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ADVANCED COMPUTER ARCHITECTURE 

1Q. Explain the fundamentals of computer Design 

1.1 Fundamentals of Computer Design 

Computer technology has made incredible progress in the roughly from last 55 years. 

This rapid rate of improvement has come both from advances in the technology used to 

build computers and from innovation in computer design. During the first 25 years of 

electronic computers, both forces made a major contribution; but beginning in about 

1970, computer designers became largely dependent upon integrated circuit technology. 

During the 1970s, performance continued to improve at about 25% to 30% per year for 

the mainframes and minicomputers that dominated the industry.  

The late 1970s after invention of microprocessor the growth roughly increased 35% per 

year in performance. This growth rate, combined with the cost advantages of a mass-

produced microprocessor, led to an increasing fraction of the computer business. In 

addition, two significant changes are observed in computer industry.  

• First, the virtual elimination of assembly language programming reduced the need 

for object-code compatibility.  

• Second, the creation of standardized, vendor-independent operating systems, such 

as UNIX and its clone, Linux, lowered the cost and risk of bringing out a new 

architecture.  

These changes made it possible to successfully develop a new set of architectures, called 

RISC (Reduced Instruction Set Computer) architectures. In the early 1980s. The RISC-

based machines focused the attention of designers on two critical performance 

techniques, the exploitation of instruction-level parallelism  and the use of caches. The 

combination of architectural and organizational enhancements has led to 20 years of 

sustained growth in performance at an annual rate of over 50%. Figure 1.1 shows the 

effect of this difference in performance growth rates.  

The effect of this dramatic growth rate has been twofold.  

• First, it has significantly enhanced the capability available to computer users. For 

many applications, the highest performance microprocessors of today outperform 

the supercomputer of less than 10 years ago.  

• Second, this dramatic rate of improvement has led to the dominance of micro-
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processor-based computers across the entire range of the computer design.   

  

 
FIGURE 1.1 Growth in microprocessor performance since the mid 1980s has been 

substantially higher than in earlier years as shown by plotting SPECint 

performance.  

 
2Q. Explain various Technology Trends in Computer Industry 
1.3 Technology Trends  

 

The changes in the computer applications space over the last decade have dramatically 

changed the metrics. Desktop computers remain focused on optimizing cost-performance 

as measured by a single user, servers focus on availability, scalability, and throughput 

cost-performance, and embedded computers are driven by price and often power issues.  

If an instruction set architecture is to be successful, it must be designed to survive rapid 

changes in computer technology. An architect must plan for technology changes that can 

increase the lifetime of a computer.  

 

The following Four implementation technologies changed the computer industry:  
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Integrated circuit logic technology—Transistor density increases by about 35% per year, 

and die size increases 10% to 20% per year. The combined effect is a growth rate in 

transistor count on a chip of about 55% per year. 

 

Semiconductor DRAM : Density increases by between 40% and 60% per year and Cycle 

time has improved very slowly, decreasing by about one-third in 10 years. Bandwidth per 

chip increases about twice as fast as latency decreases. In addition, changes to the DRAM 

interface have also improved the bandwidth.  

 

Magnetic disk technology: it is improving more than 100% per year. Prior to 1990, 

density increased by about 30% per year, doubling in three years. It appears that disk 

technology will continue the faster density growth rate for some time to come. Access 

time has improved by one-third in 10 years.  

 

Network technology—Network performance depends both on the performance of 

switches and on the performance of the transmission system, both latency and bandwidth 

can be improved, though recently bandwidth has been the primary focus. For many years, 

networking technology appeared to improve slowly: for example, it took about 10 years 

for Ethernet technology to move from 10 Mb to 100 Mb. The increased importance of 

networking has led to a faster rate of progress with 1 Gb Ethernet becoming available 

about five years after 100 Mb.  

 
These rapidly changing technologies impact the design of a microprocessor that may, 

with speed and technology enhancements, have a lifetime of five or more years.  

 
Scaling of Transistor Performance, Wires, and Power in Integrated Circuits  

Integrated circuit processes are characterized by the feature size, which is decreased from 

10 microns in 1971 to 0.18 microns in 2001. Since a transistor is a 2-dimensional object, 

the density of transistors increases quadratically with a linear decrease in feature size. 

The increase in transistor performance, this combination of scaling factors leads to a 

complex interrelationship between transistor performance and process feature size.  
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First approximation, transistor performance improves linearly with decreasing feature 

size.  

In the early days of microprocessors, the higher rate of improvement in density was used 

to quickly move from 4-bit, to 8bit, to 16-bit, to 32-bit microprocessors. More recently, 

density improvements have supported the introduction of 64-bit microprocessors as well 

as many of the innovations in pipelining and caches. 

 

The signal delay for a wire increases in proportion to the product of its resistance and 

capacitance. As feature size shrinks wires get shorter, but the resistance and capacitance 

per unit length gets worse. Since both resistance and capacitance depend on detailed 

aspects of the process, the geometry of a wire, the loading on a wire, and even the 

adjacency to other structures. In the past few years, wire delay has become a major 

design limitation for large integrated circuits and is often more critical than transistor 

switching delay. Larger and larger fractions of the clock cycle have been consumed by 

the propagation delay of signals on wires. In 2001, the Pentium 4 broke new ground by 

allocating two stages of its 20+ stage pipeline just for propagating signals across the chip.  

 

Power also provides challenges as devices are scaled. For modern CMOS 

microprocessors, the dominant energy consumption is in switching transistors. The 

energy required per transistor is proportional to the product of the load capacitance of the 

transistor, the frequency of switching, and the square of the voltage. As we move from 

one process to the next, the increase in the number of transistors switching and the 

frequency with which they switch, dominates the decrease in load capacitance and 

voltage, leading to an overall growth in power consumption.  

 
3Q. What is Cost and Price. Explain the impact of Time, volume and 
commodification on Cost and Price 
 
1.4 Cost, Price and their Trends  

In the past 15 years, the use of technology improvements to achieve lower cost, as well as 

increased performance, has been a major theme in the computer industry. 
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• Price is what you sell a finished good for,  

• Cost is the amount spent to produce it, including overhead.  

 
The Impact of Time, Volume, Commodification, and Packaging 

The cost of a manufactured computer component decreases over time even without major 

improvements in the basic implementation technology. The underlying principle that 

drives costs down is the learning curve manufacturing costs decrease over time. As an 

example of the learning curve in action, the price per megabyte of DRAM drops over the 

long term by 40% per year. Figure 1.5 plots the price of a new DRAM chip over its 

lifetime.  

 
 
 

 
 
 
 
 
 
The Microprocessor prices also drop over time, but because they are less standardized 

than DRAMs, the relationship between price and cost is more complex. In a period of 

significant competition, price tends to track cost closely. Figure 1.6 shows processor 

price trends for the Pentium III.  
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The Volume is a second key factor in determining cost. Increasing volumes affect cost in 

several ways.  

• First, they decrease the time needed to get down the learning curve, which is 

partly proportional to the number of systems (or chips) manufactured.  

• Second, volume decreases cost, since it increases purchasing and manufacturing 

efficiency.  

As a rule of thumb, some designers have estimated that cost decreases about 10% for 

each doubling of volume.  

 
The Commodities are products that are sold by multiple vendors in large volumes and are 

essentially identical. Virtually all the products sold on the shelves of grocery stores are 

commodities, as are standard DRAMs, disks, monitors, and keyboards. In the past 10 

years, much of the low end of the computer business has become a commodity business 

focused on building IBM-compatible PCs. There are a variety of vendors that ship 

virtually identical products and are highly competitive. Of course, this competition 
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decreases the gap between cost and selling price, but it also decreases cost.  

 

4. How to calculate cost of an Integrated Circuit and explain how cost 
becomes price by taking an example. 
Cost of an Integrated Circuit: 
 
The cost of packaged integrated circuit is  
 
 

Cost of die + Cost of testing die + Cost of packaging and final testCost of integrated circuit=
Final test yield 

 
The number of good chips per wafer requires first learning how many dies fit on a wafer 

and then learning how to predict the percentage of those that will work. From there it is 

simple to predict cost:  

 
 

Cost of waferCost of die=
Dies per wafer × Die yield 

 

 
 
The number of dies per wafer is basically the area of the wafer divided by the area of the 

die. It can be more accurately estimated by  

 
 

2×(Wafer diameter/2)  × Wafer diameterDies per wafer=
Die area 2 x Die Area

π π
−  

 
 
The first term is the ratio of wafer area (πr

2
) to die area. The second compensates for the 

“square peg in a round hole” problem rectangular dies near the periphery of round 

wafers. Dividing the circumference (πd) by the diagonal of a square die is approximately 

the number of dies along the edge. For example, a wafer 30 cm (≈ 12 inch) in diameter 

produces π× 225 – (π × 30 ⁄ 1.41) = 640 1-cm dies.  
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Distribution of Cost in a System: An Example  
 

Figure 1.9 shows the approximate cost breakdown for a $1,000 PC in 2001. Although the 

costs of some parts of this machine can be expected to drop over time, other components, 

such as the packaging and power supply, have little room for improvement. 

 

System  Subsystem  Fraction of total  

Cabinet  Sheet metal, plastic  2%  

 Power supply, fans  2%  

 Cables, nuts, bolts  1%  

 Shipping box, manuals  1%  

 Subtotal 6% 

Processor board  Processor  23%  

 DRAM (128 MB)  5%  

 Video card  5%  

 Motherboard with basic I/O support, and 

networking  

5%  

 Subtotal  38%  

I/O devices  Keyboard and mouse Monitor  3% 20%  

 Hard disk (20 GB) DVD drive  9% 6%  

 Subtotal  37%  

Software  OS + Basic Office Suite  20%  

  

 
Cost Versus Price—Why They Differ and By How Much 

Cost goes through a number of changes before it becomes price, and the computer 

designer should understand how a design decision will affect the potential selling price. 

For example, changing cost by $1000 may change price by $3000 to $4000.  
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The relationship between price and volume can increase the impact of changes in cost, 

especially at the low end of the market. Typically, fewer computers are sold as the price 

increases. Furthermore, as volume decreases, costs rise, leading to further increases in 

price.  

Direct costs refer to the costs directly related to making a product. These include labor 

costs, purchasing components, scrap (the leftover from yield), and warranty. Direct cost 

typically adds 10% to 30% to component cost. 

 

 
 

The next addition is called the gross margin, the company’s overhead that cannot be 

billed directly to one product. This can be thought of as indirect cost. It includes the 

company’s research and development (R&D), marketing, sales, manufacturing equipment 

maintenance, building rental, cost of financing, pretax profits, and taxes. When the 

component costs are added to the direct cost and gross margin,  

 

Average selling price is the money that comes directly to the company for each product 

sold. The gross margin is typically 10% to 45% of the average selling price, depending 

on the uniqueness of the product. Manufacturers of low-end PCs have lower gross 

margins for several reasons. First, their R&D expenses are lower. Second, their cost of 

sales is lower, since they use indirect distribution by mail, the Internet, phone order, or 
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retail store) rather than salespeople. Third, because their products are less unique, 

competition is more intense, thus forcing lower prices and often lower profits, which in 

turn lead to a lower gross margin. 

List price and average selling price are not the same. One reason for this is that 

companies offer volume discounts, lowering the average selling price. As personal 

computers became commodity products, the retail mark-ups have dropped significantly, 

so list price and average selling price have closed.  

 

5Q. How to measure and report the performance of the systems 

1.5 Measuring and Reporting Performance 
 

The computer user is interested in reducing response time( the time between the start and 

the completion of an event) also referred to as execution time. The manager of a large 

data processing center may be interested in increasing throughput( the total amount of 

work done in a given time). 

In comparing design alternatives, we often want to relate the performance of two 

different machines, say X and Y. The phrase “X is faster than Y” is used here to mean 

that the response time or execution time is lower on X than on Y for the given task. In 

particular, “X is n times faster than Y” will mean 

 

y

x

ExecutionTime
n

ExecutionTime
=  

 

Since execution time is the reciprocal of performance, the following relationship holds: 

1

1
y y x

x y

x

ExecutionTime Performance Performancen
ExecutionTime Performance

Performance

= = =  

 

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that the 

number of tasks completed per unit time on machine X is 1.3 times the number 

completed on Y. 
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Even execution time can be defined in different ways depending on what we count. The 

most straightforward definition of time is called wall-clock time, response time, or 

elapsed time, which is the latency to complete a task, including disk accesses, memory 

accesses, input/output activities, operating system overhead 

 
Choosing Programs to Evaluate Performance 
 

A computer user who runs the same programs day in and day out would be the perfect 

candidate to evaluate a new computer. To evaluate a new system the user would simply 

compare the execution time of her workload—the mixture of programs and operating 

system commands that users run on a machine. 

 There are five levels of programs used in such circumstances, listed below in decreasing 

order of accuracy of prediction. 

 

1. Real applications— Although the buyer may not know what fraction of time is spent 

on these programs, she knows that some users will run them to solve real problems. 

Examples are compilers for C, text-processing software like Word, and other applications 

like Photoshop. Real applications have input, output, and options that a user can select 

when running the program. There is one major downside to using real applications as 

benchmarks: Real applications often encounter portability problems arising from 

dependences on the operating system or compiler. Enhancing portability often means 

modifying the source and sometimes eliminating some important activity, such as 

interactive graphics, which tends to be more system-dependent. 

 

2. Modified (or scripted) applications—In many cases, real applications are used as the 

building block for a benchmark either with modifications to the application or with a 

script that acts as stimulus to the application. Applications are modified for two primary 

reasons: to enhance portability or to focus on one particular aspect of system 

performance. For example, to create a CPU-oriented benchmark, I/O may be removed or 

restructured to minimize its impact on execution time. Scripts are used to reproduce 

interactive behavior, which might occur on a desktop system, or to simulate complex 

multiuser interaction, which occurs in a server system. 
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3. Kernels—Several attempts have been made to extract small, key pieces from real 

programs and use them to evaluate performance. Livermore Loops and Linpack are the 

best known examples. Unlike real programs, no user would run kernel programs, for they 

exist solely to evaluate performance. Kernels are best used to isolate performance of 

individual features of a machine to explain the reasons for differences in performance of 

real programs. 

 

4. Toy benchmarks—Toy benchmarks are typically between 10 and 100 lines of code and 

produce a result the user already knows before running the toy program. Programs like 

Sieve of Eratosthenes, Puzzle, and Quicksort are popular because they are small, easy to 

type, and run on almost any computer. The best use of such programs is beginning 

programming assignments. 

 

5. Synthetic benchmarks—Similar in philosophy to kernels, synthetic benchmarks try to 

match the average frequency of operations and operands of a large set of programs. 

Whetstone and Dhrystone are the most popular synthetic benchmarks. 

 

6Q. What is Benchmark. Explain various Benchmark suites. 

Benchmark Suites 

Recently, it has become popular to put together collections of benchmarks to try to 

measure the performance of processors with a variety of applications. One of the most 

successful attempts to create standardized benchmark application suites has been the 

SPEC (Standard Performance Evaluation Corporation), which had its roots in the late 

1980s efforts to deliver better benchmarks for workstations. Just as the computer 

industry has evolved over time, so has the need for different benchmark suites, and 

there are now SPEC benchmarks to cover different application classes, as well as other 

suites based on the SPEC model. Which is shown in figure 1.11 
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Desktop Benchmarks 

Desktop benchmarks divide into two broad classes: CPU intensive benchmarks and 

graphics intensive benchmarks intensive CPU activity). SPEC originally created a 

benchmark set focusing on CPU performance (initially called SPEC89), which has 

evolved into its fourth generation: SPEC CPU2000, which follows SPEC95, and 

SPEC92. (Figure 1.30 on page 64 discusses the evolution of the benchmarks.) SPEC 

CPU2000, summarized in Figure 1.12, consists of a set of eleven integer benchmarks 

(CINT2000) and fourteen floating point benchmarks (CFP2000).  
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Although SPEC CPU2000 is aimed at CPU performance, two different types of graphics 

benchmarks were created by SPEC: SPEC viewperf is used for benchmarking systems 

supporting the OpenGL graphics library, while SPECapc consists of applications that 

make extensive use of graphics. SPECviewperf measures the 3D rendering performance 

of systems running under OpenGL using a 3-D model and a series of OpenGL calls that 

transform the model. SPECapc consists of runs of three large applications: 

1. Pro/Engineer: a solid modeling application that does extensive 3-D rendering. The 

input script is a model of a photocopying machine consisting of 370,000 triangles. 

2. SolidWorks 99: a 3-D CAD/CAM design tool running a series of five tests varying 

from I/O intensive to CPU intensive. The largetest input is a model of an assembly line 

consisting of 276,000 triangles. 

3. Unigraphics V15: The benchmark is based on an aircraft model and covers a wide 

spectrum of Unigraphics functionality, including assembly, drafting, numeric control 

machining, solid modeling, and optimization. The inputs are all part of an aircraft design. 

Server Benchmarks 

Just as servers have multiple functions, so there are multiple types of benchmarks. The 

simplest benchmark is perhaps a CPU throughput oriented benchmark. SPEC CPU2000 

uses the SPEC CPU benchmarks to construct a simple throughput benchmark where the 

processing rate of a multiprocessor can be measured by running multiple copies (usually 

as many as there are CPUs) of each SPEC CPU benchmark and converting the CPU time 

into a rate. This leads to a measurement called the SPECRate. Other than SPECRate, 

most server applications and benchmarks have significant I/O activity arising from either 

disk or network traffic, including benchmarks for file server systems, for web servers, 

and for database and transaction processing systems. SPEC offers both a file server 

benchmark (SPECSFS) and a web server benchmark (SPECWeb). SPECSFS (see 

http://www.spec.org/osg/sfs93/) is a benchmark for measuring NFS (Network File 

System) performance using a script of file server requests; it tests the performance of the 

I/O system (both disk and network I/O) as well as the CPU. SPECSFS is a throughput 

oriented benchmark but with important response time requirements.  
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Transaction processing benchmarks measure the ability of a system to handle 

transactions, which consist of database accesses and updates. All the TPC benchmarks 

measure performance in transactions per second. In addition, they include a response-

time requirement, so that throughput performance is measured only when the response 

time limit is met. To model real-world systems, higher transaction rates are also 

associated with larger systems, both in terms of users and the data base that the 

transactions are applied to. Finally, the system cost for a benchmark system must also be 

included, allowing accurate comparisons of cost-performance. 

Embedded Benchmarks 

Benchmarks for embedded computing systems are in a far more nascent state than those 

for either desktop or server environments. In fact, many manufacturers quote Dhrystone 

performance, a benchmark that was criticized and given up by desktop systems more than 

10 years ago! As mentioned earlier, the enormous variety in embedded applications, as 

well as differences in performance requirements (hard real-time, soft real-time, and 

overall cost-performance), make the use of a single set of benchmarks unrealistic. In 

practice, many designers of embedded systems devise benchmarks that reflect their 

application, either as kernels or as stand-alone versions of the entire application. For 

those embedded applications that can be characterized well by kernel performance, the 

best standardized set of benchmarks appears to be a new benchmark set: the EDN 

Embedded Microprocessor Benchmark Consortium (or EEMBC–pronounced embassy). 

The EEMBC benchmarks fall into five classes: automotive/industrial, consumer, 

networking, office automation, and telecommunications Figure 1.13 shows the five 

different application classes, which include 34 benchmarks. 
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7Q. What is Amdahl’s Law. Explain with example. 
 
1.6. Quantitative Principles of Computer Design 
 

The most important and pervasive principle of computer design is to make the common 

case fast In applying this simple principle, we have to decide what the frequent case is 

and how much performance can be improved by making that case faster. A fundamental 

law, called Amdahl’s Law, can be used to quantify this principle. 

Amdahl’s Law 

 

The performance gain that can be obtained by improving some portion of a computer can 

be calculated using Amdahl’s Law. Amdahl’s Law states that the performance 

improvement to be gained from using some faster mode of execution is limited by the 

fraction of the time the faster mode can be used. Amdahl’s Law defines the speedup that 

can be gained by using a particular feature. 

Speedup is the Ratio  

 

Performance for entire task using enhancement when possibleSpeedup=
Performance for entire task without using enhancement 

 

Alternatively, 

Execution Time for entire task without using enhancement Speedup=
Execution Time for entire task using enhancement when possible

 

 

Speedup tells us how much faster a task will run using the machine with the enhancement 

as opposed to the original machine. Amdahl’s Law gives us a quick way to find the 

speedup from some enhancement, which depends on two factors: 

1. The fraction of the computation time in the original machine that can be converted to 

take advantage of the enhancement—For example, if 20 seconds of the execution time of 

a program that takes 60 seconds in total can use an enhancement, the fraction is 20/60. 

This value, which we will call Fractionenhanced, is always less than or equal to 1. 

2. The improvement gained by the enhanced execution mode; that is, how much faster the 

task would run if the enhanced mode were used for the entire program— This value is 
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the time of the original mode over the time of the enhanced mode: If the enhanced mode 

takes 2 seconds for some portion of the program that can completely use the mode, while 

the original mode took 5 seconds for the same portion, the improvement is 5/2. We will 

call this value, which is always greater than 1, Speedupenhanced. 

 

The execution time using the original machine with the enhanced mode will be the time 

spent using the unenhanced portion of the machine plus the time spent using the 

enhancement: 

( )New oldExecution time Execution time 1 Enhanced
Enhanced

Enhanced

FractionFraction
Speedup

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 

 

The overall speedup is the ratio of the execution times: 

( )

1

1

old
Overall

New Enhanced
Enhanced

Enhanced

ExectionSpeedup
Exection FractionFraction

Speedup

= =
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

 

 

Amdahl’s Law can serve as a guide to how much an enhancement will improve 

performance and how to distribute resources to improve cost/performance. 

 

The CPU Performance Equation 

Essentially all computers are constructed using a clock running at a constant rate. These 

discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or clock 

cycles. Computer designers refer to the time of a clock period by its duration (e.g., 1 ns) 

or by its rate (e.g., 1 GHz). CPU time for a program can then be expressed two ways: 

 

CPU Time =  CPU Clock Cycles Per a Program X Clock Cycle Time 

Or 

PrCPU Clock Cycles Per ogramCPU Time
Clock Rate

=  
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In addition to the number of clock cycles needed to execute a program, we can also count 

the number of instructions executed—the instruction path length or instruction count 

(IC). If we know the number of clock cycles and the instruction count we can calculate 

the average number of clock cycles per instruction (CPI). 

 

CPI is computed as 

 

CPU Clock Cycles Per a Program
Instruction Count

CPI =  

 

This allows us to use CPI in the execution time formula: 

 

CPU time = Instruction count X Clock Cycle Time X Cycles per Instruction 

 

Principle of Locality  

locality of reference means: Programs tend to reuse data and instructions they have used 

recently. A widely held rule of thumb is that a program spends 90% of its execution time 

in only 10% of the code. An implication of locality is that we can predict with reasonable 

accuracy what instructions and data a program will use in the near future based on its 

accesses in the recent past. 

Locality of reference also applies to data accesses, though not as strongly as to code 

accesses. Two different types of locality have been observed. Temporal locality states 

that recently accessed items are likely to be accessed in the near future. Spatial locality 

says that items whose addresses are near one another tend to be referenced close together 

in time. 

Advantage of Parallelism 

Advantage of parallelism is one of the most important methods for improving 

performance. We give three brief examples, which are expounded on in later chapters. 

Our first example is the use of parallelism at the system level. To improve the throughput 

performance on a typical server benchmark, such as SPECWeb or TPC, multiple 

processors and multiple disks can be used. The workload of handling requests can then be 
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spread among the CPUs or disks resulting in improved throughput. This is the reason that 

scalability is viewed as a valuable asset for server applications. At the level of an 

individual processor, taking advantage of parallelism among instructions is critical to 

achieving high performance. This can be done to do this is through pipelining. The basic 

idea behind pipelining is to overlap the execution of instructions, so as to reduce the total 

time to complete a sequence of instructions. Viewed from the perspective of the CPU 

performance equation, we can think of pipelining as reducing the CPI by allowing 

instructions that take multiple cycles to overlap. A key insight that allows pipelining to 

work is that not every instruction depends on its immediate predecessor, and thus, 

executing the instructions completely or partially in parallel may be possible. 

Parallelism can also be exploited at the level of detailed digital design. For example set 

associative caches use multiple banks of memory that are typical searched in parallel to 

find a desired item. Modern ALUs use carry-lookahead, which uses parallelism to speed 

the process of computing sums from linear in the number of bits in the operands to 

logarithmic.  
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