Engineering and Instrumentation & Control Engineering)			
Time	e: 3	hours	Max Marks: 80
		Answer any FIVE Questions	
		All Questions carry equal marks $\star \star \star \star$	
1.	(a)	Explain the terms	[6]
		i. basis	
		ii. space lattice and	
		iii. unit cell.	
	(b)	Describe the seven crystal systems with diagrams.	[10]
2.	(a)	State and explain Bragg's law.	[6]
	(b)	Describe with suitable diagram, the powder method for det tal structure.	ermination of crys- [6]
	(c)	A beam of X-rays of wavelength 0.071 nm is diffracted by salt with lattice constant of 0.28 nm. Find the glancing as order diffraction.	() -
3.	(a)	Explain the various point defects in a crystal.	[8]
	(b)	Obtain the expression for the equilibrium concentration of at a given temperature.	vacancies in a solid [8]
4.	(a)	What is Fermi level?	
	()		[2]
	(b)	Explain Fermi-Dirac distribution for electrons in a metal. If with temperature.	Discuss its variation [8]
	(c)	Calculate the free electron concentration, mobility and dr trons in aluminum wire of length of 5 m and resistance current of 15 A, assuming that each aluminum atom cont trons for conduction. Given: Resistivity for aluminum = $2.7 \times 10^{-8} \Omega$ -m.	0.06 Ω carrying a
		Atomic weight $= 26.98$ Donsity $= 2.7 \times 10^3 \text{ kg/m}^3$	
		Density $= 2.7 \times 10^3 \text{ kg}/m^3$ Avagadro number $= 6.025 \times 10^{23}$	[6]
-	$\langle \rangle$		[4]

- 5. (a) What is Piezo-electricity?
- 1 of 2

0201

I B.Tech Supplimentary Examinations, Aug/Sep 2007 APPLIED PHYSICS (Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer

Set No. 1

[4]

Set No. 1

- (b) Obtain an expression for the internal field seen by an atom in an infinite array of atoms subjected to an external field. [8]
- (c) The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m^3 . [4]
- 6. (a) Distinguish between intrinsic and extrinsic impurity semiconductors with suitable examples. [6]
 - (b) Derive an expression for the density of holes in the valence band of an intrinsic semiconductor. [6]
 - (c) The following data are given for intrinsic germanium at 300 K: $n_i = 2.4 \times 10^{19}/m^3$, $\mu_e = 0.39 \ m^2 \ V^{-1} \ s^{-1}$, $\mu_p = 0.19 \ m^2 \ V^{-1} s^{-1}$. Calculate the resistivity of the sample. [4]
- 7. (a) With necessary theory and energy level diagram, explain the working of a Helium-Neon gas laser. [10]
 - (b) Mention some important applications of lasers. [6]
- 8. (a) Derive expressions for the numerical aperture and the fractional index change of an optical fibre. [8]
 - (b) Write a note on the applications of optical fibres. [4]
 - (c) Calculate the fractional index change for a given optical fibre if the refractive indices of the core and the cladding are 1.563 and 1.498 respectively. [4]

Set No. 2

I B.Tech Supplimentary Examinations, Aug/Sep 2007 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics &
 Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science &
 Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1.	(a)	Prove that which type of the cubic crystal structure has closest packing of atoms? [8]
	(b)	Derive the relation between the atomic radius and the unit cell dimension of the crystal, mentioned above. [8]
2.	(a)	Sketch the following planes of a cubic unit cell: (001) , (120) and $(\overline{2}11)$. [3]
	(b)	Explain Bragg's law of X-ray diffraction. [5]
	(c)	Describe Laue's method for determination of crystal structure. [8]
3.	(a)	Explain Schottky and Frenkel defects with the help of suitable figures. [10]
	(b)	Explain the significance of Burgers vector. [6]
4.	(a)	What is Fermi level?
	. ,	[2]
	(b)	Explain Fermi-Dirac distribution for electrons in a metal. Discuss its variation with temperature. [8]
	(c)	Calculate the free electron concentration, mobility and drift velocity of electrons in aluminum wire of length of 5 m and resistance 0.06 Ω carrying a current of 15 A, assuming that each aluminum atom contributes 3 free electrons for conduction. Given: Resistivity for aluminum = $2.7 \times 10^{-8} \Omega$ -m. Atomic weight = 26.98
		Density $= 20.98$ $= 2.7 \times 10^3 \text{ kg/} m^3$
		Avagadro number $= 6.025 \times 10^{23}$ [6]
5.	(a)	What is orientational polarization? Explain. [6]
	(b)	Obtain expression for the mean dipole moment when a polar material is sub-

- (b) Obtain expression for the mean dipole moment when a polar material is subjected to an external electric field. [10]
- 6. (a) Derive the continuity equation for electrons. [8]
 - (b) What physical law is manifested in the continuity equation. [4]

	TN T	0
Sof.		· · /
	\perp NU.	
•		

	(c)	Find the diffusion coefficient of electrons in silicon at 300 K if μ is 0.19 m^2/S .	/V-
			[4]
7.	(a)	Explain the characteristics of a laser beam.	[4]
	(b)	What is population inversion?	[4]
	(c)	With a neat sketch explain the construction and working of a ruby laser.	[8]
8.	(a)	Explain the principle behind the functioning of an optical fibre.	[4]
	(b)	Derive an expression for acceptance angle for an optical fibre. How it is relat to numerical aperture?	ted [8]
	(c)	An optical fibre has a numerical aperture of 0.20 and a cladding refract index of 1.59. Find the acceptance angle for the fibre in water which ha refractive index of 1.33.	

I B.Tech Supplimentary Examinations, Aug/Sep 2007 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Show that FCC is the most closely packed of the three cubic structures by working out the packing factors. [10]
 - [6](b) Describe the structure of NaCl.
- 2. (a) Explain how the X-ray diffraction can be employed to determine the crystal structure. [10]
 - (b) The distance between (110) planes in a Body-Centered Cubic structure is 0.203 nm. What is the size of the unit cell? What is the radius of the atom? |6|
- (a) Explain the influence of point defects in crystals and how do they affect the 3. properties of materials. 8
 - (b) Obtain an expression for the energy required to create a vacancy in the crystal. [8]
- [4]4. (a) How does the electrical resistance of a metal change with temperature?
 - (b) Discuss the motion of an electron in a periodic lattice. [8]
 - (c) Find the relaxation time of conduction electrons in a metal having resistivity $1.54 \times 10^{-8} \ \Omega$ -m, if the metal has 5.8×10^{28} conduction electrons per cubic meter. |4|
- (a) With usual notation show that $P = \in_o (\in_r -1)E$ [6]5.
 - (b) What is dipolar relaxation? Discuss the frequency dependence of orientational polarization. [6]
 - (c) A solid elemental dielectric, with density 3×10^{28} atoms / m^3 shows an electronic polarisability of 10^{-40} farad- m^2 . Assuming the internal electric field to be a Lorentz field, calculate the dielectric constant of the material. [4]
- (a) Distinguish between metals, semiconductors and insulators. [6]6.
 - (b) Explain the effect of temperature on resistivity of a semiconductor. [4]
 - (c) Derive an expression for the number of electrons per unit volume in the conduction band of an intrinsic semiconductor. [6]

Set

7.	(a)	Explain the characteristics of a laser beam.	[4]
	(b)	Describe the construction and working of a ruby laser.	[8]
	(c)	Discuss how lasers are helpful in induced fusion and isotope separation proce	esses.
			[4]
8.	(a)	Explain the basic principle of an optical fibre.	[4]
	(b)	Describe graded index optical fibre and explain the transmission of sig through it.	nal [8]
	(c)	What are different losses in optical fibres? Write brief note on each.	[4]

Set No. 4

I B.Tech Supplimentary Examinations, Aug/Sep 2007 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

1.	(a)	Explain the bonding in NaCl. [6]	
	(b)	Calculate the bond energy for NaCl molecule. [6]	
	(c)	Calculate the potential energy of the system of Na^+ and Cl^- ions when they are 0.25 nm apart. [4]	
2.	(a)	Explain Bragg's law of X-ray diffraction. [6]	
	(b)	Describe Laue's method for determination of crystal structure. [6]	
	(c)	A beam of X-rays is incident on a NaCl crystal with lattice spacing 0.282 nm. Calculate the wavelength of X-rays if the first order Bragg reflection takes place at a glancing angle of 8°35′. Also calculate the maximum order of diffraction possible. [4]	
3.	(a)	Describe edge and screw dislocations. Draw Burgers circuit and slip planes for them. [10]	
	(b)	Explain the significance of Burgers vector. [6]	
4.	(a)	What is Fermi level?	
		[2]	
	(b)	Explain Fermi-Dirac distribution for electrons in a metal. Discuss its variation with temperature. [8]	
	(c)	Calculate the free electron concentration, mobility and drift velocity of electrons in aluminum wire of length of 5 m and resistance 0.06 Ω carrying a current of 15 A, assuming that each aluminum atom contributes 3 free electrons for conduction. Given: Resistivity for aluminum = $2.7 \times 10^{-8} \Omega$ -m. Atomic weight = 26.98	
		Density $= 2.7 \times 10^3 \text{ kg}/m^3$ Avagadro number $= 6.025 \times 10^{23}$ [6]	

5. (a) Draw and explain B-H curve for a ferromagnetic material placed in a magnetic field. [6]

Set No. 4

[4]

(b) Discuss the theory of paramagnetism. [6]

(c) State the properties of diamagnetic materials.

- 6. (a) Explain n-type and p-type semiconductors. Indicate on an energy level diagram the conduction and valence bands, donor and acceptor levels for an intrinsic and extrinsic semiconductors. [10]
 - (b) Explain the detailed mechanism of current conduction in n and p type semiconductors. [6]
- 7. (a) What do you understand by population inversion? How it is achieved? [6]
 - (b) Derive the relation between the probabilities of spontaneous emission and stimulated emission in terms of Einstein's coefficients. [10]
- 8. (a) Explain the difference between a step-index fibre and graded index fibre. [6]
 - (b) What are the advantages of an optical fibre communication system over the conventional ones? [6]
 - (c) A fibre has the core and cladding refractive indices 1.45 and 1.44 respectively.
 Find the relative refractive index difference. [4]

2 of 2