z$$
 (B) p_x, p_y, L_z, E (C) p_y, L_z, E (D) p_y, p_z, L_y, E

Q.43 The spin function of a free particle, in the basis in which S_z is diagonal, can be written as $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ with eigenvalues $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$, respectively. In the given basis, the normalized eigenfunction of S_y with eigenvalue $-\frac{\hbar}{2}$

(A)
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
 (B) $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ i \end{pmatrix}$ (C) $\frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 0 \end{pmatrix}$ (D) $\frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}$

Q.44 \hat{A} and \hat{B} represent two physical characteristics of a quantum system. If \hat{A} is Hermitian, then for the product $\hat{A}\hat{B}$ to be Hermitian, it is sufficient that

- (A) \hat{B} is Hermitian (B) \hat{B} is anti-Hermitian
- (C) \hat{B} is Hermitian and \hat{A} and \hat{B} commute

(D) \hat{B} is Hermitian and \hat{A} and \hat{B} anti-commute

Q.45 Consider the set of vectors in three-dimensional real vector space

 $\mathbb{R}^{3}, S = \{(1,1,1), (1,-1,1), (1,1,-1)\}$. Which one of the following statements is true ?

(A) S is not a linearly independent set.

(B) S is a basis for \mathbb{R}^3 .

(C) The vectors in S are orthogonal.

(D) An orthogonal set of vectors cannot be generated from S.

Q.46 For a Fermi gas of N particles in three dimensions at T = 0 K, the Fermi energy, E_F is proportional to

(A) $N^{2/3}$ (B) $N^{3/2}$ (C) N^3 (D) N^2

2009

Q.47 The Lagrangian of a diatomic molecule is given by $L = \frac{m}{2} (\dot{x}_1^2 + \dot{x}_2^2) - \frac{k}{2} x_1 x_2$, where *m* is the mass of each of the atoms and x_1 and x_2 are the displacements of atoms measured from the equilibrium position and k > 0. The normal frequencies are

(A)
$$\pm \left(\frac{k}{m}\right)^{1/2}$$
 (B) $\pm \left(\frac{k}{m}\right)^{1/4}$ (C) $\pm \left(\frac{k}{2m}\right)^{1/4}$ (D) $\pm \left(\frac{k}{2m}\right)^{1/2}$

Q.48 A particle is in the normalized state $|\psi\rangle$ which is a superposition of the energy eigenstates $|E_o = 10 eV\rangle$ and $|E_1 = 30 eV\rangle$. The average value of energy of the particle in the state $|\psi\rangle$ is 20 eV. The state $|\psi\rangle$ is given by

$$(A)\frac{1}{2}|E_{o} = 10 eV\rangle + \frac{\sqrt{3}}{4}|E_{1} = 30 eV\rangle \qquad (B)\frac{1}{\sqrt{3}}|E_{o} = 10 eV\rangle + \sqrt{\frac{2}{3}}|E_{1} = 30 eV\rangle$$
$$(C)\frac{1}{2}|E_{o} = 10 eV\rangle - \frac{\sqrt{3}}{4}|E_{1} = 30 eV\rangle \qquad (D)\frac{1}{\sqrt{2}}|E_{o} = 10 eV\rangle - \frac{1}{\sqrt{2}}|E_{1} = 30 eV\rangle$$

Q.49 The Lagrangian of a particle of mass *m* moving in one dimension is $L = \exp(\alpha t) \left[\frac{m\dot{x}^2}{2} - \frac{kx^2}{2} \right]$, where α and *k* are positive constants. The equation of motion of the particle is

(A)
$$\ddot{x} + \alpha \dot{x} = 0$$

(B) $\ddot{x} + \frac{k}{m}x = 0$
(C) $\ddot{x} - \alpha \dot{x} + \frac{k}{m}x = 0$
(D) $\ddot{x} + \alpha \dot{x} + \frac{k}{m}x = 0$

Q.50 Two monochromatic waves having frequencies ω and $\omega + \Delta \omega$ ($\Delta \omega \ll \omega$) and corresponding wavelengths λ and $\lambda - \Delta \lambda$ ($\Delta \lambda \ll \lambda$) of same polarization, traveling along x-axis are superimposed on each other. The phase velocity and group velocity of the resultant wave are respectively given by

(A)
$$\frac{\omega\lambda}{2\pi}, \frac{\Delta\omega\lambda^2}{2\pi\Delta\lambda}$$
 (B) $\omega\lambda, \frac{\Delta\omega\lambda^2}{\Delta\lambda}$ (C) $\frac{\omega\Delta\lambda}{2\pi}, \frac{\Delta\omega\Delta\lambda}{2\pi}$ (D) $\omega\Delta\lambda, \omega\Delta\lambda$

Common Data Questions

Common Data for Questions 51 and 52:

Consider a two level quantum system with energies $\varepsilon_1 = 0$ and $\varepsilon_2 = \varepsilon$.

Q.51 The Helmholtz free energy of the system is given by

(A)
$$-k_B T \ln \left(1 + e^{-\varepsilon/k_B T}\right)$$
 (B) $k_B T \ln \left(1 + e^{-\varepsilon/k_B T}\right)$
(C) $\frac{3}{2}k_B T$ (D) $\varepsilon - k_B T$

0.52 The specific heat of the system is given by

(A)
$$\frac{\varepsilon}{k_B T} \frac{e^{-\varepsilon/k_B T}}{\left(1 + e^{-\varepsilon/k_B T}\right)^2}$$
(B)
$$\frac{\varepsilon^2}{k_B T^2} \frac{e^{-\varepsilon/k_B T}}{\left(1 + e^{-\varepsilon/k_B T}\right)}$$
(C)
$$-\frac{\varepsilon^2 e^{-\varepsilon/k_B T}}{\left(1 + e^{-\varepsilon/k_B T}\right)^2}$$
(D)
$$\frac{\varepsilon^2}{k_B T^2} \frac{e^{-\varepsilon/k_B T}}{\left(1 + e^{-\varepsilon/k_B T}\right)^2}$$

Common Data for Questions 53 and 54 :

A free particle of mass *m* moves along the *x* direction. At *t*=0, the normalized wave function of the particle is given by $\psi(x, 0) = \frac{1}{(2\pi\alpha)^{1/4}} \exp\left[-\frac{x^2}{4\alpha^2} + ix\right]$, where α is a real constant.

Q.53 The expectation value of the momentum, in this state is (A) $\hbar \alpha$ (B) $\hbar \sqrt{\alpha}$ (C) α (D) $\hbar \sqrt{\alpha}$

Q.54 The expectation value of the particle energy is

(A)
$$\frac{\hbar^2}{2m} \frac{1}{2\alpha^{3/2}}$$
 (B) $\frac{\hbar^2}{2m} \alpha^2$ (C) $\frac{\hbar^2}{2m} \frac{4\alpha^2 + 1}{4\alpha^{3/2}}$ (D) $\frac{\hbar^2}{8m\alpha^{3/2}}$

Common Data for Questions 55 and 56 :

Consider the Zeeman splitting of a single electron system for the $3d \rightarrow 3p$ electric dipole transition.

Q.55 The Zeeman spectrum is

(A) randomly polarized	(B) only π polarized		
(C) only σ polarized	(D) both π and σ polarized		

Q.56 The fine structure line having the longest wavelength will split into

(A) 17 components (B) 10 components (C) 8 components (D) 4 components

Linked Answer Questions

Statement for Linked Answer Questions 57 and 58 :

The primitive translation vectors of the face centered cubic (fcc) lattice are

$$\hat{a}_1 = \frac{a}{2}(\hat{j} + \hat{k}); \ \hat{a}_2 = \frac{a}{2}(\hat{i} + \hat{k}); \ \hat{a}_3 = \frac{a}{2}(\hat{i} + \hat{j}).$$

Q.57 The primitive translation vectors of the fcc reciprocal lattice are

$$\begin{array}{ll} \text{(A)} & \hat{b}_{1} = \left(\frac{2\pi}{a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \ \hat{b}_{2} = \left(\frac{2\pi}{a}\right) \left(\hat{i} - \hat{j} + \hat{k}\right); \ \hat{b}_{3} = \left(\frac{2\pi}{a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right) \\ \text{(B)} & \hat{b}_{1} = \left(\frac{\pi}{a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \ \hat{b}_{2} = \left(\frac{\pi}{a}\right) \left(\hat{i} - \hat{j} + \hat{k}\right); \ \hat{b}_{3} = \left(\frac{\pi}{a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right) \\ \text{(C)} & \hat{b}_{1} = \left(\frac{\pi}{2a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \ \hat{b}_{2} = \left(\frac{\pi}{2a}\right) \left(\hat{i} - \hat{j} + \hat{k}\right); \ \hat{b}_{3} = \left(\frac{\pi}{2a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right) \\ \text{(D)} & \hat{b}_{1} = \left(\frac{3\pi}{a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \ \hat{b}_{2} = \left(\frac{3\pi}{a}\right) \left(\hat{i} - \hat{j} + \hat{k}\right); \ \hat{b}_{3} = \left(\frac{3\pi}{a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right) \end{array}$$

(A)
$$4\left(\frac{2\pi}{a}\right)^3$$
 (B) $4\left(\frac{\pi}{a}\right)^3$ (C) $4\left(\frac{\pi}{2a}\right)^3$ (D) $4\left(\frac{3\pi}{a}\right)^3$

Statement for Linked Answer Questions 59 and 60 :

The Karnaugh map of a logic circuit is shown below:

Q.59 The minimized logic expression for the above map is

A)
$$Y = \overline{PR} + \overline{Q}$$
 (B) $Y = \overline{Q} \cdot PR$ (C) $Y = \overline{Q} + PR$ (D) $Y =$

Q.60 The corresponding logic implementation using gates is given as:

PH

14/16

 $Q \cdot \overline{PR}$