MODEL QUESTION PAPER MATHEMATICS – Paper II A (Algebra, Probability)

Time: 3 Hours

Max Marks: 75

Section – A

I. Very Short Answer Questions Attempt all Questions. Each Question carries 2 marks.

 $10 \ge 2 = 20$ Marks

- 1. If α and β are the roots of the equation $2x^2 + 3y^2 + 6 = 0$ find the quadratic equation whose roots are α^3 and β^3 .
- 2. If the roots of the equation $x^3 3x^2 6x + 8 = 0$ are in A.P. find them.

3. If
$$A = \begin{pmatrix} 2 & 4 \\ & \\ -1 & k \end{pmatrix}$$
 and $A^2 = \begin{pmatrix} 0 & 0 \\ & \\ 0 & 0 \end{pmatrix}$ find the value of k.

4. Find the value of the determinant of
$$\begin{pmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{pmatrix}$$
 where $w^3 = 1$.
5. If ${}^nP_4 = 1680$ find '*n*'.

6. If
$${}^{21}C_{2r+1} = {}^{21}C_{r-4}$$
 find 'r'.

7. Find the term independent of 'x' in

- 8. If a card is drawn at random from a pack of cards, what is the probability that it is an ace or a diamond.
- 9. Find the sum of the infinite series

10. In a Binominal distribution if the sum of the mean and the variance is 1.8 find the distribution when n = 5.

Section – B

- II. Short Answer Questions Attempt any five questions. Each question carries 4 marks 5 x 4 = 20 Marks
- 11. If x is real show that the values of the expression $x^2 34x 71$ do not lie between 5 and 9. $x^2 + 2x - 7$
- 12. For $1 < r \le n$ prove, with usual notation, that

 ${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{(n+1)}C_{r-1}$ find 'r'.

(2*n*)!

13. Prove that $C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r}C_n = \frac{(n-r)!(n+r)!}{(n+r)!}$

14. Find the partial fractions of

(2x-1)(x+2)(x-3)

15. Sum the series $log_3e - log_9e + log_{27}e - log_{81}e + \dots$

16. If
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 then show that $A2 - 4A - 5I = O$.

17. If two numbers are selected randomly from 20 consecutive natural numbers find the probability that the sum of the two numbers is(i) an even number (ii) an odd number.

Section - C

- II.Long Answer Questions $5 \ge 7 = 35$ MarksAttempt any five questions. Each question carries 7 marks
- 18. Solve $x^3 18x 35 = 0$ by using Cardan's method.
- 19. Find the number of ways of selecting 11 members for a cricket team from 7 batsmen, 5 bowlers and 3 wicket keepers having atleast 3 bowlers and 2 wicket keepers.

21. Solve by Gauss-Jordan method, the system of equations :

$$x + y + z = 6$$
$$2x + 3y - z = 3$$
$$3x + 5y + 2z = 19$$

22. Show that

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$

23. State and prove Bayes' Theorem.

24. If X is a random variable with the probability distribution

$$P(X = k) = \frac{(k+1)C}{2^k}$$
 (k = 0,1,2,....) then find C and also the

mean of X.

* * *