	PHYSICS
81.	If the force is given by $F = at + bt^2$ with t as time. The dimensions of
	a and b are : Whithday and and Then Of Buildend W. Fand wein bea
	కాలాన్ని t తో నూచిన్నూ, ద్రయోగింవబడిన బలం $\mathbf{F} = at + bt^2$ అయినచో a మరియ b ల యొక్క మితులు :
	(1) MLT^{-4} , MLT^{-2} \checkmark MLT ⁻³ , MLT^{-4}
	(3) ML^2T^{-3} , ML^2T^{-2} (4) ML^2T^{-3} , ML^3T^{-4}
	The angle between \vec{A} or \vec{B} with their resultant is : \vec{A} మరియు \vec{B} లు నమాన వరిమాణం గల రెండు నదిశలు. వాటి మధ్య కోణం θ వాత ఫలిత నదిశకు \vec{A} లేదా \vec{B} నదిశలకు మధ్య గల కోణం :
	(1) 0/4
	(3) 20 (4) 0
83.	An athlete completes one round of a circular track of radius R in 40 sec. What will be his displacement at the end of 2 min 20 seconds ?
	R వ్యాసార్థం గల ఒక వృత్తాకార మార్గాన్ని ఒక క్రీడాకారుడు 40 సెకన్లలో ఒకసారి పూ
	చేస్తాడు. 2 నిముషాల 20 సెకనుల తరువాత అతని స్థాన్రభంశం ఎంత?
	(1) 7R (2) 2R
	(3) $2\pi R$ (4) $7\pi R$
-	gh Work

- 84. A ball is falling freely from a height. When it reaches 10 m height from the ground its velocity is V_0 . It collides with the ground and loses 50% of its energy and rises back to height of 10 m. Then the velocity V_0 is :
 - (1) 7 m/s (2) 10 m/s
 - (3) 14 m/s (4) 16 m/s

ఒక బంతి ఎత్తు నుంచి స్వేచ్ఛగా క్రిందికి వడుతుంది. అది భూమి నుంచి 10 మీ. ఎత్తులో ఉన్నవ్పుడు దాని వేగం V_0 . ఆ బంతి భూమిని ఢీకొని 50% శక్తిని కోల్పోయి 10 మీ. ఎత్తుకు ఎగిరింది. అయిన దాని వేగం V_0 విలువ :

 (1)
 7 ລົ້ນ/ ັ
 (2)
 10 ລົ້ນ/ ັ

- (3) 14 ພໍ/ ຈ
 (4) 16 ພໍ/ ຈ
- 85. A bomb moving with velocity $(40\hat{i} + 50\hat{j} 25\hat{k})$ m/sec explode into two pieces of mass ratio 1 : 4. After explosion the smaller piece moves away with velocity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m/sec. The velocity of larger piece after explosion is : $k \leq 200\hat{i} + 70\hat{j} + 15\hat{k}$ m/sec. The velocity of larger piece after explosion is : $k \leq 200\hat{i} + 70\hat{j} + 15\hat{k}$ m/sec. The velocity of larger piece after explosion is : $k \leq 200\hat{i} + 70\hat{j} - 25\hat{k}$ $\hat{k}/7$, $\hat{k} = 30\%_{2} k_{2} \otimes 30\%_{2} \otimes 30\%$
 - (3) $45\hat{k} 35\hat{j}$ (4) $-35\hat{i} + 45\hat{k}$

88. An object takes n times as much time as to slide down a 45° rough inclined plane as it takes to slide down a perfectly smooth inclined plane of the same inclination. The coefficient of kinetic friction between the object and the rough incline is given by :

గరుకు వాలుతలం పై నుంచి వస్తువు కిందికి జారుటకు వట్టు కాలం, అంతే వాలుగల నునుపైన వాలుతలం పై నుంచి కిందికి జారుటకు వట్టు కాలం కంటే n రెట్లు ఉంటుంది. వాలుతలము యొక్క కోణము 45° అయిన వస్తువు మరియు గరుకువాలు తలాల మధ్య గతిక ఘర్షణ గుణకము :

(1)
$$\left(1 - \frac{1}{n^2}\right)$$
 (2) $\left(\frac{1}{1 - n^2}\right)$
(3) $\sqrt{1 - \frac{1}{n^2}}$ (4) $\sqrt{1 + \frac{1}{n^2}}$

- 89. The moment of Inertia of a disc, of mass M and radius R, about an axis which is a tangent and parallel to its diameter is :
 - M ద్రవ్యరాళి, R వ్యాసార్థం గల ఒక వృత్తాకార బిళ్ళ యొక్క వ్యాసమునకు నమాంతరంగా ఉన్న స్పర్శరేఖ గుండా వెళ్ళు అక్షము వరంగా జడత్వ బ్రామకము :

(1)
$$\frac{1}{2}$$
 MR² (2) $\frac{3}{4}$ MR²

 $(3) \quad \frac{1}{4} \quad MR^2 \qquad \checkmark (4) \quad \frac{5}{4} \quad MR^2$ Rough Work

A fly-wheel of mass 25 kg has a radius of 0.2 m. It is making 240 rpm. What 90. by the equal on is the torque necessary to bring to rest in 20 sec ? ఒక గతిక పాలక చక్రం ద్రవ్యరాశి 25 kg వ్యాసార్థము 0.2 m. కలిగి ఉంది. అది నిముషానికి 240 జ్రామణాలు చేన్తుంది. దానిని 20 sec లలో విరామంనకు తీనుకొనిరావటానికి వయోగించవలసిన టార్క్ విలువ ? (2) 0.2π Nm (1) 2π Nm $\frac{2}{\pi}$ Nm (3) 4π Nm 91. A launching vehicle carrying an artificial satellite of mass 'm' is set for launch on the surface of the earth of mass 'M' and radius 'R'. If the satellite is intended to move in a circular orbit of radius 7R, the minimum energy required to be spent by the launching vehicle on the satellite is : (Gravitational constant = G) Security and Articles ఒక ఉవుగపోన్ని పైకి పంపించే వాహనము 'm' ద్రవ్యరాశి గల ఉవుగపోన్ని భూమి ఉపరితలం నుండి బ్రయోగిన్తున్నారు. భూమి ద్రవ్యరాశి 'M' వ్యాసార్థము 'R'. ఈ ఉపగ్రహాన్ని 7R వృత్త వ్యాసార్థం గల కర్షలో (పవేళపెట్టీటట్లు పంపాలంటే ఉప్పగవాముపై వాహనము ఖర్చు పెట్టవలసిన కనీస శక్తి: (గురుత్వ సిరాంకము = G) GMm 13 GMm(2)(1)R 14R 1813 GMm GMm(3)(4)7R 14R

Rough Work

92.	Th	e dis	placem	ents of	two pa	rticles of sa	me mass executing SHM are represe	ntad
Sec.1								
	by	the	equati	ons x_1	= 4 si	$n\left(10t+\frac{\pi}{6}\right)$	and $x_2 = 5 \cos(\omega t)$. The value of ' ω	' for
							remain same is :	
	(1)		6 unit				6 units	
	(3)	4	units			(4)	8 units	
	నర	ళ హ	రాత్నక	చలనం	లో గల	నమాన 1దం	స్యరాశి గల రెండు కణాల స్థాన భ్రంశము	లను
	<i>x</i> ₁	= 4 s	$\ln \left(10t \right)$	$+\frac{\pi}{6}$	మరియు	$x_2 = 5 \cos(\alpha)$	rt). అను నమీకరణాలచే నూచించారు. రె	ండు
	(1)	and the second sec	and the second second		0. 000	ర్నప్పుడు 'అ'		
	(3)		6 (వమా (వమాం			(2)	6 (వమాణాలు 8 (వమాణాలు	
0.0	12			111111000	Eng stall	♥(4)	8 ట్రమాణాలు	To.
93.	Ivia	ten t	List	owing		10 danes		
	(A)	н	ooke's					
BIANT'S	(B)				sidne	(I)	Tangential strain	
	(C)		ulk str	, strain	1 A lacint	(II)	Temporary loss of elastic property	
	(D)			Fatigue			Elastic limit	
	1800			తచేయం		(1v)	3 times the linear strain	
	600		m D m					
	(A)			మమము		(I)	BOB II	
1. H	(B)			వికృతి		(I) (II)	స్పర్శరేఖీయ వికృతి	
2010	(C).		ాల వి క				తాత్కాలికంగా న్రితిస్తావక ధర్మాన్ని కోల్పోవ స్థితిస్తావక అవధి	00
	(D)			සරුවි ජ			రేఖీయ వికృతికి మూడురెట్లు	
	1.65	ф (А)	ф (В)			()		
	(1)	II	I	(C) IV	(D)	1		
	(2)	III	IV	I	III II			
	(3)	III	I	IV	II			
	(4)	I	II	III	IV	10 100		
		-		***	TA			

94.	The excess pressure inside a spherical soap bubble of radius 1 cm is balanced by a column of oil (Sp. gr. = 0.8), 2 mm high, the surface tension of the						
	1 cm వ్యాసార్థము గల నబ్బు నీటి బుడగలోని అధిక పీడనము 2 mm ఎత్తు గల తెలనంబము						
	కలుగచేసే పీడనానికి సమానము అయిన సబ్బు నీటి బుడగ తన్యత విలుచ						
	(తెలము యొక్క విశిష్ట గురుత్వము = 0.8) :						
	(1) 3.92 N/m (2) 0.0392 N/m						
	(3) 0.392 N/m (4) 0.00392 N/m						
	95.	Water from a tap emerges vertically downwards with initial velocity 4 ms ⁻¹ . The					
cross-sectional area of the tap is A. The flow is steady and pressure is constant							
throughout the stream of water. The distance h vertically below the tap, where							
the cross-sectional area of the stream becomes $\left(\frac{2}{3}\right)A$, is $(g = 10 \text{ m/s}^2)$:							

ఒక కుళాయి నుండి 4 ms⁻¹ తొలి వేగంతో నీరు నిలువుగా క్రిందకి పడుతున్నది. ఆ కుళాయి మధ్యచ్ఛేద వైశాల్యము A. ప్రవాహము నమరీతిగా ఉంది. ప్రవాహ మార్గమంతయు పీడనము స్థిరంగా ఉన్నది. కుళాయి దిగువన నిట్టనిలువుగ ఎంత దూరము (h) లో ప్రవాహ

మధ్యచ్ఛేద వైశాల్యము $\left(rac{2}{3}
ight)$ A ఉంటుంది (g = 10 m/s 2) :

(1) 0.5 m (2) 1 m (3) 1.5 m (4) 2.2 m

E 2010 A

96. A bimetallic strip is formed out of two identical strips, one of copper and the other of brass. The coefficients of linear expansion of the two metals are $\alpha_{\rm C}$ and $\alpha_{\rm B}$. On heating, the temperature of the strip increases by ΔT and the strip bends to form an arc of radius R. Then R is proportional to :

రెండు నర్వనమాన పట్టిలతో ఒక ద్విలో హాత్మక వట్టి తయారుచేయబడింది. దానిలో ఒకటి రాగిది మరియు ఒకటి ఇత్తడిది. ఆ రెండు లో హాల దైర్హ్య వ్యాకోచ గుణకాలు వరునగా α_C మరియు α_B. దానిని వేడిచేసినపుడు దాని ఉష్ణోగతలో వృద్ధి ΔT అయినవుడు, అది R వ్యాసార్థం కల్గిన చాపంగా మారినది. క్రింది వానిలో R దేనికి అనులో మానుపాతంలో ఉంటుంది :

 $\sqrt{2}$ $\frac{1}{\Delta T}$ (1) ΔT (4) $\frac{1}{\sqrt{\Lambda T}}$ (3) $\sqrt{\Delta T}$

97. Three rods of equal lengths are joined to form an equilateral triangle ABC. D is the mid-point of AB. The coefficient of linear expansion is α_1 for material of rod AB and α_2 for material of rods AC and BC. If the distance DC remains constant for small changes in temperature, then :

ఒకే పొడవు గల మూడు కడ్డీలు ABC అనే నమబాహు త్రిభుజం ఏర్పడేటట్ల కలువబడినవి. AB మధ్య బిందువు D. AB కడ్డీ వదార్థ ధైర్హ్య వ్యాకోచ గుణకము α₁, AC మరియు BC పదార్థాల ధైర్హ్య వ్యాకోచ గుణకము α₂ ఉష్ణోగతలోని కొద్దిపాటి మార్పులకు దూరము DC స్థిరంగా ఉన్నప్పుడు :

34 0

(1) $\alpha_1 = 2\alpha_2$ (2) $\alpha_1 = 4\alpha_2$ (3) $\alpha_1 = 8\alpha_2$ (4) $\alpha_1 = \alpha_2$

98. An ideal gas expands isothermally from volume V_1 to volume V_2 . It is then compressed to the original volume V_1 adiabatically. If P_1 , P_2 and W represent the initial pressure, final pressure and the net work done by the gas respectively during the entire process, then :

నమ ఉష్ణోగత (వర్రీయలో ఒక ఆదర్శ వాయువు యొక్క ఘనపరిమాణము V_1 నుంచి V_2 కు వ్యాకోచింపచేశారు. తరువాత స్థిరోష్టక (వర్రీయలో తొలి ఘనపరిమాణము V_1 కు నంకోచింపచేశారు. ఆ వాయువు యొక్క తొలి పీడనము, తుది పీడనము మరియు జరిగిన ఫలిత పనిని వరునగా P_1 , P_2 మరియు W గా నూచించిన : (1) $P_1 > P_2$, W = 0 (2) $P_1 > P_2$, W > 0

(3)
$$P_2 > P_1, W > 0$$
 (4) $P_2 > P_1, W < 0$

99.

3 moles of an ideal monoatomic gas performs ABCDA cyclic process as shown in figure below. The gas temperatures are $T_A = 400$ K, $T_B = 800$ K, $T_C = 2400$ K and $T_D = 1200$ K. The work done by the gas is (approximately) (R = 8.314 J/mole K):

3 మోల్ల ఏక పరమాణు ఆదర్శ వాయువు క్రింది పటములో చూపబడినట్ల ABCDA చకీయ పక్రియ చేస్తుంది. వాయువు ఉష్ణోగతలు వరునగా $T_A = 400$ K, $T_B = 800$ K, $T_C = 2400$ K వురియు $T_D = 1200$ K. వాయువు చేసే పని (సుమారుగా) (R = 8.314 J/mole K):

Three rods AB, BC and BD made of the same material and having the same 100. cross-section have been joined as shown in the figure. The ends A, C and D are held at temperatures of 20°C, 80°C and 80°C respectively. If each rod is of same length, then the temperature at the junction B of the three rods is : ఒకే పదార్ధము మరియు సమాన మధ్యచ్చేద వెళాల్యము కలిగిన AB, BC మరియు BD అను మూడు కడీలను పటములో చూపిన విధముగా కలిపారు చివరలు A, C మరియు D లను వరుసగా 20°C, 80°C మరియు 80°C ఉష్ణోగతల వద్ద ఉంచారు. కడ్డీలు నమాన పొడవులైనవ్పుడు ఆ మూడు కడ్డీల నంధి B వద్ద ఉష్ణోగత విలువ :

101. An organ pipe P_1 , closed at one end and containing a gas of density ρ_1 is vibrating in its first harmonic. Another organ pipe P2, open at both ends and containing a gas of density ρ_2 is vibrating in its third harmonic. Both the pipes are in resonance with a given tuning fork. If the compressibility of gases is equal in both pipes, the ratio of the lengths of P1 and P2 is (assume the given gases to be monoatomic) :

ఒక చివర మూసి ఉంచిన గొట్టము P_1 మొదటి అనుస్వరంతో కంపిస్తున్నది. దానిలోని వాయు సాంద్రత ho_1 . మరొక తెరచిన గొట్టము $m P_2$ మూడవ అనుస్వరంతో కంపిస్తున్నది. దానిలోని వాయు సాంద్రత ho_2 . ఈ రెండు గొట్టములు ఒక శృతి దండముతో అనునాదంలో ఉన్నాయి. ఆ వాయువుల సంపీడ్యత సమానమైతే \mathbf{P}_1 మరియు \mathbf{P}_2 గొట్టముల పొడవుల నిష్పత్తి (దత్త వాయువులు ఏక పరమాణుకములు అనుకోండి): (1)1/3

(2)3

 $\sqrt{(4)} \quad \frac{1}{6} \sqrt{\frac{\rho_2}{\rho_1}}$

(3)
$$\frac{1}{6}\sqrt{\frac{\rho_1}{\rho_2}}$$

Rough Work

E 2010 A 102. A sonometer wire has a length of 114 cm, between two fixed ends. Where should two bridges be placed so as to divide the wire into three segments (in cm) whose fundamental frequencies are in the ratio 1:3:4? సోనామీటరులో రెండు స్థిరకొనల మధ్య బిగించిన తీగ పొడవు 114 cm. ప్రాథమిక పౌనఃవున్యాలు 1:3:4 నిష్పత్తిలో ఉండి, తీగ మూడు ఉచ్చులుగా విడిపోవలెనంటే రెండు బ్రిడ్డిలను ఎక్కడ ఉంచవలెను? (cm లలో) (1) $l_1, l_2, l_3 = 18, 24, 72$ (2) $l_1, l_2, l_3 = 24, 18, 72$ $l_1, l_2, l_3 = 72, 18, 24$ \checkmark (4) $l_1, l_2, l_3 = 72, 24, 18$ (3)In an optical fibre, core and cladding were made with materials of refractive 103. indices 1.5 and 1.414 respectively. To observe total internal reflection, what will be the range of incident angle with the axis of optical fibre ? ఒక దృశాతంతువులో కోర్ మరియు క్లాడింగ్లను వరునగా 1.5 మరియు 1.414 వట్రీభవన గుజకములు గల వదార్థములతో తయారుచేశారు. ఈ దృశాతంతువులో నంపూర్డాంతర వరావర్తనం జరగాలంటే, దాని అక్షంతో పతన కిరణాలు చేసే కోణము వ్యాప్తి ఎంత? (1)0°-60° 0°-48° (2)HOUDE SHEE .THI (3) 0°-30° (4)0°-82° A ray of light passes through an equilateral prism such that the angle of incidence 104. is equal to the angle of emergence and each one is equal to 3/4th the angle of prism. The angle of deviation is : ఒక నమబాహు పట్టకం ద్వారా ప్రయాణించే కాంతి కిరణానికి, పతన బహిర్గామి కోణాలు నమానం మరియు ఒక్కొక్కటి వట్టక కోణములో 3/4 వంతు అయిన విచలన కోణం: (1)45° (2)39° (3)20° (4) 30° **Rough Work** 37 Q

E 2010 A 105. The distance between field lens and eye lens in Ramsden eyepiece is 4 cm. Then, the distance of the cross-wires from the eye lens is : రామ్స్ డెన్ అక్షికటకములో నేత్ర, క్షేత్ర కటకముల మధ్య దూరము 4 సెం.మీ. నేత్రకటకము నుండి అడ్డ తీగలను ఉంచవలసిన దూరము : (1)1.5 cm (2)1.0 cm 5.5 cm (3)5.0 cm 106. Two coherent sources whose intensity ratio is 64 : 1 produce interference fringes. The ratio of intensities of maxima and minima is : రెండు నంబద్ద కాంతి జనకాల తీవ్రతల నిష్పత్తి 64 : 1 లో ఉన్నప్పుడు వ్యతికరణ పట్టీలు ఉత్పత్తి అవుతాయి. వాటి గరిష, కనిష తీవ్రతల నిష్పత్తి : (1) 9:7 (2) 8:1 (3) 81:49 (4)81:7 107. The frequency of vibration in a vibration magnetometer of the combination of two bar magnets of magnetic moments M_1 and M_2 is 6 Hz when like poles are tied and it is 2 Hz when the unlike poles are tied together, then the ratio M₁ : M₂ is : కంవన అయస్కాంత మావక ₍పయోగంలో ${
m M}_1$ మరియు ${
m M}_2$ అయస్కాంత భామకాలున్న రెండు దండ అయస్కాంతాల నజాతి ధువాలు తాకేటట్లు కట్టినపుడు కంపన పౌనఃపున్యం 6 Hz విజాతి ద్రువాలు తాకేటట్లు కట్టినపుడు 2 Hz అయితే M₁ : M₂ నిష్పత్తి ఎంత? 5:4 (1)4:5(3)1:3(4) 3:1 Rough Work 38 Q

108. A short magnetic needle is pivoted in a uniform magnetic field of induction 1T. Now, simultaneously another magnetic field of induction $\sqrt{3}$ T is applied at right angles to the first field; the needle deflects through an angle '0' whose value is :

ఒక పొట్టి అయస్కాంత నూచిని, 1T ్రపీరణ గల ఏకరీతి అయస్కాంత క్షేతంలో ఒక కీలకముపై ఉంచినారు. ఇవుడు √3 T [పేరణ కలిగిన వేరొక అయస్కాంత క్షేతాన్ని, మొదటి క్షేతానికి లంబంగా ఒకేసారి అనువర్తింపచేసినారు, నూచి 'రి' కోణం ద్వారా అవవర్తనం చెందితే, 'రి' విలువ :

- (1)30° (2)45° (3)90° 60°
- 109. The potential difference between two parallel plates is 10⁴ volts. If the plates are separated by 0.5 cm, the force on an electron between the plates is :

సమా	ంతర వలకల మధ్య	పొటెన్షియల్ భే	దము 10^4 volts.	వలకల	మధ్య దూరమ	22
0.5 ci	m అయిన, వలకల	మధ్య ఉన్న ఎ	లాక్షన్పై ఉండే	బలము :	l o puilt	
(1)	$32 \times 10^{-13} \text{ N}$	(2)	0.32×10^{13} N	1.16.312	day shab	
(3)	0.032×10^{-13} N	(4)	3.2×10^{-13} N			

 3.2×10

Two capacitors of capacities 1 µF and C µF are connected in series and the 110. combination is charged to a potential difference of 120 V. If the charge on the combination is 80 μ C, the energy stored in the capacitor of capacity C in micro-Joules is :

1 μF మరియు C μF కెపాసిటీ విలువలు గల రెండు కెపాసిటర్లను తేజిలో కలిపి 120 V ల పొటన్లియల్ భేదానికి అవేశపరిచారు. నంయోగంపై ఉండే అవేశం 80 μC అయితే కెపాసిటీ C గల కెపాసిటర్లో నిల్వ ఉండే శక్తి మైర్రోజౌళ్ళలో : (1)1800

(2)

(4)

1600

7200

(3)14400

111. 6 Ω and 12 Ω resistors are connected in parallel. This combination is connected in series with a 10 V battery and 6 Ω resistor. What is the potential difference between the terminals of the 12 Ω resistor ?

6 Ω, 12 Ω ల నిరోధాలను సమాంతరంగా నంధించి, ఈ నంయోగాన్ని 10 V బ్యాటరీ, 6 Ω నిరోధంతో (శేణిలో కలిపినపుడు, 12 Ω ల నిరోధం కొనల మధ్య ఏర్పడు పొటెన్షియల్ భేదము :

- (1) 4 V (2) 16 V (3) 2 V (4) 8 V
- 112. Charge passing through a conductor of cross-section area $A = 0.3 \text{ m}^2$ is given by $q = 3t^2 + 5t + 2$ in coulombs, where 't' is in seconds. What is the value of drift velocity at t = 2 sec. Given $n = 2 \times 10^{25}/\text{m}^3$:
 - (1) 0.77×10^{-5} m/sec (2) 1.77×10^{-5} m/sec

(3) 2.08×10^{-5} m/sec (4) 0.57×10^{-5} m/sec

A = 0.3 మీ² మధ్యచ్ఛేద వైశాల్యం గల వాహకం గుండా q = 3t² + 5t + 2 కూలుంబుల అవేశం వ్రయాణించుచున్నది. ఇచ్చట 't' సెకండ్లలో ఉన్నది. అయితే t = 2 సె. దగ్గర డ్రిఫ్ట్ వేగము ఎంత : ఇచ్చిన 'n' విలువ = 2 × 10²⁵/m³ :

(1) 0.77×10^{-5} 動/ っ (2) 1.77×10^{-5} 動/ っ

(3) 2.08×10^{-5} ⁽⁴⁾ 0.57×10^{-5} ⁽⁴⁾ ⁽⁵⁾

113. The Thermo e.m.f of a thermo-couple	is given by, $\varepsilon = aT + bT^2$, where
a/b = -200 °C. If the cold function is kept at	
is (ε in volts, T is in centigrade) :	With a Same ment of all aday
ఒక ఉష్ణయుగ్మం యొక్క విద్యుత్చ్ఛాలక	బలము $\varepsilon = aT + bT^2$, (ε వోల్డలలో,
T సెంటీగ్రేడ్లో) అను నమీకరణముతో నూచించి	రినపుడు, a/b = -200°C యుగ్మపు శీతల
నంధి ఉష్ణోగత 30°C వద్ద ఉన్నట్లయితే, దాని	విలో మన ఉష్ణోగత విలువ :
(1) 103 K (2) 14	3 K
(3) 333 K	3 K
 114. The intensity of the magnetic induction field a coil of radius 5 cm carrying current of 0.9 0.9 A ವಿద్యుత్ (పవహిస్తున్న 5 సెం.మీ వ్యాసార్థమ కేంద్రము వద్ద అయస్కాంత (పేరణ క్షేత్ర తీవ్రత (1) 36π × 10⁻⁷ T (2) 9π × (3) 36π × 10⁻⁶ T 	A : ఎ, ఒక చుట్టు గల వృత్తాకార తీగచుట్ట : : : 10 ⁻⁷ T
(6) Son × 10 ° Υ (4) 9π × Rough Work	and the second
41 Q	and a second

- 115. A capacitor of capacity 0.1 μ F connected in series to a resistor of 10 M Ω is charged to a certain potential and then made to discharge through the resistor. The time in which the potential will take to fall to half its original value is (Given $\log_{10}2 = 0.3010$):
 - (1) 2 sec (2) 0.693 sec

(3) 0.5 sec (4) 1.0 sec

0.1 μF కెపాసిటిగల ఒక కెపాసిటరును 10 M Ω విద్యుత్ నిరోధానికి (శేణిలో కలిపి ఒక నిర్థిష్ఠ పొటెన్షియల్కు అవేశితంచేసి, తరువాత విద్యున్నిరోధం ద్వారా అనావేశితం చేసారు. అప్పుడు పొటెన్షియల్ దాని తొలి విలువ నుండి నగానికి క్షీణించడానికి పోట్ట్ కాలం (log₁₀2 = 0.3010):

🟒 (2) 0.693 సెకండ్లు

(4) 1.0 సెకండు

- (1) 2 సెకండు
- (3) 0.5 సెకండు

116. The time constant of inductance coil is 3 m sec. When a 90 Ω resistance is joined in series, then the time constant becomes 0.5 m sec. The inductance and the resistance of the coil are :

ఒక ్రపేరక తీగ చుట్ట యొక్క కాల స్థిరాంకం 3 m sec. దాని డేజిలో 90 Ω నిరోధమును కలిపిన కాల స్థిరాంకం 0.5 m sec. అయిన తీగచుట్ట యొక్క ్రపేరకత్వం మరియు నిరోధం ఎంత?

- (1) 54 mH, 18 Ω (2) 14 mH, 42 Ω
 - (3) 42 mH, 14 Ω (4) 14 mH, 60 Ω

Rough Work

117. In Thomson's experiment to determine $\frac{e}{m}$ of an electron, it is found that an electron beam having a kinetic energy of 45.5 eV remains undeflected, when subjected to crossed electric and magnetic fields. If $E = 1 \times 10^3 \text{ V m}^{-1}$, the value of 'B' is (mass of the electron is $9.1 \times 10^{-31} \text{ kg}$) :

ఎలక్టాను $\frac{e}{m}$ విలువ కనుగొనే ధామ్సన్ ప్రయోగంలో -వ్యత్యస్థ విద్యుత్ మరియు అయస్కాంత క్షేతాల నుండి, 45.5 eV గతిజ శక్తితో ప్రయాణించే ఎలక్టాను పుంజం అవవర్తనం శూన్యం అని గుర్తించబడింది. $E = 1 \times 10^3 \text{ V m}^{-1}$ అయితే, 'B' విలువ : (ఎలక్టాను ప్రవ్యారాళి = 9.1 × 10⁻³¹ kg) :

- (1) $2.5 \times 10^{-3} \text{ Wb m}^{-2}$ (2) $5.0 \times 10^{-4} \text{ Wb m}^{-2}$ (3) $2.5 \times 10^{-4} \text{ Wb m}^{-2}$ (4) $1.0 \times 10^{-4} \text{ Wb m}^{-2}$
- 118. Photoelectric emission is observed from a metallic surface for frequencies v_1 and v_2 of the incident light $(v_1 > v_2)$. If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio 1:n, then the threshold frequency of the metallic surface is :

ఒక లో వావు వలక నుండి v₁ మరియు v₂ హెనఃవున్యాలు గల వతన కాంతికి కాంతి ఎలక్ట్రానులు వెలువడినవి (v₁ > v₂). ఈ రెండు నందర్భాలలో వెలువడిన కాంతి ఎలక్ట్రానుల గరిష్ట గతిజ శక్తుల నిష్పత్తి 1 : n అయితే ఆ లో వా వలక ఆరంభ పౌనఃపున్యం :

(1) $(v_1 - v_2)/(n - 1)$ (3) $(nv_2 - v_1)/(n - 1)$ (4) $(v_1 - v_2)/(n - 1)$

Rough Work

119. Three particles α -particle, proton and deuteron are accelerated by the same potential difference. The velocities of them are in the ratio : α-కణం, ప్రోటాన్, డ్యుటాన్ మూడింటిని ఒకే పొెలన్షియల్తో త్వరణం చెందిస్తే, వాటి వేగం నిష్పత్తి: (1) $1:\sqrt{2}:1$ (2) $\sqrt{2}$: 1 : 1 (3) 1:2:4 (4) 4:2:1 120. A transistor having a β equal to 80 has a change in base current of 250 μ A, of the million of the second way have been all the then the change in collector current is : in a start a salodig add ఒక ట్రాన్సిష్టర్ యొక్క β విలువ 80 దాని యొక్క ఆధారం విద్యుత్ బ్రవాహంలో మార్పు 250 μΑ అయిన సేకరిణి విద్యుత్ త్రవాహంలో మార్పు: (1)20,000 mA (2) 200 mA (4) 20 mA (3) 2000 mA Rough Work 44 Q