HomeTG InterStudy MaterialTS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(c)

TS Inter 1st Year Maths 1A Solutions Chapter 1 Functions Ex 1(c)

Manabadi

TS Inter 1st Year Maths 1A Functions Solutions Exercise 1(c)
I.
Question 1.
Find the domains of the following real valued functions. (May 2014, Mar. 14)
(i) f(x) = 1/(x2−1)(x+3)
Answer:
Domain of f is the value of all real x for which (x2 – 1) (x + 3) ≠ 0
⇔ (x + 1) (x – 1) (x + 3) ≠ 0
⇔ x ≠ – 1, 1, -3
∴ Domain of f is, R – {-1, 1, – 3}
(ii) f(x) = 2x2−5x+7/(x−1)(x−2)(x−3)
Answer:
Here (x – 1) (x – 2) (x – 3) + 0
⇔ x ≠ 1, x ≠ 2, x ≠ 3.
Domain of f is, R – {1, 2, 3}
(iii) f(x) = 1/log(2−x)
Answer:
f(x) = 1/log(2−x) ∈ R
⇔ log (2 – x) ≠ 0 and 2 – x > 0
⇔ 2 – x ≠ 1 and 2 > x
⇔ x ≠ 1 and x < 2
⇔ x ∈ (-∞, 1) U (1, 2)
(or) x ∈ (-∞, 2) – {1}
Domain of f = x ∈ {∞, 2} – {1}

(iv) f(x) = |x – 3|
Answer:
f(x) = |x – 3| ∈ R
⇔ x ∈ R
∴ Domain of f = R
(v) f(x) = √4x−x2. (May 2005)
Answer:
f(x) = √4x−x2 ∈ R
⇔ 4x – x2 ≥ 0
⇔ x(4 – x) ≥ 0
⇔ x ∈ [0, 4]
∴ Domain of f = [0, 4]
(vi) f(x) = 1/√1−x2
Answer:
f(x) = 1/√1−x22 0 ⇔ (1 – x)(1 – x) > 0 ⇔ x ∈ (-1, 1) ∴ Domain of f = {x/x ∈ (-1, 1)} (vii) f(x) = 3x/x+1
Answer:
f(x) = 3x/x+1 ∈ R
⇔ 3x ∈ R, ∀ x ∈ R and x + 1 ≠ 0
⇔ x ≠ – 1
∴ Domain of f = R – {-1}
(viii) f(x) = √x2−25 (May 2012)
Answer:
f(x) = √x2−25 ∈ R
⇔ x2 – 25 ≥ 0
⇔ (x + 5)(x – 5) ≥ 0
⇔ x ∈ (-∞, -5] ∪ [5, ∞)
⇔ x ∈ R – (-5, 5)
∴ Domain of f is R – (-5, 5)

(ix) f(x) = √x−[x]
Answer:
f(x) = √x−[x] ∈ R
⇔ x – [x] ≥ 0
⇔ x ≥ [x]
⇔ x ∈ R
∴ Domain of f is R
(x) f(x) = √[x]−x
Answer:
f(x) = √[x]−x ∈ R
⇔ [x] – x ≥ 0
⇔ [x] ≥ x
⇔ x ≤ [x]
⇔ x ∈ z
∴ Domain of f is Z (Set of injection)

Question 2.
Find the ranges of the following real valued functions,
(i) log |4 – x2|

Answer:
Let y = f(x) = log |4 – x2| ∈ R
⇔ 4 – x2 ≠ 0 ⇒ x ≠ ± 2
y = log|4 – x2|
⇒ |4 – x2| = ey
ey > 0 ∀ y ∈ R
∴ Range of f is R.
(ii) √[x]−x
Answer:
Let y = f(x) = √[x]−x ∈ R
⇔ [x] – x > 0
⇔ [x] ≥ x ⇔ x ≤ [x]
∴ Domain of f is z
Then Range of f is {0}
∴ The Range of f = [1, ∞]
(iii) sinπ[x]/1+[x]2
Answer:
Let y = f(x) = sinπ[x]/1+[x]2 ∈ R
⇔ x ∈ R
∴ Domain of f is R
For x ∈ R, [x] is an integer and sin n [x]= 0 ∀ n ∈ R Range of f is {0}
(iv) x2−4/x−2
Answer:
Let y = f(x) = x2−4/x−2 = (x + 2) ⇔ x – 2 ≠ 0
∴ Domain of f is R – {2}
Then y = x + 2 ∴ x ≠ 2, we have y ≠ 4
∴ Range of f is R – {4}.
(v) √9+x2
Answer:
Let y = √9+x2 f(x) ∈ R
Domain of f is R.
When x = 0, f (0) = √9 = ± 3, But when f(0) = 3,
For all values of x e R – {0}, f (x) > 3
Range of f = {3, ∞).

Question 3.
If f and g are real valued functions defined by f(x) – 2x – 1 and g(x) = x2, then find
(i) (3f – 2g)(x)

Answer:
(3f – 2g) (x) = 3 f(x) – 2 g(x)= 3 (2x – 1) – 2(x2)
= -2x2 + 6x – 3

(ii) (fg) (x)
Answer:
(fg)(x) = f(x) g(x) = (2x – 1)(x2) = 2x3 – x2

(iii) (√f/g)(x)
Answer:
√f(x)/g(x)=√2x−1/x2

(iv) (f + g + 2)(x)
Answer:
(f + g + 2) (x) = f(x) + g(x) + 2
= 2x – 1 + x2 + 2
= x2 + 2x + 1 = (x + 1)2

Question 4.
If f = {(1, 2), (2, -3), (3, -1)}, then find
(i) 2f
(ii) 2 + f
(iii) f2
(iv) √f
[May 2012, May 2008]

Answer:
Given f = {(1, 2), (2, -3), (3, -1)} we have f(1) = 2, f(2) = -3 and f(3) = -1
(i) 2f = {(1, 2 x 2), (2, 2 (-3), (3, 2(-1))}
= {(1. 4). (2, – 6). (3, -2)}
(ii) 2 + f = {(1, 2+2), (2, 2+(-3), (3, 2+(-1))}
= {(1, 4), (2, -1), (3. 1)}

(iii) f2 = {(1, 22), (2, (-3)2), (3, (-1)2)]
= {(1, 4), (2, 9), (3, 1)}

(iv) √f = {(1, √2)| (∵ √-3 and √-1 are not real)

II.

Question 1.
Find the domains of the following real valued functions
(i) f(x)= √x2−3x+2

Answer:
f(x) = √x2−3x+2 ∈ R
Domain of f is x2 -3x + 2 > 0
⇒ (x – 2) (x – 1) > 0
⇒ x ∈ [-∞, 1] u [2, ∞]
∴ Domain of f = R – [1, 2]

(ii) f (x) = log (x2 – 4x + 3)
Answer:
f(x) = log (x2 – 4x + 3) ∈ R
⇔ x2 – 4x + 3 > 0
⇔ (x – 3) (x – 1) > 0
x ∈ (-∞, 1) ∪ (3, ∞)
Domain f = R – (1, 3)

(iii) f(x) = √2+x+√2−x/x
Answer:
f(x) = √2+x+√2−x/x ∈ R
⇔ 2 + x > 0 2 – x > 0, x ≠ 0
⇔ x > -2, x < 2 x ≠ 0 ⇔ -2 < x < 2, x ≠ 0 Domain of f is [-2, 2] – {0} (iv) f(x) = 1/3√x−2 log (4−x)10 Answer: f(x) = 1/3√x−2log(4−x)10 ∈ R ⇔ 4 – x > 0, 4 – x ≠ 1 and x – 2 ≠ 0
⇔ x < 4, x ≠ 3, x ≠ 2 Domain of f is [-∞, 4] – {2, 3} (v) f(x) = √4−x2/[x]+2 Answer: f(x) = √4−x2/[x]+2 ∈ R ⇔ 4 – x > 0, [x] + 2 > 0 or
4 – x2 < 0 and [x] > + 2 < 0 When 4 – x2 > 0, and [x] + 2 > 0
we have (2 – x) (2 + x) > 0 and [x] > – 2
⇔ x ∈ [-2, 2] and x ∈ [-1, ∞)
⇔ x ∈ [-1, 2] …………….(1)
When 4 – x2 < 0, and [x] + 2 < 0 ⇔ (2 + x) (2 – x) < 0 and [x] + 2 < 0 ⇔ x ∈ [-∞, -2] ∪ [2, ∞] and [x] < – 2 ⇔ x ∈ [- ∞, -2] ∪ [2, ∞] and x ∈ (- ∞,-2) ⇔ x ∈ [-∞, -2] ………………(2) ∴ from (1) and (2) ∴ Domain of f is [-∞, -2] ∪ {-1, 2} (vi) f(x) = √log0.3(x−x2) Answer: f(x) = √log0.3(x−x2) ∈ R ⇔ log0.3 (x – x2) > 0 .
⇒ x – x2 < (0.3) 0 ⇒ x – x2 < 1 ⇒ -x2 + x < 1 ⇒ -x2 + x – 1 < 0 ⇒ x2 – x + 1 > 0
This is true for all x ∈ R …..(1)
and x – x2 > 0
⇒ x2 – x < 0
⇒ x (x – 1) < 0
⇒ x ∈ (0, 1) ……….(2)
∴ Domain of f is R n (0, 1) = (0, 1)
∴ Domain of f = (0, 1)
(vii) f(x) = 1/x+|x|
Answer:
f(x) = 1/x+|x| ∈ R
⇔ x + |x| ≠ 0 ⇒ x ∈ (0, ∞)
(∵ |x| = x if x ≥ 0
= -x if x < 0)
∴ Domain of f = (0, ∞)

Question 2.
Prove that the real valued function f(x) = x/ex−1 + x/2 + 1 is an even function on R – {0} –

Answer:
f (x) ∈ R, ex – 1 ≠ 0
⇒ ex ≠ 1 ⇒ x ≠ 0

Since f(-x) = f(x), the function f is even function on R – {0}.

Question 3.
Find the domain and range of the following functions.
(i) f(x) = tanπ[x]/1+sinπ[x]+[x2]

Answer:
f(x) = tanπ[x]/1+sinπ[x]+[x2] ∈ R
⇔ x ∈ R; since [x] is an integar so that tan π [x] and sin π [x] are zero. ∀ x ∈ R
Domain of f is R and Range = {0}
(ii) f(x) = x/2−3x
Answer:
f(x) = x/2−3x ∈ R
⇔ 2 – 3x ≠ 0 ⇒ x ≠ 2/3
∴ Domain of f = R – {2/3}
Let y = f(x) = x/2−3x
⇒ 2y – 3xy = x
⇒ 2y = x(1 + 3y)
⇒ x = 2y/1+3y
∴ x ∈ R – {2/3}, 1 + 3y ≠ 0
⇒ y ≠ −1/3
∴ Range of f = R – {−1/3}
(iii) f(x) = |x| + |1 + x|
Answer:
f(x) ∈ R ⇔ x ∈ R
Domain of f = R
∴ |x| = x if x > 0
= – x if x < 0 |1 + x| = 1 + x if 1 + x > 0 ie., x > -1
= – (1 + x) if 1 + x < 0 ie., x < – 1
For x = 0, f(0) = 1,
x= 1, f(1) = |1| + |1 + 1| = 3
x = 2, f(2) = |2| + |1 + 2| = 2 + 3 = 5
x = -2, f(-2) = |-2| + |1 +(-2)| = 2 + 1 = 3
x = -1, f(-1) = |-1| + |1 + (-1)| = 1

LEAVE A REPLY

Please enter your comment!
Please enter your name here

-

Latest News

AP 10th Class Hall Ticket 2026: Download BSEAP SSC Hall Ticket at manabadi.com

The Board of Secondary Education, Andhra Pradesh (BSEAP) is likely to release the AP 10th Class Hall Ticket 2026....

TG 10th Class Hall Ticket 2026: Download Telangana Board 10th Hall Ticket at manabadi.co.in

The Telangana Board of Secondary Education (BSE Telangana) will release the TS SSC Hall Tickets 2026 on its official...

AP Inter 2nd Year Hall Ticket 2026: Download BIEAP II Yr Hall Ticket at manabadi.co.in

The Board of Intermediate Education, Andhra Pradesh (BIEAP) is set to conduct the AP Intermediate 2nd Year Public Examinations...

AP Inter 1st Year Hall Ticket 2026: Download BIEAP I Yr Hall Ticket at manabadi.co.in

The Board of Intermediate Education, Andhra Pradesh (BIEAP) will conduct the AP Intermediate 1st Year Public Exams 2026 from...

TS Inter 1st Year Maths 1A Study Material Pdf Download | TS Intermediate Maths 1A Solutions

TS Inter 1st Year Maths 1A Functions Solutions Chapter 1 Functions Ex 1(a) Chapter 1 Functions Ex 1(b) Chapter 1 Functions Ex...

TS Inter 1st Year Maths 1A Products of Vectors Solutions Exercise 5(C)

I. Question 1. Compute Answer: = ∣∣∣∣10−1−1100−11∣∣∣∣left|begin{array}{rrr} 1 & -1 & 0 \ 0 & 1...

TS Intermediate 1st Year Zoology Study Material Pdf Download | TG Inter 1st Year Zoology Textbook Solutions at manabadi.co.in

TS Intermediate 1st Year Zoology subject విద్యార్థులకు బేసిక్ కాన్సెప్ట్స్‌ను బలంగా నిర్మించడంలో కీలక పాత్ర పోషిస్తుంది. TG Inter Board syllabus ప్రకారం...

TS Inter 1st Year Zoology Study Material Chapter 6 Biology in Human Welfare

Very Short Answer Type Questions Question 1. Define parasitism and justify this term. Answer: An intimate association between two organisms of different species...

TS Inter 1st Year Zoology Study Material Chapter 5 Locomotion and Reproduction in Protozoa

Very Short Answer Type Questions Question 1. Draw a labelled diagram of T.S. of flagellum. Answer: Question 2. List any two differences between...

TS Inter 1st Year Maths 1A Products of Vectors Solutions Exercise 5(b)

I. Question 1. If |p̅| = 2, |q̅| = 3 and (p, q) = π/6 , then find |p̅...