GUJARAT TECHNOLOGICAL UNIVERSITY MCA- Ist SEMESTER-EXAMINATION - MAY/JUNE - 2012 Subject code: 2610003 Subject Name: Discrete Mathematics for Computer Science (DMCS) Time: 02:30 pm - 05:00 pm Total Marks: 7 Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Q.1 (a) Define: i) Join irreducible elements. ii) Atoms of a Boolean algebra. Determine Join-irreducible elements and atoms of following Boolean
i) Join irreducible elements.ii) Atoms of a Boolean algebra.
algebra. i) (S_{210}, D)
 ii) ⟨ P(S), ∩,∪, ', Φ, S⟩ where S = {a, b, c} Also draw the Hasse Diagram. (b) Define Lower bound and greatest lower bound. Let P = < 3, 5, 9, 15, 24, 45}, D> be a poset. Draw the Hasse diagram. Find i) the maximal element. & minimal element.
ii) The greatest and least element.iii) the lower bounds of {3, 5}, if any & the upper bound of {9, 15}, if anyiv) GLB of {15, 45} & LUB of {3, 9, 15}.
 Q.2 (a) State the importance & purpose of Discrete Mathematical Structures with its application to computers science. (b) i) Let P(x) be the statement " x = x² ". If the domain consists of the integers,
what are the truth values of $\forall x \ P(x)$ and $\exists \ x \ P(x)$
ii) Define: Logical Equivalence of the statement formula. Without constructing truth table show that ($lp \land (lq \land r)) \lor (q \land r) \lor (p \land r) \equiv r$

A₃= {{1, 2, 3}}, then show that A1, A2, and A3 are mutually disjoint.

ii) Define law of Modus Ponen and Law of Hypothetical Syllogism with an

03

04

(b) i) Define: Disjoint sets. If $A_1 = \{\{1, 2\}, \{3\}\}, A_2 = \{\{1\}, \{2,3\}\}$ and

example.

by "a R b iff a - b is an even integer" where $a, b \in I$, then show that the relation R is an equivalence relation.

- ii) Define giving example for each term
 - 1. Sublattice
 - 2. Complemented lattice
 - 3. Modular lattice
- 04 **(b)** i) Define: Maximal Compatibility Block. Let the compatibility relation on a set {1, 2, 3, 4, 5, 6} be given by following matrix. Construct the graph and find the maximum compatibility blocks

ii) State the absorption law for lattice. Verify it for (S₄₅, D) by taking any two elements.

OR

- Q.3 i) Find the value of Boolean Expression. 04 $\alpha(x_1, x_2, x_3, x_4) = [x_1 * (x_2 \oplus x_1') * (x_3 * x_4' * x_2')] \oplus (x_1 * x_4)$ where $x_1 = 5$, $x_2 = 6$, $x_3 = 15$, $x_4 = 3$ in Boolean algebra <S₃₀, gcd, lcm, ', 30> and n' = 30/n. 03
 - .ii) Prove the Boolean identities

a)
$$(a * b) \bigoplus (a * b') = a$$

b)
$$a*(a' \oplus b) = a*b$$

- (b) i) Use the Quine-Mccluskey algorithm to find the prime implicants and also 04 obtain a minimal expression for function: $f(a,b,c,d)=\Sigma(1,2,5,6,13,14,15)$ 03
 - ii) Obtain the sum of product canonical form of Boolean expression in three

variables x_1, x_2, x_3 for $(x_1 \oplus x_2) * x_3$

03

03

Define: Group and Abelian group. Show that in a group (G, *), if for a, b \in G,

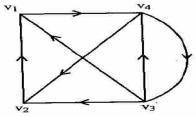
 $(a * b)^2 = a^2 * b^2$, then (G, *) is an Abelian group. Prove that the set $\{1, -1, i, -1\}$

- i) form an Abelian multiplicative group (G, x) where i is an imaginary no. $i = \sqrt{-1}$
- (b) Define: Group Homomorphism, Group Isomorphism and Kernel of the **07**

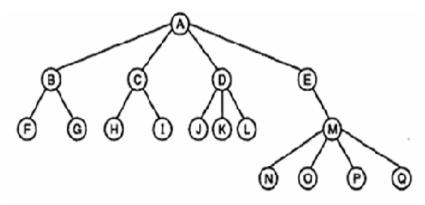
homomorphism. Prove that G: $(Z_4, +4) \rightarrow (Z_5^*, x_5)$ is isomorphism.

OR

- Define Subgroup of a group Find all subgroups of cyclic group of order 12 **Q.4** (a) 07 with generator 'a'. Also find order of generators of G.
 - Define symmetric group (S_3, \diamond) . Write composition table of all permutations **07** defined on the symbols 1, 2, & 3 Determine all the proper subgroups of (S_3, \diamond) . Which subgroup is normal subgroup?
- Define adjacency matrix of a graph and obtain the adjacency matrix (A) for **Q.5 07** the following graph. What do transpose of adjacency matrix (A^T) indicate? Draw its graph. State the indegree and outdegree of all the vertices. Find A² and interpret in detail by stating the results.

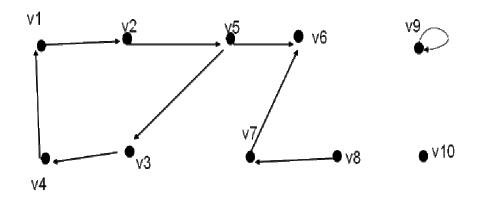


- i) Define Forest with an example 02 **(b)** 05
 - ii) Define Binary tree. Convert the given tree into the Binary tree.



OR

Define node base of a diagraph. State its properties. Find all node base of the **Q.5** (a) **07** diagraph given below:



(b) Define rooted tree, level of a vertex, leaf, descendents and ancestor of a vertex with a suitable example. Prove that a full m-ary tree with i internal vertex has n = mi +1 vertices
