Set No.

IV B.Tech I Semester Regular Examinations, November 2008 NEURAL NETWORKS AND FUZZY LOGIC (Common to Electrical & Electronic Engineering, Electronics & Control Engineering, Production Engineering, Aeronautical Engineering, Instrumentation & Control Engineering and Automobile Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Explain in detail the working of biological neuron. 1.
 - (b) Compare artificial and biological neural networks. [8+8]
- (a) Explain in detail the different artifical neural network architectures in detail. 2.
 - (b) The feedforward network shown in figure 1 using bipolar binary neurons is mapping the entire plane x_1 , x_2 into a binary '0' value. Find the segment of the x_1 , x_2 plane for which $0_4=1$, and its complement for which $0_4=-1$. [8+8]

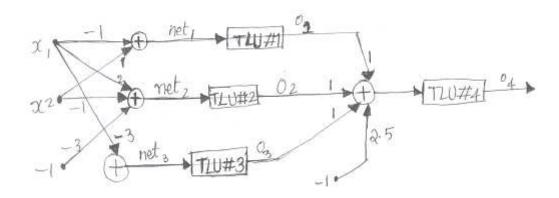


Figure 1:

3. (a) State and prove perceptron convergence theorem.

(b) Explain in detail the limitations of perceptron model. [8+8]

- 4. (a) Derive the equation for weight change in the output and hidden layers of backpropopagation network.
 - (b) Explain in detail the problems of backpropagation network. [8+8]
- i. The following vectors need to be stored in a recurrent autoassociative 5. (a) memory:

 $S^{(1)} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^{t}$ $S^{(2)} = \begin{bmatrix} 1 & -1 & -1 & 1 & -1 \end{bmatrix}^{t}$ $S^{(3)} = \begin{bmatrix} -1 & 1 & 1 & 1 \end{bmatrix}^t$ compute the weight matrix W.

- ii. Apply the input vector $V^0 = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^t$ and allow for asynchronous convergence in ascending node order starting at node 1.
- (b) State and prove BAM stability theorem. [8+8]
- 6. (a) Consider the fuzzy sets $\tilde{A} \& \tilde{B}$ defined on the interval X=[0,5] of real numbers, by the membership grade functions.

```
\mu_{\tilde{A}}(x) = \frac{x}{x+1}, \ \mu_{\bar{B}}(x) = 2^{-x}
```

Determine the mathematical formulae and graphs of the membership grade functions of each of the following sets.

- i. A^C , B^C
- ii. $A\cap B$
- iii. $A \cup B$
- iv. $(A \cup B)^C$
- (b) What do you mean by CRISP Relations. Explain with an example max-min composition relation. [8+8]
- 7. (a) Let $\tilde{A}_1, \tilde{A}_2, \tilde{A}_3$ are three fuzzy sets as shown in figure 2, 3, 4,. Find the aggregated fuzzy set of $\tilde{A}_1, \tilde{A}_2, \tilde{A}_3$ & find the defuzzification using centroid method.

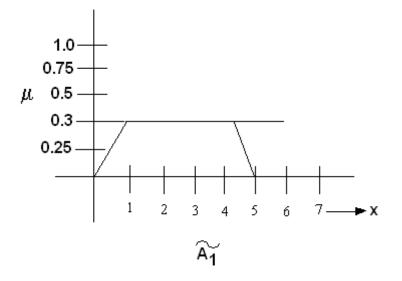


Figure 2:

(b) What is Fuzzy inference. Explain the two important inferring procedures.

[8+8]

- 8. (a) Explain how ANN is used for process control
 - (b) Explain in detail how classification is done using Fuzzy logic. [8+8]

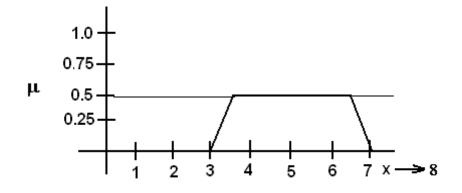


Figure 3:

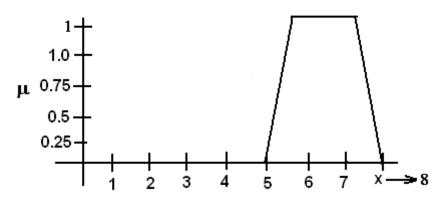


Figure 4:

Set No. 2

IV B.Tech I Semester Regular Examinations, November 2008 NEURAL NETWORKS AND FUZZY LOGIC (Common to Electrical & Electronic Engineering, Electronics & Control Engineering, Production Engineering, Aeronautical Engineering, Instrumentation & Control Engineering and Automobile Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Explain in detail the applications of artificial neural networks.
 - (b) Explain the architectures of the following artificial neuron models.
 - i. Hodgein-Huxley neuron model.
 - ii. Integrate and fire neuron model.
 - iii. Spiking neuron model.

[8+8]

- 2. (a) Explain with block diagrams the different learning strategies.
 - (b) The network shown in the figure 1 uses neurons with bipolar sigmoid activation functions with $\lambda = 1$. The neurons output has been measured as $O_1 = 0.28$ and $0_2 = -0.73$. Find the input vector $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^1$ that has been applied to the network. Also find the slope values of the activation function at the activations [8+8] net_1 and net_2 .
- (a) Explain the architecture and algorithm of discrete perceptron network. 3.
 - (b) Explain why perceptron network would not solve even the Ex-OR problem. 16
- 4. (a) Prove that for n=2, the number of hidden layer neurons J needed for hyperplane partition into M regions is $J = \frac{1}{2} \left(\sqrt{8M - 7} - 1 \right)$
 - (b) State and explain kolmogorov theorem. [8+8]
- (a) Give the energy analysis of discrete hopfield network. 5.
 - (b) Compute the energy values for all 16 bipolar binary vectors for a five-bit autoassociative recurrent memory having the following weight matrix.

 $W = \begin{bmatrix} 0 & 0 & 2 & 0 & 2 \\ 0 & 0 & 0 & -2 & 0 \\ 2 & 0 & 0 & 0 & -2 \\ 0 & -2 & 0 & 0 & 0 \\ -2 & 0 & -2 & 0 & 0 \end{bmatrix}$

By comparing the energy levels, prepare a hypothesis regarding the two stored [8+8]vectors.

(a) Compare & contrast Fuzzy & Crisp sets. 6.

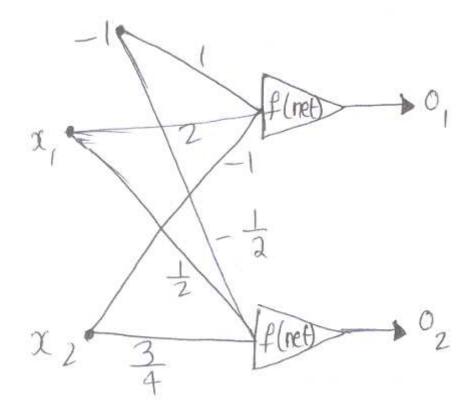


Figure 1:

- (b) Illustrate & explain the properties of Fuzzy sets. [8+8]
- 7. (a) What do you mean by predicate logic? Explain the interpretations of prediacte logic formula?
 - (b) Given
 - i. Every soldier is strong-willed
 - ii. All who are strong willed & sincere will succeed in their carrer
 - iii. Indira is soldier
 - iv. Indira is sincere. Prove: Will indira succeed in her carrer. [8+8]

8. Write short notes on:

- (a) Application of ANN for process fault diagnosis.
- (b) Application of Fuzzy logic for classification. [8+8]

Set No. 3

IV B.Tech I Semester Regular Examinations, November 2008 NEURAL NETWORKS AND FUZZY LOGIC (Common to Electrical & Electronic Engineering,Electronics & Control Engineering,Production Engineering,Aeronautical Engineering,Instrumentation & Control Engineering and Automobile Engineering)

Time: 3 hours

____)

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Using MC-Culloch pitts model implement the following logic functions.
 - i. Ex-OR gate
 - ii. Ex-NOR gate
 - iii. AND gate
 - iv. NAND gate
 - (b) Explain the organization of the brain in detail. [8+8]
- 2. (a) Explain the following learnig rules.
 - i. Delta learning
 - ii. Outstar learning
 - iii. Instar learning
 - iv. Correlation learning.
 - (b) Explain in detail different activation functions used in ANN and compare them. [8+8]
- 3. (a) Explain linear seperable and non-linear seperable classes.
 - (b) State and prove perceptron convergence theorem. [8+8]
- 4. (a) Explain the modifications suggested to back propagation network.
 - (b) Give the architecture and algorithm of back propagation network. [8+8]
- 5. (a) Explain why linear associative network provides no means for supression of cross talk noise term.
 - (b) The following unipolar binary vectors must be stored in the recurrent autoassociative memory using the outer product method with the nullification of the diagonal.

 $S^{(1)} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}^{t}$ $S^{(2)} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}^{t}$ $S^{(3)} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \end{bmatrix}^{t}$

i. Compute matrix W.

- ii. Find the analytical expression for the energy function that the memory is minimizing. [8+8]
- 6. (a) Give and explain the properties of crisp sets
 - (b) Let R,S be defined on the sets $\{1, 3, 5\} \times \{1,3,5\}$. Let R: $\{(x,y)/y = x + 2\}$, $S : \{(x,y)/x \le y\}/$. Using max min composition find
 - i. RoS
 - ii. SoR.

[8+8]

- 7. (a) Explain with example MOM method for defuzzification.
 - (b) Let H = High, VH = very high, Š = slow and Q (Quite slow) indicate, the associated fuzzy sets as follows. For X={30,40,50,60,70,80,90,100}, the set of temperatures and Y={10,20,30,40,50,60}, the set of rotations per minute. H̃ = {(70,1) (80,1) (90,0.3)} Ṽ H = {(90,0.9) (100,1)} Q̃ S = {(10,1) (20,0.8)} Š = {(30,0.8) (40,1) (50,0.6)} Apply the fuzz Modus ponens rule to deduce Rotation is quite slow given.
 i. If the temperature is high then rotation is slow. ii. The temperature is very high.
- 8. (a) Explain how ANN is used for load forecasting.
 - (b) Explain how Fuzzy logic is used for logic control. [8+8]

Set No. 4

IV B.Tech I Semester Regular Examinations, November 2008 NEURAL NETWORKS AND FUZZY LOGIC (Common to Electrical & Electronic Engineering,Electronics & Control Engineering,Production Engineering,Aeronautical Engineering,Instrumentation & Control Engineering and Automobile Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) For the following nework shown in figure 1 find of the region when $O_5=1$ if the Activation function used is bipolar binary.

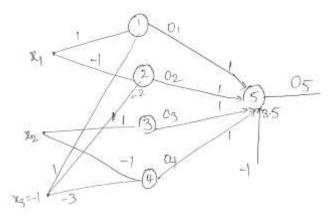


Figure 1:

- (b) Explain the Historical Development of ANN. [8+8]
- 2. (a) Explain clearly the Neural Dynamics and Learning strategies of ANN.
 - (b) Using Hebbian learning rule find the weight vectors to train the following input vectors $X_1 = \begin{bmatrix} 1 & -2 & 1.5 & 0 \end{bmatrix}^T, \quad X_2 = \begin{bmatrix} 1 & -0.5 & -2 & -1.5 \end{bmatrix} \quad X_3 = \begin{bmatrix} 0 & 1 & -1 & 1.5 \end{bmatrix}^T$ Assume initial weight vector to be $W^1 = \begin{bmatrix} 1 & -1 & 0 & 0.5 \end{bmatrix}^T.$ [16]
- 3. (a) Derive the equation for weight change for discrete perceptron Network.
 - (b) Explain why single layer perceptron Network couldnot solve even Ex-OR problem. [16]
- 4. (a) Explain in detail how to decide the number of hidden layer neurons, input layer neurons & output layer neurons in back propagation Network.
 - (b) The network shown in **figure 2** using unipolar binary activation function has been trained to classify all 8,3-bit pattern vectors. Analyze the network & find the function it implements in terms of inputs O_1 , O_2 & O_3 . [8+8]

Set No. 4

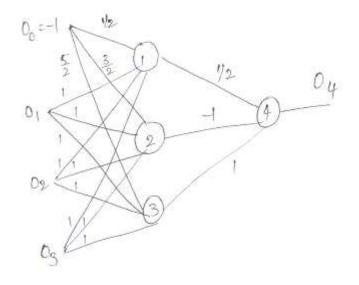


Figure 2:

- 5. (a) State & prove BAM theorem.
 - (b) Explain how linear associator networks couldnot suppress cross terms due to noise. [16]
- 6. (a) If the fuzzy set $\tilde{A} = \{(x_1, 0.4), (x_2, 0.6), (x_3, 0.8)\}$ is multiplied with a crisp number a = 0.3. Find the new fuzzy set formed along with its membership function.
 - (b) Explain the following terms in sets:
 - i. CON
 - ii. DIL
 - iii. Membership function
 - iv. CRISP. [16]
- 7. (a) Explain in detail what are fuzzy quantifiers & their classes.
 - (b) Explain with example centre of sums method of defuzzification. [16]
- 8. (a) Explain how ANN is used for process Identification.
 - (b) Write a short notes on Memory based learning Algorithms. [16]