Design of Sample Question Paper Mathematics, SA-I Class IX (2010-2011)

Type of Question	Marks per question	Total No. of Questions	Total Marks	
M.C.Q.	ď	10	10	
SA-I	2	8	16	
SA-II	3	10	30	
LA	4	6	24	
TOTAL		34	80	

Blue Print Sample Question Paper-1 SA-1

I Term

Topic / Unit	MCQ	SA(I)	SA(II)	LA	Total
Number System	2(2)	2(4)	3(9)	-	7(15)
Algebra	2(2)	1(2)	2(6)	3(12)	8(22)
Geometry	6(6)	4(8)	3(9)	3(12)	16(35
Coordinate Geometry	-	1(2)	1(3)	**	2(5)
Mensuration	-		1(3)	-	1(3)
TOTAL	10(10)	8(16)	10(30)	6(24)	34(80)

Sample Question Paper Mathematics First Term (SA-I) Class IX 2010-2011

Time: 3 to 3½ hours M.M.: 80

General Instructions

- All questions are compulsory.
- ii) The questions paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of 2 marks each section C comprises of 10 questions of 3 marks each and section D comprises of 6 questions of 4 marks each.
- iii) Question numbers 1 to 10 in section A are multiple choice questions where you are to select one correct option out of the given four.
- iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- V) Use of calculators is not permitted.

				Section	on-A						
Question numbers 1 to 10 carry 1 mark each.											
1.	Decimal expresion of a rational number cannot be										
	(a)	non-terminat	ing		(B)	non-terminating and recurring					
	(C)	terminating			(D)	non-terminati	ng and	non-recurring			
2.	One o	f the factors o	f (9x²-1) - (1+3x)² is							
	(A)	3+x	(B)	3-x	(C)	3x-1	(D)	3x+1			
3.	Which	Vhich of the following needs a proof?									
	(A)	Theorem	(B)	Axiom	(C)	Definition	(D)	Postulate			
4.		An exterior angle of a triangle is 110° and the two interior opposite angles are equal. Each of these angles is									
	(A)	70°	(B)	55°	(C)	35°	(D)	110°			
5.	In ΔP	In $\triangle PQR$, if $\angle R > \angle Q$, then									
	(A)	QR>PR	(B)	PQ>PR	(C)	PQ <pr< td=""><td>(D)</td><td>QR<pr< td=""></pr<></td></pr<>	(D)	QR <pr< td=""></pr<>			
6.	Two sides of a triangle are of lengths $7\mathrm{cm}$ and $3.5\mathrm{cm}$. The length of the third side of the triangle cannot be										
	(A)	3.6 cm	(B)	4.1 cm	(C)	3.4 cm	(D)	3.8 cm.			

- A rational number between 2 and 3 is
 - (A) 2.010010001...
- (B) √6
- (C) 5/2
- (D) $4-\sqrt{2}$

- 8. The coefficient of x^2 in $(2x^2-5)(4+3x^2)$ is
 - (A) 2

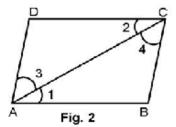
- (B) 3
- (C) 8
- (D) -7
- 9. In triangles ABC and DEF, $\angle A = \angle D$, $\angle B = \angle E$ and AB=EF, then are the two triangles congruent? If yes, by which congruency criterion?
 - (A) Yes, by AAS
- (B) No
- (C) Yes, by ASA (D)
 - Yes, by RHS
- Two lines are respectively perpendicular to two parallel lines. Then these lines to each other are
 - (A) Perpendicular

(B) Parallel

(C) Intersecting

(D) incllined at some acute angle

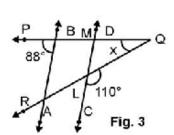
SECTION - B

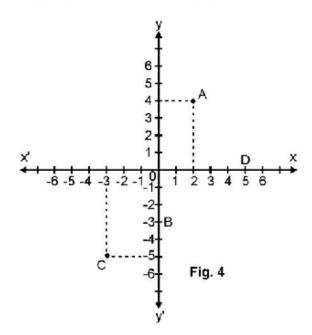

Question numbers 11 to 18 carry 2 marks each.

- x is an irrational number. What can you say about the number x²? Support your answer with examples.
- 12. Let OA, OB, OC and OD be the rays in the anticlock wise direction starting from OA, such that ∠AOB = ∠COD = 100°, ∠BOC = 82° and ∠AOD = 78°. Is it true that AOC and BOD are straight lines? Justify your answer.

OR

In \triangle PQR, \angle P=70°, \angle R=30°. Which side of this triangle is the longest? Give reasons for your answer.


In Fig. 2, it is given that ∠1=∠4 and ∠3=∠2.
 By which Euclid's axiom, it can be shown that if ∠2 = ∠4 then ∠1 = ∠3.


14. Is
$$\left(\frac{8}{15}\right)^3 - \left(\frac{1}{3}\right)^3 - \left(\frac{1}{5}\right)^3 = \frac{8}{75}$$
?

How will you justify your answer, without actually calculating the cubes?

- 15. Evaluate $\left(\frac{-1}{27}\right)^{\frac{-2}{3}}$.
- 16. In Fig. 3, if ABIICD then find the measure of x.

- 17. In an isosceles triangle, prove that the altitude from the vertex bisects the base.
- Write down the co-ordinates of the points A, B, C and D as shown in Fig. 4.

SECTION C

Question numbers 19 to 28 carry 3 marks each.

19. Simplify the following by rationalising the denominators

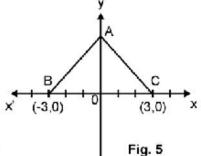
$$\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{3}}$$

OR

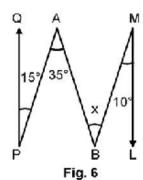
If $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = a - \sqrt{15}b$, find the values of a and b.

20. If $a=9-4\sqrt{5}$, find the value of $a-\frac{1}{a}$.

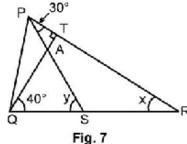
OR

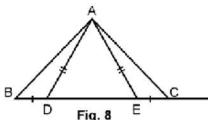

If x = 3+2 $\sqrt{2}$, find the value of $x^2 + \frac{1}{x^2}$

- 21. Represent $\sqrt{3.5}$ on the number line.
- 22. If (x-3) and $x = \frac{1}{3}$ are both factors of ax²+5x+b, show that a=b.
- 23. Find the value of x³+y³+15xy-125 when x+y=5.


OR

If a+b+c=6, find the value of $(2-a)^3+(2-b)^3+(2-c)^3-3(2-a)(2-b)(2-c)$


In Fig. 5. ABC is an equilateral triangle with coordinates of B and C as
 B(-3, 0) and C (3, 0)
 Find the coordinates of the vertex A.


25. In Fig. 6 QPIIMLand other angles are shown. Find the values of x.

26. In Fig. 7, QT ⊥ PR, ∠TQR=40° and ∠SPR=30°. Find the values of x and y.

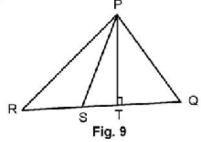
27. In Fig. 8, D and E are points on the base BC of a ΔABC such that BD=CE and AD=AE. Prove that ΔABC ≅ ΔACD.

28. Find the area of a triangle, two sides of which are 18 cm and 10 cm and the perimeter is 42 cm.

SECTION D

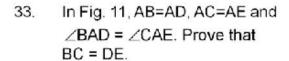
Question numbers 29 to 34 carry 4 marks each.

29. Let p and q be the remainders, when the polynomials $x^3+2x^2-5ax-7$ and $x^3+ax^2-12x+6$ are divided by (x+1) and (x-2) respectively. If 2p+q=6, find the value of a.

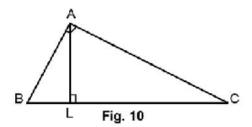

OR

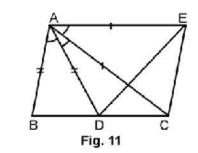
Without actual division prove that x4-5x3+8x2-10x+12 is divisible by x2-5x+6.

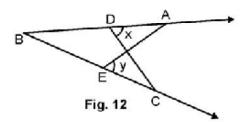
30. Prove that:


$$(x+y)^3 + (y+z)^3 + (z+x)^3 - 3(x+y)(y+z)(z+x) = 2(x^3+y^3+z^3-3xyz)$$

- 31. Factorize x¹²-y¹².
- 32. In Fig. 9, PS is bisector of ∠QPR;
 PT ⊥RQ and ∠Q>∠R. Show that
 ∠TPS = ¹/₂(∠Q-∠R).




OR


In ∆ABC, right angled at A, (Fig. 10), AL is drawn perpendicular to BC. Prove that ∠BAL = ∠ACB.

34. In Fig. 12, if ∠x=∠y and AB = BC, prove that AE = CD.

Marking Scheme Mathematics First Term Class IX 2010-2011

Section A

1. (D) 2. (D) 3. (A) 4. (B) 5. (B)

6. (C) 7. (C) 8. (D) 9. (B) 10. (B)

1x10=10

1

[There can be other answer also.]

SECTION B

x² may be irrational or may not be.

For example ; if $\chi=\sqrt{3}$, $\chi^2=3 \rightarrow$ rational ; if $\chi=2+\sqrt{3}$, $\chi^2=7+4\sqrt{3} \rightarrow$ irrational 1/2

12. No, AOC and BOD are not straight lines

OR

∠Q=180°-[70°+30°]=80° which is largest C 100° √78° A 1

ZQ-100-170-100 J-00 Wild H3 largest

By Euclid's I Axiom, which states.

["Things which are equal to the same thing are equal to one another"]

14. The LHS can be written as

13.

.. Longest side is PR

$$\left(\frac{8}{15}\right)^3 + \left(\frac{-1}{3}\right)^3 + \left(\frac{-1}{5}\right)^3$$
 -----(i)

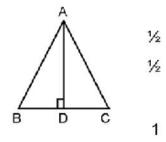
As
$$\frac{8}{15} - \frac{1}{3} - \frac{1}{5} = \frac{8 - 5 - 3}{15} = 0$$
 1/2

$$\therefore (1) = 3\left(\frac{8}{15}\right)\left(\frac{1}{3}\right)\left(\frac{1}{5}\right) = \frac{8}{75} = RHS$$

Justification: By the formula: If a+b+c=0, then a³+b³+c³=3abc ½

15.
$$\left[\left(\frac{-1}{27} \right)^{\frac{1}{3}} \right]^{-2} = \left(\frac{-1}{3} \right)^{-2}$$

$$= \frac{1}{\left(\frac{-1}{3}\right)^2} = \frac{1}{\frac{1}{9}} = 9$$


$$(∴ ∠QLM=180°-110°=70° and AB ∥CD ⇒ ∠PML=88°)$$

17. Let ABC be isosceles Δ in which AB=AC

Draw AD LBC

 $_\Delta$'s ADB and ADC are congruent by RHS

i.e, Altitude AD bisects the base BC

18. The coordinates of the points are:

A(2, 4), B(0, -3), C(-3, -5) and D(5, 0)
$$\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$$

SECTON-C

19.
$$\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{3}} = \frac{2\sqrt{6}\left(\sqrt{2} - \sqrt{3}\right)}{(2) - (3)} + \frac{6\sqrt{2}\left(\sqrt{6} - \sqrt{3}\right)}{6 - 3}$$
 1+½

$$= 2\sqrt{18} - 2\sqrt{12} + 2\sqrt{12} - 2\sqrt{6} = 6\sqrt{2} - 2\sqrt{6}$$

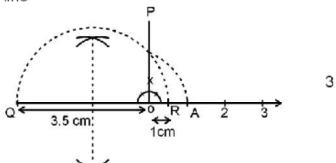
$$1+\frac{1}{2}$$

OF

LHS =
$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})(\sqrt{5} + \sqrt{3})}{5 - 3}$$

$$= \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15} = a - \sqrt{15}b$$

20.
$$a = 9 - 4\sqrt{5} \Rightarrow \frac{1}{a} = \frac{1}{9 - 4\sqrt{5}} = \frac{9 + 4\sqrt{5}}{81 - 80} = 9 + 4\sqrt{5}$$


$$\therefore a - \frac{1}{a} = 9 - 4\sqrt{5} - 9 - 4\sqrt{5} = -8\sqrt{5}$$

$$x=3+2\sqrt{2} \Rightarrow x^2=9+8+12\sqrt{2}=17+12\sqrt{2}$$

$$\frac{1}{x^2} = \frac{1}{17 + 12\sqrt{2}} = \frac{17 - 12\sqrt{2}}{289 - 288} = 17 - 12\sqrt{2}$$

$$\therefore x^2 + \frac{1}{x^2} = 17 + 12\sqrt{2} + 17 - 12\sqrt{2} = 34$$

21. 'A' respresents $\sqrt{3.5}$ on the number line

22. Let $f(x) = ax^2 + 5x + b$

$$f(3) = 0 \Rightarrow 9a+15+b=0 \Rightarrow 9a+b=-15-----(i)$$

$$f\left(\frac{1}{3}\right) = 0 \implies \frac{a}{9} + \frac{5}{3} + b = 0 \implies a + 9b = -15$$
 (ii)

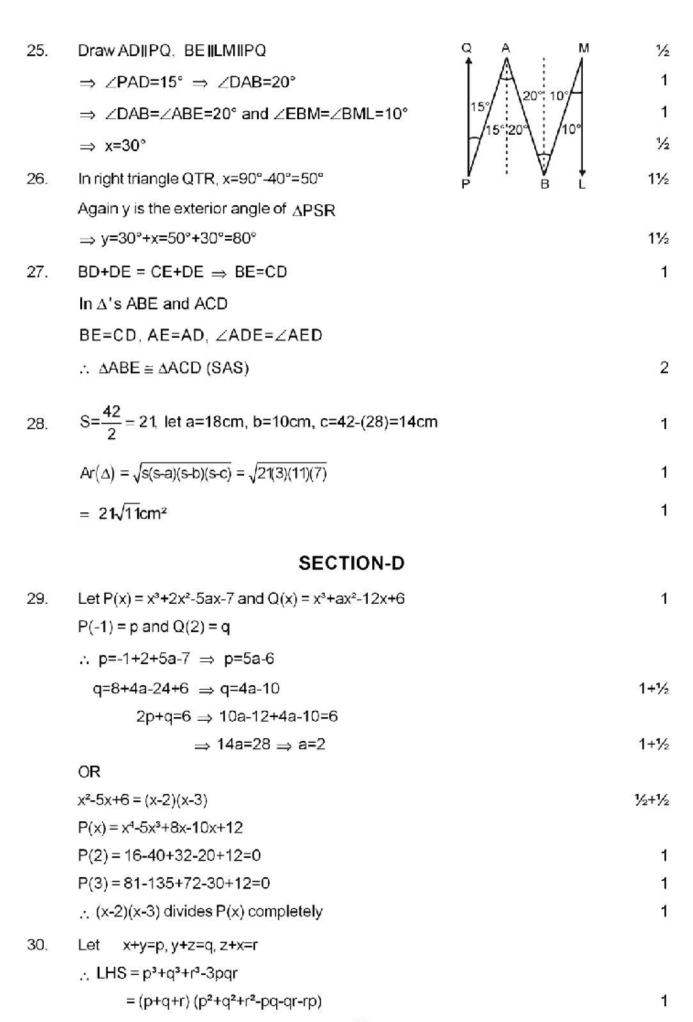
$$(i) = (ii) \Rightarrow a=b$$

$$\therefore (x)^3 + (y)^3 + (-5)^3 = 3(x)(y)(-5)$$

$$\Rightarrow$$
 $x^3+y^3+15xy = 125$

$$\Rightarrow x^3+y^3+15xy-125=0$$

OR
$$a+b+c=6 \Rightarrow (2-a)+(2-b)+(2-c)=0$$
 1½


$$\therefore$$
 (2-a)³+(2-b)³+(2-c)³ = 3(2-a)(2-b)(2-c)

$$\therefore (2-a)^3 + (2-b)^3 + (2-c)^3 - 3(2-a)(2-b)(2-c) = 0$$
1½

AO bisects base BC

∴
$$OA^2 = AB^2 - OB^2 = 6^2 - 3^2 = 27 \Rightarrow OA = 3\sqrt{3}$$

$$\therefore$$
 Coordinates of A are $(0, 3\sqrt{3})$

Now p+q+r=2(x+y+z)

1/2