3

SQUARE AND SQUARE ROOTS

3.1 INTRODUCTION

Numbers which can be expressed as the product of two identical numbers are known as **square numbers**. These numbers are also known as **perfect squares**.

Let p and q are natural numbers such that $p = q^2$ then we say 'p' is the square of number 'q' e.g. $9 = 3^2$, so 9 is square of 3 and we call 9 as a perfect square number. Table below shows number and their squares from 1 to 10.

Number	1	2	3	4	5	6	7	8	9	10
Square	1	4	9	16	25	36	49	64	81	100

Properties of square numbers :

If you examine the table of square numbers, you will observe the following :

- (1) If a number ends with 1 or 9, its square ends with the digit 1.
- (2) If a number ends with 2 or 8, its square ends with the digit 4.
- (3) If a number ends with 3 or 7, its square ends with the digit 9.
- (4) If a number ends with 4 or 6, its square ends with the digit 6.
- (5) If a number ends with 5, its square also ends with the digit 5.
- (6) If a number ends with 0, its square also ends with 0.
- (7) No perfect square number can end with 2, 3, 7 or 8.
- (8) If a number is even, then its square is also even.
- (9) If a number is odd, then its square is also odd.
- (10) From above we known perfect square numbers ends with either 0 or 1 or 4 or 5 or 6 or 9.

3.2 SQUARE ROOTS

If $p = q^2$ where p and q are integers, then we say that q is the square root of p. For example $9 = 3^2$, therefore 3 is the square root of 9, similarly 7 is the square root of 49 and 12 is the square root of 144. We can say that if p is a perfect square then its square root is an integer and if p is not a perfect square then it does not have an integral square root.

Symbolically, square roots of a positive number 'n' is written as \sqrt{n} or $\sqrt[2]{n}$ or $(n)^{1/2}$. Therefore,

 $\sqrt{16} = 4$ or $\sqrt[2]{16} = 4$ or $(16)^{1/2} = 4$.

THEORY

3.2.1 Properties of Square Roots

Based upon the properties of square number discussed, we have the following properties of square roots

Property 1

If the units digit of a number is 2, 3, 7 or 8, then it does not have a square root in N (the set of natural numbers).

Explanation: By property 1, a number having 2, 3, 7 or 8 at unit's place cannot be a perfect square. Hence, a number having 2, 3, 7 or 8 at units place does not have a square root in N.

Property 2

If a number ends in an odd number of zeros, then it does not have a square root. If a square number is followed by an even number of zeros, it has a square root in which the number of zeros in the end is half the number of zeros in the number.

Explanation: By property 2, the number of zeros at the end of a perfect square is always even and is twice the number of zeros at the end of the number.

Property 3

The square root of an even square number is even and that square root of an odd square number is odd. **Explanation:** By property 3, the squares of even numbers are even numbers and that of odd numbers are odd numbers.

Property 4

If a number has a square root in N, then its units digit must be 0, 1, 4, 5, 6 or 9.

Explanation : By property 6, the units digits of the square and square root are related as below:

Units digit of square	0	1	4	5	6	9
Units digit of square root	0	1 or 9	2 or 8	5	4 or 6	3 or 7

Property 5

Negative numbers have no square root in the system of rational numbers.

Explanation: We have, $2^2 = 4$, $3^2 = 9$, $4^2 = 16$ and so on. Also, $(-2)^2 = (-2) \times (-2) = 4$, $(-3)^2 = (-3) \times (-3) = 9$, $(-4)^2 = (-4) \times (-4) = 16$ and so on. This means that the square of a number whether positive or negative is always positive. Consequently, negative numbers are not perfect squares. Hence, negative numbers have no square roots.

Property 6

The sum of first n odd natural numbers is n^2 i.e.

 $1 + 3 + 5 + 7 + \dots + (2n - 1) = n^2$

3.3 TO FIND THE SQUARE OF A NUMBER BY THE COLUMN METHOD

The procedure given below explains the application of the column method to find the square of a two digit number.

3.3.1 Procedure

If the given two digit number is of the form ab, where 'a' is the digit in ten place and 'b' is the digit in the units place, then calculate.

a ²	2ab	b ²
Col.I	Col.II	Col.III

Now, we have three columns. Consider b^2 in Column III. Underline the units digit of b^2 .

Add the tens digit of b^2 , if any, to 2ab in Column II and then underline the units digit in Column II. After underlining the units digit in Column II, add the non-underlined part of column II, if any, to a^2 in Column I.

Underline the number thus obtained in Column I.

The underlined digits when written in the same order as a single number gives the required square.

To find the square of 64.

Solution

Here a = 6 and b = 4

(Column I	Column II	Column III
	a ²	2ab	b^2
Setp (1)	36	48	16
Setp (2)	36	4 <u>2</u>	<u>6</u>
Setp (3)	<u>40</u>	<u>9</u>	<u>6</u>

Units digit in Column III is 6.

On adding the tens digit in column III to the number in Column II, we get 48 + 1 = 49Now the units digit in Column II is 9.

On adding the tens digit in Column II, to the number in the Column I, we get 36+4=40

 \therefore The square of 64 in 4096.

Note : If the number of digits in the number to be squared is more than two, the use of column method should be avoided, as the method then becomes very difficult of apply.

3.4 TO FIND THE SQUARE OF A NUMBER BY THE DIAGONAL METHOD

- (i) Initially, we draw a square. If the number of digits in the given number is 2, then we divide the square into 4 sub-squares and in case the number of digits in the given number is 3, we divide the square into 9 sub-squares and so on.
- (ii) Say, the given number is 76 (a two digit number). Construct the diagonals and write the digits of the given number as shown in the figure given below.

- (iii) Now multiply each digit on the left of the square with each digit on the top of the column one by one. Write the product in the corresponding sub-square.
- (iv) If the number obtained is a single digit number, then write it below the diagonal.
- (v) If the number obtained is a two digit number, then write the tens digit above the diagonal and the units digit below the diagonal.
- (vi) The numbers in empty places are taken as zero.
- (vii) Starting below the lowest diagonal add the digits along the diagonals so obtained. Underline the units digit of the sum and carry over the tens digit, if any, to the diagonal above.
- (viii) The underlined unit digits together with, all the digits in the sum obtained above the top most diagonal, give the square of the number.

To find the sugare of 479 by digonal method.

Solution

Thus, square of 479 is 229441.

Illustration 3

To find the square of 58.

Solution

In the figure, the number below that lowest diagonal is 4. Sum of the numbers in between D_1 and D_2 is 0+6+0=6. Sum of the numbers in between D_2 and D_3 is 4+5+4=13. The units digit of the sum obtained between D_2 and D_3 is 3.

Add the tens digit number of the number 13 to numbers above D_3 .

So the sum above D_3 is 2 + 1 = 3.

 \therefore Required square is the combination of all the unit digits in all diagonals = 3364.

3.5 FINDING SQUARES OF THE NUMBERS THAT FOLLOW A FIXED PATTERN Observe the following pattern.

 $11^{2} = 121$ $101^{2} = 1 0 2 0 1$ $1001^{2} = 1 0 0 2 0 1$

Illustration 4

Find the value of 10001². Solution From the above patter, we have $10001^2 = 100020001$ observe the following patter. $9^2 = 81$ $99^2 = 9801$

 $9999^2 = 998001$

Find the value of 9999².

Solution

From the above pattern $9999^2 = 99980001$

3.6 TO FIND THE SQUARE OF NUMBER BY USING $(a + b)^2$ OR $(a - b)^2$ 3.6.1 Visual Method

In the column method we have used the algebraic identity $(a + b)^2 = a^2 + 2ab + b^2$ to compute the square of a two digit number. The square of a positive integer can also be computed by closely following the visual representation of $(a + b)^2$. In order to represent $(a + b)^2$, we draw a square of side a + b and divide it into two rectangles of size $a \times (a + b)$ and $b \times (a + b)$ by drawing a vertical line as shown in Fig. We also draw a horizontal line divide the square into two rectangles of size $(a + b) \times b$ and $(a + b) \times a$ as shown in Fig (A). These two lines divide the square into four parts, namely, two squares of size $a \times a$ and $b \times b$ and two rectangles of size $a \times b$ and $b \times a$. The sum of the areas of these four parts is

 $\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{b} = \mathbf{a}^2 + 2\mathbf{a}\mathbf{b} + \mathbf{b}^2 = (\mathbf{a} + \mathbf{b})^2$

We use this visual representation of $(a + b)^2$ to find the square of a number. Suppose we wish to find the square of 105.

We have, 105 = 100 + 5

So, we draw a square of side 105 units and divide it into four parts as shown in Fig.(B).

The sum of the areas of these four parts is the square of 105.

 $\therefore \qquad 105^2 = 10000 + 500 + 500 + 25 = 11025$

Note : this method is limited to very few numbers.

Illustration 6

Find (102)².

Solution

 $(102)^2 = (100 + 2)^2 = (100)^2 + 2(100)(2) + (2)^2 = 10000 + 400 + 4 = 10404$

Find
$$\left(49\frac{1}{2}\right)^2$$
.

Solution

$$\left(49\frac{1}{2}\right)^2 = \left(50 - \frac{1}{2}\right)^2 = (50)^2 - 2(50)\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2 = 2500 - 50 + \frac{1}{4} = 2450\frac{1}{4}$$

Illustration 8

Find the square of the following numbers by Visual method: 97

(i) 54 (ii)

Solution

We have, 54 = 50 + 4(i)

> So, we draw a square of side 54 units and divide it into parts as shown in Fig. (A)

The sum of the areas of these four parts is the square of 54.

 $54^2 = 2500 + 200 + 200 + 16 = 2916$ *.*..

We have, 97 = 90 + 7(ii)

> So, we draw a square of side 97 units and divide it into parts as shown in Fig. (B).+

The sum of the areas of these four parts is the square of 97.

$$\therefore \qquad 972 = 8100 + 630 + 630 + 49 = 9409$$

3.6.2 Squaring a number by Yavadunam Method

This method is used for numbers which are near to a base (some power of 10 e.g 10, 100, 1000 etc.). This method is based on one of the vedic mathematics formula "Yavadunam Tavdunikritya Vargamcha Yojayet" which means -whatever the extent of deficiency of a number form base, lesson it to the same extent and set up the square of the deficiency.

Example: If we need to find square of 98 and 104 using 'Yavadunam method', first we observe that both the numbers are near 100, so base in this case is 100. Now 98 is less than 100 by 2, so the deficiency in this case is 2. 104 is more than 100 by 4 so excess in this case is 4.

Now the square can be calculated in two steps.

Example :	$(98)^2 = LHS / RHS$	
	Base = 100 (No of zeros = 2)	
	LHS = 98 - 2 = 96	
	$RHS = (2)^2 = 4 = 04$	[digits to be equal to no. of zeros of base]
	\therefore (98) ² = 9604	
Example :	$(104)^2 = (104 + 4) / (4)^2$	
	$(104)^2 = 10816$	
Example :	$(1002)^2 = (100^2 + 2) / (2)^2$	[Base = 1000]
	=1004/4=1004/004=100	4004
Example :	$(9999)^2 = (9999 - 1) / (1)^2$	[Base = 10000]
	= 9998/1 = 9998/0001	
	$(9999)^2 = 99980001$	

3.7 METHODS FOR FINDING SQUARE ROOTS3.7.1 Method of Successive Subtraction for Finding the Square Root

We subtract the numbers, 1, 3, 5, 7, 9, 11, successively till we get zero. The number of subtractions will give the square root of the number.

Illustration 9

Find the square root of 64 using the method of successive subtraction.

Solution

64 - 1 = 63; 63 - 3 = 60; 60 - 5 = 55; 55 - 7 = 48; 48 - 9 = 39;39 - 11 = 28; 28 - 13 = 15; 15 - 15 = 0

- \therefore The number of subtractions to yield zero is 8.
- $\therefore \sqrt{64} = 8$

3.7.2 Prime Factorization Method for Finding the Square Root

Take the number (n) whose square root is required.

- (i) Write all the prime factors of n.
- (ii) Pair the factors such that primes in each pair thus formed are equal.
- (iii) Choose one prime from each pair and multiply all such primes.
- (iv) The product of these primes is the square root of n.

Find square root of 7225.

Solution

$$\frac{5}{5} \frac{7225}{1445}$$

$$\frac{17}{17} \frac{289}{17}$$

$$\frac{17}{17} \frac{17}{1}$$

$$7225 = (5 \times 5)$$

$$\therefore \quad 7225 = (5 \times 5) \times (17 \times 17)$$
$$\therefore \quad \sqrt{7225} = 5 \times 17 = 85$$

Illustration 11

Find square root of 4096.

Solution

2	4096	
2	2048	
$\overline{2}$	1024	
2	512	
$\overline{2}$	256	
$\overline{2}$	128	
2	64	
$\overline{2}$	32	
2	16	
$\overline{2}$	8	
2	4	
	2	
	•	
40	96 = (2	$(2 \times 2) \times (2 \times 2)$

 $\therefore \qquad \sqrt{4096} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$

This method of calculation of square root is efficient only if the given number has small prime factors.

3.7.3 Division Method

....

The number of digits can be determined by placing bars on every pair of digits starting from units digit. If the number of digits are odd then the left most single digit will have a bar on it. The number of bars give the number of digits in the square root of the number. For example : square root of $\overline{20}\ \overline{25}$ will have 2 digits whereas $\sqrt{2}\ \overline{72}\ \overline{25}$ has 3 digits.

Steps of Division Method:

- (i) Place a bar over every pair of digits starting from the units digit.
- (ii) Find the largest number whose square is less than or equal to the number under the left most bar.
- (iii) Take this number as the divisor and number under left most bar as dividend. Divide them to get the remainder. You will see that in this step the divisor and quotient are same.
- (iv) While down the number under next bar at the right side of the remainder. This is our new dividend.
- (v) New divisor is obtained by adding the quotient in the divisor obtained in step (iii) and putting a suitable digit at the right of it. The digit is chosen in such a way that its product with new divisor is equal or just less than new dividend.

Repeat steps (iv) and (v) till all bars have been considered. The final quotient is the square root of the given number.

Illustration 12

Find square root of 106929.

Solution

Square root of $\overline{10}$ $\overline{69}$ $\overline{29}$ will have 3 digits. As 3 is the largest digit whose square is less than 10 (number under left most bar). Here 10 is our dividend and 3 is our divisor and quotient.

$$\therefore \qquad \sqrt{106929} = 327$$

Illustration 13

Find square root of 11664.

Solution

 $\therefore \qquad \sqrt{11664} = 108$

Square Root of Rational Numbers whose Numerators and Denominators are Perfect Squares. We will use the following rules to calculate square root.

(i)
$$\sqrt{\frac{p}{q}} = \frac{\sqrt{p}}{\sqrt{q}}$$
, where $q \neq 0$

(ii) If p and q are positive numbers, then $\sqrt{pq} = \sqrt{p} \times \sqrt{q}$

Illustration 14

Find square root of
$$\frac{144}{625}$$

Solution

$$\sqrt{\frac{144}{625}} = \frac{\sqrt{144}}{\sqrt{625}}$$

$$\sqrt{144} = \sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3} = \sqrt{2^2 \times 2^2 \times 3^2} = 2 \times 2 \times 3 = 12$$

$$\sqrt{625} = \sqrt{5 \times 5 \times 5 \times 5} = 5 \times 5 = 25$$

$$\therefore \qquad \sqrt{\frac{144}{625}} = \frac{12}{25}$$

Square Root of Perfect Square Decimal Number by Division Method :

As we have seen that the square root of these kinds of numbers can be found by first converting them into rational number. However by using division method we can find the square root directly. Follow the steps explained below:

- (1) Place the bar on integral part (from left side of decimal) of the number in usual manner.
- (2) Place bar on decimal part (from right side of decimal) on every pair of digits.
- (3) Apply division method and find square root.
- (4) Place the decimal point ill the quotient as soon as the integral part is exhausted.

Illustration 15

Find square root of 52.8529

Solution

7.27
7
$$52.8529$$

49
142 385
284
1447 10129
10129
0
 $\therefore \sqrt{52.8529} = 7.27$

Illustration 16 Find square root of 0.000169 Solution 7 0.0137 0.0137 0.0137 123 0.6969 0

 $\therefore \sqrt{0.000169} = 0.013$

Square Root of Numbers which are not Perfect Squares.

Division method can also be applied for finding square root of numbers which are not perfect square numbers. Method is explained with the following illustrative examples.

Illustration 17

r ina s	square root o	i s upto s decimai places.
Solution		
1 2 <u>7</u> 34 <u>3</u> 346 <u>2</u>	$ \begin{array}{r} 1.732 \\ \overline{3.000000} \\ 1 \\ 200 \\ 189 \\ 1100 \\ 1029 \\ 7100 \\ 6924 \\ 176 \end{array} $	Here we have added 3 pairs of zeros after decimal. One pair each for 1 digit after decimal point.

$$\sqrt{3} = 1.732$$
 upto three decimal places.

Illustration 18

.

Find square root of $5\frac{2}{15}$ upto 3 decimal places.

Solution

$$5\frac{2}{15} = 5.133333$$
 (approx.)

		2.265	
	2	$\overline{2}$. $\overline{13}$ $\overline{33}$ $\overline{33}$	
		4	
	4 <u>2</u>	1 13	
		84	
	44 <u>6</u>	29 23	
		26 76	
	4525	02 57 33	
		2 26 25	
		0 31 08	
	₅ 2		
••	$\sqrt[3]{15}$	$-\sqrt{5.13333}$	33 - 2.205 (approx.) up to three decimal places.

3.7.4 Relation between the digits of a perfect square and its square root

In order to find the number of digits in the square root of a natural number, we follow the following steps:

- **Step I** Obtain the number.
- Step IIPlace a bar over every pair of digits starting with the units digit.
Each pair and remaining one digit (it any) on the extreme left is called a period.
For example
 - (i) 2809 will be written as $\overline{28} \,\overline{09}$. In this 28 is called the first period and 09 is called the second period.
 - (ii) 39204 will be written as $\overline{3} \,\overline{92} \,\overline{02}$. Here, 3 is the first period, 92 is the second period and 04 is the third period.
- Step IIICount the number of bars. The number of bars is the number of digits in the square root
of the given number.
For example, the square root of 2809 has two digits and the square root of 39204 has
three digits.

x	\sqrt{x}	x	\sqrt{x}	x	\sqrt{x}	x	\sqrt{x}
1	1.000	26	5.999	51	7.141	76	8.718
2	1.414	27	5.196	52	7.211	77	8.775
3	1.732	28	5.292	53	7.208	78	8.832
4	2.000	29	5.385	54	7.348	79	8.888
5	2.236	30	5.447	55	7.416	80	8.944
6	2.449	31	5.568	56	7.483	81	9.000
7	2.646	32	5.657	57	7.550	82	9.055
8	2.828	33	5.745	58	7.616	83	9.110
9	3.000	34	5.831	59	5.681	84	9.165
10	3.162	35	5.916	60	7.746	85	9.220
11	3.317	36	6.000	61	7.810	86	9.274
12	3.464	37	6.083	62	7.874	87	9.327
13	3.606	38	6.164	63	7.937	88	9.381
14	3.742	39	6.245	64	8.000	89	9.434
15	3.873	40	6.325	65	8.062	90	9.487
16	4.000	41	6.403	66	8.124	91	9.539
17	4.123	42	6.481	67	8.185	92	9.592
18	4.243	43	6.557	68	8.246	93	9.644
19	4.359	44	6.633	69	8.307	94	9.695
20	4.472	45	6.708	70	8.367	95	9.747
21	4.583	46	6.782	71	8.426	96	9.798
22	4.690	47	6.856	72	8.485	97	9.849
23	4.796	48	6.928	73	8.544	98	9.899
24	4.899	49	7.000	74	8.602	99	9.950
25	5.000	50	7.071	75	8.660		

Table : Square Root

3.8 METHOD OF FINDING PYTHAGOREAN TRIPLETS

We know that $5^2 + 12^2 = 25 + 144 = 169 = 13^2$

Such a collection of numbers like 5, 12 and 13 is known as Pythagorean triplet Consider the numbers 9, 40 and 41.

 $9^2 + 40^2 = 81 + 1600 = 1681 = 41^2$

:. 9, 40 and 41 is also called as Pythagorean triplet. We can form Pythagorean triplets using the following method:

Let k > 1 be a natural number then we have

 $(k^{2} + 1)^{2} - (k^{2} - 1)^{2} = 4k^{2} = (2k)^{2}$

- or $(k^2 + 1)^2 = (k^2 1)^2 + (2k)^2$
- \therefore The set of numbers of the form $k^2 1$, 2k and $k^2 + 1$ forms a Pythagorean triplet.
- : Let us find some Pythagorean triplets using the above form.

Note : All Pythagorean triplets may not be found using the above form.

POINTS TO REMEMBER

- ▶ No square number ends in 2, 3, 7 or 8 i.e. unit place digit in a square number can never be 2, 3, 7 or 8.
- ► A square number end with either 0, 1, 4, 5, 6 or 9. But it does not mean that all numbers that end with 0, 1, 4, 5, 6 or 9 are perfect square number.
- ▶ If a number is even then its square is also even. If a number is odd then its square is also odd.
- ► No. of zeroes at the end of a perfect square number is always even. In other words we can say that numbers ending with odd number of zeroes are never perfect squares.
- ► A perfect square leaves a remainder 0 or 1 when divided by 3 but all numbers which leave remainder 0 or 1 when divided by 3 need not be a perfect square.
- If p is a square number (perfect square) then 2 p will never be a square number. 4 is a square number, $2 \times 4 = 8$ is not a square number.
- For every natural number 'n' the sum of first 'n' odd natural numbers = n^2 e.g. $1 + 3 + 5 + 7 + 9 = 25 = 5^2$.
- The set of three number (x, y, z) is called a Pythagorean triplet, if $x^2 + y^2 = z^2$.
- For any natural number m greater than 1, $(2m, m^2 1, m^2 + 1)$ is a Pythagorean triplet.
- There are 2n non-perfect square numbers between the squares of the numbers n and (n + 1).
- If a perfect square is of n-digits, then its square root will have $\frac{n}{2}$ digits, if n is even or $\left(\frac{n+1}{2}\right)$ digits, if

n is odd.

Eg.

• The square of any number 'n' can be expressed as the sum of the first 'n' odd natural numbers.

 $1^{2} = 1 = 1$ $2^{2} = 4 = 1 + 3$ $3^{2} = 9 = 1 + 3 + 5$ $4^{2} = 16 = 1 + 3 + 5 + 7$

► If x any y are two positive numbers, then

•
$$\sqrt{\mathbf{x}} \times \sqrt{\mathbf{y}} = \sqrt{\mathbf{x}\mathbf{y}}$$

•
$$\sqrt{\frac{x}{y}} - \frac{\sqrt{x}}{\sqrt{y}}$$
 (where $y \neq 0$)

•
$$\sqrt{x+y} \neq \sqrt{x} + \sqrt{y}$$

•
$$\sqrt{\mathbf{x} - \mathbf{y}} \neq \sqrt{\mathbf{x}} - \sqrt{\mathbf{y}}$$

Using therse results, we can find the square root of rational numbers.

- ► Diff. between the square of two consecutive numbers is equal to the sum of the numbers or twice the smaller no +1.
- ► If (n+1) and (n-1) are two consecutive even or odd natural numbers, then $(n+1)(n-1) = n^2 1$. E.g. $10 \times 12 = (11-1) \times (11+1) = 11^2 - 1$.

SOLVED EXAMPLES

Example 1:

Is 162 a perfect square?

Solution :

The prime factors of 162 are :	2	162
$162 = 2 \times 3 \times 3 \times 3 \times 3$	3	81
	3	27
If we group the prime factors of 162 into groups of pairs of equal numbers,	3	9
we find that 2 is left unpaired.		3
\therefore 162 is not a perfect square.	I	-

Example 2 :

Find the smallest number by which we multiply 242 to make it a perfect square. Solution :

We can write 242 as : $242 = 2 \times 11 \times 11$	2	242
From above we find that the prime factors of 242 do not appear in pairs of	11	121
equal numbers.		11
To make it a perfect square, we must multiply it by 2		

To make it a perfect square, we must multiply it by 2. ...

Example 3 :

Without actualy finding the squares of the numbers, find the value of :

(a)	$(21)^2 - (20)^2$	(b)	$(132)^2 - (131)^2$
------------	-------------------	------------	---------------------

Solution :

 $(21)^2 - (20)^2 = 21 + 20 = 41$ (a)

(b) $(132)^2 - (131)^2 = 132 + 131 = 263$

Example 4 :

Write the following numbers as the difference of the squares of two consecutive natural numbers. 79 **(a)**

Solution :

(b) 131

$79 = 2 \times 39 + 1$	

(a)		$79 = 2 \times 39 + 1$
	<i>.</i> .	$79 = (40)^2 - (39)^2$
(b)		$131 = 2 \times 65 + 1$
		$131 = (66)^2 - (65)^2$

Example 5:

Write down the following as sum of odd numbers :

6² **7**² **(a) (b)**

Solution :

 $6^2 = \text{sum of first six odd numbers}$ (a)

= 1 + 3 + 5 + 7 + 9 + 11

 $7^2 =$ sum of first seven odd numbers (b) = 1 + 3 + 5 + 7 + 9 + 11 + 13

Example 6:

Show that the following numbers are not perfect squares.

(a) 7927 (b) 1058 (c) 33453 (d) 22222 (e) 360

Solution :

- The number 7927 ends in 7, so it is not a perfect square. (a)
- The number 1058 ends in 8, so it is not a perfect square. (b)
- The number 33453 ends in 3, so it is not a perfect square. (c)
- The number 22222 ends in 2, so it is not a perfect square. (d)
- The number 360 has odd number of zeros at the end, so it is not a perfect square. (e)

Example 7:

Find the least square number (perfect square) which is exactly divisible by each one of the numbers 4, 8, 12.

Solution :

The least number divisible by each one of the given numbers 4, 8, 12 is their L.C.M. I C M of 4 8 $12 = 2 \times 2 \times 2 \times 3 = 24$

L.C.IVI. 01 4, 8, $12 - 2 \land 2 \land 2 \land 3 - 24$	$2 \mid 4 \mid 0 \mid 12$
But $24 = 2 \times 2 \times 2 \times 3$	$\frac{2}{2}$ $\frac{4-8-12}{2-4-6}$
To make it a perfect square, it must be multipled by 2×3 , i.e. 6	$\frac{-1}{1-2-3}$
\therefore Required number = $24 \times 6 = 144$	

Example 8:

What least number should be subtracted from 5634 so that the resulting number becomes a perfect square? 75

Solution :

11.	7	56.24
The remainder 9 shows that if we subtract 9 from 5634	/	36, 34
The square root will be 75 and the resulting number will be a perfect square		49
• 9 is to be subtracted	145	734
		725

Example 9:

Find the least number which must be added to 543291 to make it a perfect square. Solution : 727

The remainder shows that the given number is greater	_	131
than $(737)^2$ but will be less than $(738)^2$. If to the given	7	54, 32, 91
number we add $1468 \times 8 = 10391$ i.e. 1353 then the		49
sum will be a perfect square	143	532
1353 is to be added		429
1555 IS to be added.	1467	10391
Example 10 :		10269
Without adding find the sum		122

Without adding, find the sum,

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19**(a)**

(b) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23

Solution :

We know that sum of first n odd natural numbers is n^2 .

$$\therefore$$
 1+3+5+7+9+11+13+15+17+19=(10)²=100.

(b) Given sum is the sum of the first 12 odd natural numbers

> $1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = (12)^2 = 144.$ ·.

9

Example 11:

Write pythagorean triplet whose one number is

(a) 8 (b)

Solution :

A triplet of three natural numbers p, q, r is called pythagorean triplet if $p^2 + q^2 = r^2$ and is written as (p, q, r).

For any natural number 'k' > 1, $(2k, k^2 - 1, k^2 + 1)$ is a pythagorean triplet.

12

(a) Now if 2k = 8then k = 4 $k^2 - 1 = 16 - 1 = 15$ $k^2 + 1 = 16 + 1 = 17$ \therefore Pythagorean triplet is (8, 15, 17). (b) $2k = 12 \implies k = 6$ $k^2 - 1 = 36 - 1 = 35$ $k^2 + 1 = 36 + 1 = 37$ \therefore Pythagorean triplet is (6, 35, 37).

Example 12 :

Find the smallest number by which 252 must be multiplied so that the product becomes a perfect square. Also find the square root of the perfect square so obtained.

Solution :

Writing 252 as its prime factors we get $252 = 2 \times 2 \times 3 \times 3 \times 7$.

We find that prime factors 2 and 3 occur in pairs but prime factor 7 occurs alone.

Therefore 252 must be multiplied with 7 to get a perfect square number

 $\therefore \qquad \text{New number} = 252 \times 7 = 1764$ Now $1764 = (2 \times 2) \times (3 \times 3) \times (7 \times 7)$

 $\therefore \qquad \sqrt{1764} = 2 \times 3 \times 7 = 42.$

Example 13 :

Find the smallest number by which 15552 must be divided so that it becomes a perfect square. Also find the square root of new perfect square number.

Solution :

By writing 15552 into its prime factors we get

 $= (2 \times 2) \times (2 \times 2) \times (2 \times 2) \times (3 \times 3) \times (3 \times 3) \times 3.$

Here we find that prime factors 2 occur in pair but one of the prime factor 3 occurs alone.

:. If we divide 15552 by 3, we get a perfect square.

:. New Number = $\frac{15552}{3} = 5184$

Now $5184 = (2 \times 2) \times (2 \times 2) \times (2 \times 2) \times (3 \times 3) \times (3 \times 3)$

$$\therefore \quad \sqrt{5184} = 2 \times 2 \times 2 \times 3 \times 3 = 8 \times 9 = 72$$

Example 14:

The product of two numbers is 1575 and their quotient is $\frac{9}{7}$ Find the numbers.

Solution :

Let one of the two numbers be K. As the product is 1575, the other number will be $\frac{1575}{K}$.

Quotient of numbers
$$=$$
 $\frac{9}{7}$
 $\therefore \qquad \frac{K}{\frac{1575}{K}} = \frac{9}{7} \implies \qquad \frac{K^2}{1575} = \frac{9}{7}$
 $\therefore \qquad K^2 = \frac{9 \times 1575}{7} = 9 \times 225$
 $K^2 = 3 \times 3 \times 15 \times 15 = (3 \times 3) \times (3 \times 3) \times 5 \times 5$
 $\therefore \qquad K = 3 \times 3 \times 5 = 45$
 $\therefore \qquad \text{other number is } \frac{1575}{45} = 35$

 \therefore The required numbers are 45 and 35.

Example 15:

Find the greatest number of five digits which is a perfect square.

Solution :

Greatest five digit number is 99999. As 99999 is not a perfect square, we must first find the smallest number to be subtracted from 99999 to make it a perfect square. So we apply method of long division on 99999.

$$\begin{array}{r}
316\\
3\overline{999999}\\
9\\
61\\
099\\
61\\
626\\
3899\\
3756\\
143
\end{array}$$

:. We must subtract 143 from 99999 to get largest five digit number which is a perfect square.

:. required number = 99999 - 143 = 99856.

Example 16:

	The so	quare of v	which of the f	ollowing n	umbers wou	ld be an od	d number/a	n even number? Why?
	(i)	727	(ii)	158	(iii)	269	(iv)	1980
Solutio	n:							
	(i)	727						
Since 727 is an odd number. ∴ It square is also an odd number.								

 158 Since 158 is an even number. ∴ Its square is also an even number.
 269 Since 269 is an odd number ∴ Its square is also an odd number.
 1980 Since 1980 is an even number. ∴ Its square is also an even number.
:
many natural numbers lie between 9 ² and 10 ² ? Between 11 ² and 12 ² ?
Between 9^2 and 10^2 Here, $n = 9$ and $n + 1 = 10$ \therefore Natural number between 9^2 and 10^2 are $(2 \times n)$ or 2×9 , i.e. 18.
Between 11^2 and 12^2 Here, $n = 11$ and $n + 1 = 12$ \therefore Natural numbers between 11^2 and 12^2 are $(2 \times n)$ or (2×11) , i.e. 22.
:
many non-square numbers lie between the following pairs of numbers:
100° and 101° (ii) 90° and 91° (iii) 1000° and 1001°
Between 100^2 and 101^2 Here, $n = 100$ \therefore $n \times 2 = 100 \times 2 = 200$ \therefore 200 non square numbers lie between 100^2 and 101^2 .
Between 90 ² and 91 ² Here, $n = 90$ $\therefore 2 \times n = 2 \times 90$ or 180 $\therefore 180$ non-square numbers lie between 90 and 91.
Between 1000^2 and 1001^2 Here, n = 1000 \therefore 2 × n = 2 × 1000 or 2000 \therefore 2000 non-square numbers lie between 1000 ² and 1001 ² .
: g the given pattern, find the missing numbers. $1^2 + 2^2 + 2^2 = 3^2$ $2^2 + 3^2 + 6^2 = 7^2$ $3^2 + 4^2 + 12^2 = 13^2$ $4^2 + 5^2 + 2^2 = 21^2$

Note : To find pattern: Third number is related to first and second number. How? Fourth number is related to third number. How?

Solution :

The missing numbers are

(i) $4^2 + 5^2 + 20^2 = 21^2$ (ii) $5^2 + 6^2 + 30^2 = 31^2$ (iii) $6^2 + 7^2 + 42^2 = 43^2$

Example 20:

Find the length of the side of a square whose area is 676 m². Solution :

	26		
2	676		
	- 4		$\sqrt{276} - 26$
46	276	••	$\sqrt{6}/6 = 20$
	-276		
	0		

Now, let the side of the square = x m

$$\therefore \quad \text{Area} = x^2$$

$$\Rightarrow \quad x^2 = 676$$

$$\Rightarrow \quad \sqrt{x^2} = \sqrt{26^2}$$

$$\Rightarrow \quad x = 26$$

$$\therefore \quad \text{The required side of the square} = 26 \text{ m}$$

Example 21:

In a right triangle ABC, $\angle B = 90^\circ$. If AB = 12 cm, BC = 5 cm, then find AC. Solution :

We know that, in a right triangle, the side opposite to 90° is hypotenuse.

 \therefore AC is the hypotenuse in \triangle ABC.

According to Phythagoras theorem,

 $(Hypotenuse)^2 = [Sum of the square of the other two sides]$

$$\therefore \qquad AC^{2} = AB^{2} + BC^{2}$$

$$\Rightarrow \qquad AC^{2} = (12)^{2} + (5)^{2}$$

$$\Rightarrow \qquad AC^{2} = 144 + 25$$

$$\Rightarrow \qquad AC^{2} = 169 = (13)^{2}$$

$$\Rightarrow \qquad \sqrt{AC^{2}} = \sqrt{13^{2}} \Rightarrow AC = 13 \text{ cm}$$

Example 22 :

Which of the following triplets are Pythagorean?(i)(1, 2, 3)(ii)(3, 4, 5)(iii)(6, 8, 10)(iv)(1, 1, 1)(v)(2, 2, 3)

Solution :

We know that the three natural numbers m, n and P are called Pythagorean triplets if $m^2 + n^2 = p^2$.

- (i) $1^2 + 2^2 = 3^2 \implies 1 + 4 = 9 \implies 5 = 9$ But $5 \neq 9$
 - \therefore (1, 2, 3) are not Pythagorean triplets.

CH-3: SQUARE AND SQUARE ROOTS

(ii)	$3^2 + 4^2 = 5^2$ \therefore (3, 4, 5)	$\Rightarrow 5) are Py$	9 + 16 = 25 thagorean tri	; plets.	⇒	25 = 2	5	
(iii)	$6^2 + 8^2 = 10^2$ \therefore (6, 8,	⇒ 10) are F	36 + 64 = 1 Pythagorean the	00 riplets.	\Rightarrow	100 =	100	
(iv)	$1^{2} + 1^{2} = 1^{2}$ But $2 \neq 1$ \therefore (1, 1,	⇒ 1) are no	1 + 1 = 1 of Pythagorean	n triplets.	⇒	2 = 1		
(v)	$2^{2} + 2^{2} = 3^{2}$ But 8 ≠ 9 \therefore (2, 2, 2)	\Rightarrow 3) are no	4 + 4 = 9 of Pythagorean	n triplets.	⇒	8 = 9		
Example 23 : Find	: the square root	tof						
(i) (v)	625 1296 0.00053361	(ii)	$4\frac{29}{49}$	(iii)	$23\frac{26}{12}$	<u> </u>	(iv)	5.774409
Solution :								
(i)	$\sqrt{\frac{625}{1296}} = \frac{\sqrt{3}}{\sqrt{2}}$ Now, $\sqrt{625}$ $\sqrt{1296}$	$\overline{\begin{array}{c} 625\\ 1296 \end{array}}$ $=\sqrt{5\times}$ $=5\times$ $\overline{5}=\sqrt{2\times}$ $=2\times$ $\sqrt{5}=\sqrt{2}$	$\frac{\overline{25} \times 5 \times 5}{5 = 25}$ $\frac{\times 2 \times 2 \times 2 \times 3}{2 \times 3 \times 3 = 3}$ $\overline{625}$	$\frac{\times 3 \times 3 \times 3}{6}$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\therefore \sqrt{\frac{624}{129}}$	$\frac{6}{6} = \frac{1}{\sqrt{1}}$	$\frac{1}{296} = \frac{25}{36}$					
(ii)	$\sqrt{4\frac{29}{49}} = \sqrt{\frac{2}{4}}$ Now, $\sqrt{225}$ $\sqrt{49}$	$\frac{\overline{25}}{\overline{19}} = \frac{\sqrt{3}}{\sqrt{3}}$ $= \sqrt{3} \times$ $= 3 \times$ $\overline{9} = \sqrt{7} \times$	$\sqrt{\frac{225}{\sqrt{49}}}$ $\overline{\sqrt{3} \times 5 \times 5}$ $\overline{5} = 15$ $\overline{\times 7} = 7$				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{7 49}{7 7} \\ 1 $
	$\therefore \qquad \sqrt{\frac{225}{49}}$	$\overline{5} = \frac{\sqrt{22}}{\sqrt{4}}$	$\frac{\overline{25}}{\overline{9}} = \frac{15}{7} = 2$	$\frac{1}{7}$				

(iii)	$\sqrt{23\frac{16}{121}} = \sqrt{\frac{2809}{121}} = \frac{\sqrt{2809}}{\sqrt{121}}$	53 2809	11 121
	Now, $\sqrt{2809} = \sqrt{53 \times 53} = 53$	$ \frac{53}{1} $	$\frac{11}{1}$
	$\sqrt{121} = \sqrt{\underline{11} \times \underline{11}} = 11$,	'
	$\therefore \qquad \sqrt{\frac{2809}{121}} = \frac{\sqrt{2809}}{\sqrt{121}} = \frac{53}{11} = 4\frac{9}{11}$		
		3	5774409
(iv)	$\sqrt{5.774409} = \sqrt{0.000001 \times 5774409}$	3	1924803
		3	641601
	$= \sqrt{(0.1)^6 \times \underline{3 \times 3} \times \underline{3 \times 3} \times \underline{3 \times 3} \times \underline{89 \times 89}}$	3	213867
	$=(0.1)^3 \times 3 \times 3 \times 3 \times 89$	3	71289
	$= 0.001 \times 2403$	3	23763
	= 2.403	<u>89</u>	7921
		89	89
			1
(v)	$\sqrt{0.00053361} = \sqrt{.00000001 \times 53361}$	2	52261
		$\frac{3}{3}$	17787
	$= \sqrt{(0.1)^{\circ} \times \underline{3 \times 3} \times \underline{7 \times 7} \times \underline{11 \times 11}}$	$\frac{3}{7}$	5929
	$= (0.1)^4 \times 3 \times 7 \times 11$	$\frac{7}{7}$	847
	$= 0.0001 \times 231$	$\frac{7}{11}$	121
	= 0.0231	$\frac{11}{11}$	11
			1

Example 24 :

The area of a square field is $101\frac{1}{400}$ square metres. Find the length of one side of the field.

Solution :

Given, Area of the square field = $101\frac{1}{400}$ Sq. metres = $\frac{40401}{400}$ m ²		
40401	3	40401
Side of the square field = $\sqrt{\frac{40401}{100}} = \frac{\sqrt{40401}}{\sqrt{100}}$ m	3	13467
$1 \qquad \qquad$	67	4489
$\overline{2 \times 2 \times 67 \times 67}$	67	67
$=\frac{\sqrt{3\times3}\times\frac{6}{\times67}}{\sqrt{2}\times2}$ m		1
$\sqrt{2 \times 2} \times 2 \times 2 \times 5 \times 5$	2	400
3 × 67	$\frac{2}{2}$	200
$=\frac{3\times67}{2}$ m	<u></u>	200
$2 \times 2 \times 5$	2	100
201 1	2	50
$=\frac{201}{20}$ m $=10\frac{1}{20}$ m	5	25
20 20	5	5
		1

Example 25 :

Find the least number which must be substracted from 2361 to make it a perfect square. Solution :

From the process of finding the square root by the division method, we		48
find that if 57 be subtracted from the given number, the square root of	4	$\overline{23}\overline{61}$
the remainder will be 48.		16
It follows that the given number will be a perfect square. Hence, the	88	761
required number is 57.		704
1	Ť	57

Example 26 :

Find the least number of four digits which is a perfect square. Solution :

The least number of four digits = 1000

	31		32
3	$\overline{10}\overline{00}$	3	$\overline{10}\overline{00}$
	9		9
61	100	62	100
	61		124
	39	·	

From the above, it is clear that the given number is greater than $(31)^2$, but less than $(32)^2$. If in the given number, we add (124 - 100 = 24), then the sum will be a perfect square.

Hence, the required least number of four digits is 1000 + 24 i.e., 1024, which is a perfect square.

Example 27:

Use diagonal method to find the square of (i) 25 (ii) 486 Solution :

CONCEPT APPLICATION LEVEL - I [NCERT Questions] EXERCISE - 1

Q.1	What	will be the uni	t digit o	f the squares	of the fol	lowing numbe	rs?					
Ans.	(i) (v) (ix) (i)	81 1234 12796 81	(ii) (vi) (x)	272 26387 55555	(iii) (vii)	799 52698	(iv) (viii)	3853 99880				
	(ii)	The unit digit of the square of the number 81 will be 1. $[\because 1 \times 1 = 1]$ 272										
		The unit digit	of the sc	juare of the nur	nber 272	will be 4.		$[\because 2 \times 2 = 4]$				
	(iii)	799 The unit digit	of the sc	juare of the nur	nber 799	will be 1.		$[\because 9 \times 9 = 81]$				
	(iv)	3853 The unit digit	of the sc	juare of the nur	nber 385.	3 will be 9.		$[:: 3 \times 3 = 9]$				
	(v)	1234 The unit digit	of the sc	uare of the nur	nber 1234	4 will be 6.		$[\because 4 \times 4 = 16]$				
	(vi)	26387 The unit digit	of the sc	juare of the nur	nber 263	87 will be 9.		$[\because 7 \times 7 = 49]$				
	(vii)	52698 The unit digit	of the sc	juare of the nur	nber 526	98 will be 4.		$[\because 8 \times 8 = 64]$				
	(viii)	99880 The unit digit	of the sc	juare of the nur	nber 998	80 will be 0.		$[\because 0 \times 0 = 0]$				
	(ix)	12796 The unit digit	of the sc	juare of the nur	nber 127	96 will be 6.		$[:: 6 \times 6 = 36]$				
	(x)	55555 The unit digit	of the sc	juare of the nur	nber 555:	55 will be 5.		$[\because 5 \times 5 = 25]$				
Q.2	The fo (i)	ollowing numb 1057 64000	ers are (ii)	obviously not 23453 80722	t perfect (iii)	squares. Give 7928 222000	reason. (iv)	222222				
Ans.	(v) (i)	1057 The number 1 end with 0, 1,	(vi) 057 is n 4, 5, 6	of a perfect square or 9.	uare beca	use it ends with	(VIII) n 7 where	eas the square numbers				
	(ii)	23453 The number 2 0, 1, 4, 5, 6 or	3453 is r 9.	not a perfect sq	uare it en	ids with 3 where	eas the sq	uare numbers end with				
	(iii)	7928 The number 7 end with 0, 1,	928 is n 4, 5, 6	ot a perfect squ or 9.	uare beca	use it ends with	18 where	eas the square numbers				

(iv) 222222

The number 222222 is not a perfect square because it ends with 2 whereas the square numbers end with 0, 1, 4, 5, 6 or 9.

(v) 64000

The number 64000 is not a square because the number of zeros at the end of a square number ending with zeroes is always even.

(vi) 89722

The number 89722 is not a square number because it ends in 2 whereas the square numbers end with 0, 1, 4, 5, 6 or 9.

(vii) 222000

The number 222000 is not a square number because it has 3 (an odd number of) zeroes at the end whereas the number of zeroes at the end of a square number of zeroes at the end of square number ending with zeros is always even.

(viii) 505050

The number 505050 is not a square number because it has 1 (an odd number of) zeroes at the end whereas the number of zeroes at the end of a square number of zeroes at the end of square number ending with zeros is always even.

Q.3 The square of which of the following would be odd numbers?

	(i)	431	(ii)	2826	(iii)	7779	(iv)	82004						
Ans.	(1)	431 	431 is an odd	number										
		• .:.	Its square will	l also be an c	odd number.									
	(ii)	2826												
		\cdot	2826 is an eve	2826 is an even number.										
		<i>.</i> .	Its square will	l not be an o	dd number.									
	(iii)	7779												
		:	7779 is an od	d number.										
		<i>.</i> .	Its square will	l be an odd n	umber.									
	(iv)	82004												
		:	82004 is an ev	ven number.										
		<i>.</i>	Its square will	l not be an o	dd number.									
Q.4	Observe the following pattern and find the missing digits:													
			$11^2 = 121$											
	$101^2 = 10201$													
	$1001^2 = 1002001$ $100001^2 = 1$ 2 1													
	$100001 - 1 \dots 2 \dots 1$ $1000001^2 =$													
		1000		••••••										

Ans.

 $100001^2 = 1000 \ 2 \ 0000 \ 1$ $10000001^2 = 1000000 \ 2 \ 0000001$

Q.5 Ans.	Obser 1010 10101	The following pattern and supply the missing numbers: $11^2 = 121$ $101^2 = 10201$ $10101^2 = 102030201$ $1010101^2 =$ $^2 = 10203040504030201$ $0101^2 = 10203040504030201$
Q.6	Using	the given pattern, find the missing numbers: $1^2 + 2^2 + 2^2 = 3^2$ $2^2 + 3^2 + 6^2 = 7^2$ $3^2 + 4^2 + 12^2 = 13^2$ $4^2 + 5^2 + _^2 = 21^2$ $5^2 + _^2 + 30^2 = 31^2$ $6^2 + 7^2 + _^2 = _^2$
Ans.	$4^{2} + 5$ $5^{2} + 6$ $6^{2} + 7$	$2^{2} + 20^{2} = 2\overline{1^{2}}$ $2^{2} + 30^{2} = 31^{2}$ $2^{2} + 42^{2} = 43^{2}$
Q.7	Withd (i) (ii) (iii)	out adding, find the sum 1 + 3 + 5 + 7 + 9 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23
Ans.	(i) (ii) (iii)	$1+3+5+7+9 = \text{sum of first five odd natural numbers} = 5^2 = 25$ $1+3+5+7+9+11+13+15+17+19 = \text{sum of first ten odd natural numbers} = 10^2 = 100$ $1+3+5+7+9+11+13+15+17+19+21+23 = \text{sum of first twelve odd natural numbers} = 12^2 = 144$
Q.8 Ans.	(i) (ii) (i) (ii)	Express 49 as the sum of 7 odd numbers. Express 121 as the sum of 11 odd numbers. $49 (= 7^2) = 1 + 3 + 5 + 7 + 9 + 11 + 13.$ $121 (= 11^2) = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21.$
Q.9	How ı (i)	many numbers lie between squares of the following numbers? 12 and 13 (ii) 25 and 26 (iii) 99 and 100
Ans.	(i)	12 and 13 Here, $n = 12$ $\therefore 2n = 2 \times 12 = 24$ So, 24 numbers lie between squares of the numbers 12 and 13.
	(ii)	25 and 26 Here, $n = 25$ $\therefore 2n = 2 \times 25 = 50$ So, 50 numbers lie between squares of the numbers 25 and 26.
	(iii)	99 and 100 Here, $n = 99$ $\therefore 2n = 2 \times 99 = 198$ So, 198 numbers lie between squares of the numbers 99 and 100.

 \equiv

	<u>EXERCISE - 2</u>										
Q.1 Ans.	Find t (i) (v) (i)	he square of 32 71 32 Therefore,	the follow (ii) (vi) 32 = 3 $32^2 = 6$	ring numbers : 35 46 30 + 2 $(30 + 2)^2 = 30$	(iii) (30 + 2)	86 + 2 (30 + 2) =	(iv) = 900 + 6	93 60 + 60 + 4 = 1024			
	(ii)	35 Therefore,	35 = 3 $35^2 = 6$	$(30+5)^2 = 30$	(30 + 5)	+ 5 (30 + 5) =	= 900 + (150 + 150 + 25 = 1225			
	(iii)	86 Therefore,	$86 = 86^{2} = 60^{2}$	$(80+6)^2 = 80$	(80 + 6)	+6(80+6) =	6400 +	480 + 480 + 36 = 7396			
	(iv)	93 Therefore,	$93 = 93^2 = 6$	90+3 $(90+3)^2 = 90$	(90 + 3)	+ 3 (90 + 3) =	= 8100 +	270 + 270 + 9 = 8649			
	(v)	71 Therefore,	71 = 7 $71^2 = 6$	$(70 + 1)^2 = 70$	(70 + 1)	+ 1 (70 + 1) =	= 4900 +	70 + 70 + 1 = 5041			
	(vi)	46 Therefore,	$46 = 46^2 = 6$	40 + 6 $(40 + 6)^2 = 40$	(40 + 6)	+6(40+6) =	1600 +	240 + 240 + 36 = 2116			
Q.2	Write (i)	a Pythagore 6	an triplet (ii)	whose one nu 14	mber is (iii)	16	(iv)	18			
Ans.	(i)	6 Here	e, 2m = 6	$\tilde{b} \Rightarrow$	$m = \frac{6}{2}$	= 3					
		m^2 - and m^2 + So, a Pythag	$-1 = 3^2 - 1 = 3^2 + 3$	1 = 9 - 1 = 8 1 = 9 + 1 = 10 let, whose one	number	is 6, is 9, 8, 10.					
	(ii)	14 Here	2m = 1	$4 \Rightarrow$	$m = \frac{1}{2}$	$\frac{4}{2} = 7$					
		$\begin{array}{ccc} \therefore & m^2 - \\ and & m^2 + \\ So, a Pythage$	$-1 = 7^2 - 1 = 7^2 + 7^2 + 7^2$	1 = 49 - 1 = 4 1 = 49 + 1 = 5 let, whose one	8 0 number	is 14, is 14, 48,	, 50.				
	(iii)	16 Here	2m = 1	$6 \Rightarrow$	$m = \frac{1}{2}$	$\frac{6}{2} = 8$					
		$\begin{array}{ccc} \therefore & m^2 - \\ and & m^2 + \\ So, a Pythage$	$-1 = 8^2 - 1 = 8^2 + 1 = 8^2 + 1 = 8^2 + 1 = 8^2 + 1 = 8^2 + 1 = 1 = 1 = 1$	1 = 64 - 1 = 6 1 = 64 + 1 = 6 let, whose one	3 5 number	is 16, is 16, 63,	,65.				
	(iv)	18 Here	2m = 1	8 ⇒	$m = \frac{1}{2}$	$\frac{8}{2} = 9$					
		$\begin{array}{cc} \therefore & m^2 - \\ and & m^2 + \\ So, a Pythag \end{array}$	$-1 = 9^2 - 1 = 9^2 + 1 = 9^2 + 1$	1 = 81 - 1 = 81 1 = 81 + 1 = 81 let, whose one	0 2 number	ے is 18, is 18, 80,	, 82.				

EXERCISE - 3

- Q.1 What could be the possible 'one's' digits of the square root of each of the following numbers?
 - (i) 9801 (ii) 99856 (iii) 998001 (iv) 657666025
 - (i) **9801**, The units digit of the square root of the number 9801 could be 1 or 9.
 - (ii) 99856, The units digit of the square root of the number 99856 could be 4 or 6.
 - (iii) 998001, The units digit of the square root of the number 998001 could be 1 or 9.
 - (iv) 657666025, The units digit of the square root of the number 657666025 could be 5.

Q.2 Without any calculation, find the numbers which are surely not perfect squares.

- (i) 153 (ii) 257 (iii) 408 (iv) 441
- Ans. (i) 153, The number 153 is surely not a perfect square because it ends in 3 whereas the square numbers end with 0, 1, 4, 5, 6 or 9.
 - (ii) 257, The number 257 is surely not a perfect square because it ends in 7 whereas the square numbers end with 0, 1, 4, 5, 6 or 9.
 - (iii) 408, The number 408 is surely not a perfect square because it ends in 8 whereas the square numbers end with 0, 1, 4, 5, 6 or 9.
 - (iv) 441, The number may be a perfect square surely as the square numbers end with 0, 1, 4, 5, 6 or 9.

Q.3 Find the square roots of 100 and 169 by the method of repeated subtraction.

Ans. (A) 100

Ans.

- (i) 100 - 1 = 9999 - 3 = 96(ii) 96 - 5 = 91(iii) 91 - 7 = 84(iv) 84 - 9 = 75(v) 75 - 11 = 64(vi) 64 - 13 = 51(vii) 51 - 15 = 36(viii) 36 - 17 = 19(ix)
- (x) 19 19 = 0

Since from 100 we subtracted successive odd numbers starting from 1 and obtained 0 at the 10th step. Therefore, $\sqrt{100} = 10$

(B) 169

(i)	169 - 1 = 168
(ii)	168 - 3 = 165
(iii)	165 - 5 = 160
(iv)	160 - 7 = 153
(v)	153 - 9 = 144
(vi)	144 - 11 = 133
(vii)	133 - 13 = 120
(viii)	120 - 15 = 105
(ix)	105 - 17 = 88
(x)	88 - 19 = 69

_

		(xi) (xii)	69 - 21 = 48 - 23 = 23	= 48 = 25						
		(xiii)	25 - 25 =	= 0						1 101
		Since f	fom 169 w	ve subti $\sqrt{1(0)}$	racted succe	essive odd r	umbers sta	rting from 1 a	and obtained 0	the 13th
0.4		step, u	ιειειοιε, _Λ	$\sqrt{109} =$	13. 		41 - D-2	f	M-41 J	
Q.4	Find t (i)	he squa 729	re roots o (i	ii)	bllowing ni 400	umbers by (iii)	the Prime	iactorisatio (iv)	n Method. 4096	
	(v)	7744	Ć	vi)	9604	(vii)	5929	(viii)	9216	
Ans.	(1X) (i)	529 729, Tl	the prime factor $729 = 3$	x) actorisa $\times 3 \times 3$	ation of 729 $X \times 3 \times 3 \times$) is 3			$ \begin{array}{c cccccccccccccccccccccccccccccccc$	
		By pair	ring the pri 729 = 32	ime fac $\times 3 \times 3$	tors, we get $3 \times 3 $	t <u>3</u>			$\frac{3 84}{3 27}$	
		So,	$\sqrt{729} =$	3 × 3	× 3 = 27				$\frac{3}{3}$	
	(ii)	400, Tl	he prime fa	actorisa	ation of 400 $2 \times 2 \times 5 \times 5$) is			$\frac{2}{2}$ $\frac{400}{200}$	
		By pair	ring the pri	ime fac	tors, we get	t.			$\frac{2}{2} \frac{100}{100}$	
			400 = 2	$\frac{\times 2}{-} \times \frac{2}{2}$	$2 \times 2 \times 5 \times $	5			$\frac{2}{5}$ $\frac{50}{25}$	
		Theref	fore, $\sqrt{400}$	0 = 2 >	$\times 2 \times 5 = 20$)			5	
	(iii)	1764,]	The prime	factori	sation of 17	764 is			2 1764	
		Bynair	1764 = 2	$2 \times 2 \times 1$	$3 \times 3 \times 7$:	× 7.			2 882	
		Dy pui	1764 = 2	$2 \times 2 \times 2$	$\underline{3 \times 3} \times \underline{7} \times \underline{7}$	× 7			$\frac{3}{3}$ $\frac{441}{147}$	
		So,	√1764 =	= 2 × 3	× 7 = 42				7 49	
	(iv)	4096, 🛛	The prime	factori	sation of 40)96 is			7	
		By pair	4096 = 2	$2 \times 2 \times$ ime fac	$2 \times 2 \times 2$ tors, we get	× 2 × 2 × 2 t	$\times 2 \times 2 \times$	2×2.		
		51	0 1		2	2 4096				
					$\overline{\underline{2}}$	2 2048				
					$\frac{2}{2}$	2 1024				
					$\overline{\underline{2}}$	2 256				
					22	2 128				
					$\overline{\underline{2}}$	2 32				
					22	$\frac{16}{28}$				
					2	2 4				
			4096 = 7	, × 7 ×	$2 \times 2 \times 2$	2 × 7 × 7 × 7	× 7 × 7 ×	2 × 2		
		So	$\sqrt{4096} = \frac{2}{2}$	<u>- ^</u> ^ = ? × ?	$\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$	$2 \times 2 = 64$	<u>~ _ ~ </u> ~			
		50,	v 1070	<u> </u>		<u> </u>				

So,

(ix)

So, $\sqrt{529} = 23$

11

(v)	7744, The prime factorisation of 7744 is $7744 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11 \times 11$ By pairing the prime factors, we get $7744 = \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{11 \times 11}$ So, $\sqrt{7744} = 2 \times 2 \times 2 \times 11 = 88$	$\frac{\frac{2}{2}}{\frac{2}{2}}$ $\frac{\frac{2}{2}}{\frac{2}{11}}$	7744 3872 1936 968 484 242 121 11
(vi)	9604, The prime factorisation of 9604 is 9604 = $2 \times 2 \times 7 \times 7 \times 7 \times 7$ By pairing the prime factors, we get 9604 = $2 \times 2 \times 7 \times 7 \times 7 \times 7$ So, $\sqrt{9604} = 2 \times 7 \times 7 = 98$	$\frac{\frac{2}{2}}{\frac{7}{7}}$	9604 4802 2401 343 49 7
(vii)	5929, The prime factorisation of 9604 is $5929 = 7 \times 7 \times 11 \times 11$ By pairing the prime factors, we get $5929 = \underline{7 \times 7} \times \underline{11 \times 11}$	$\frac{7}{7}$	5929 847 121

 $\sqrt{5929} = 7 \times 11 = 77$

	(x)	8100,7	The prime factor $8100 = 2 \times 2$		$\frac{2}{2}$ 8100 2 4050				
		Bypair	ring the prime f	actors, we get $2 \times 2 \times 2 \times 2$	t $2 \times 5 \times 4$	-		$\frac{2}{3}$ $\frac{10}{20}$	$\frac{25}{25}$
		So,	$\sqrt{8100} = 2 \times 2$	$\times 3 \times 3 \times 5 =$	<u>^ 3</u> ^ <u>3 ^ .</u> 90	<u>)</u>		$\frac{3}{3}$ $\frac{67}{22}$	<u>5</u> <u>5</u>
		,	·					$ \frac{3}{5} \frac{75}{25} $	
								5	
Q.5	For ea	ich of the	e following nun	nbers, find th	e smallest v	whole num	ber by whicl	1 it should	d be multiplied
	50 as t (i)	252	(ii)	180	(iiii)	1008	(iv)	2028	ei so obtaineu.
	(v)	1458	(vi)	768	(11)	1000	()	2020	
Ans.	(i)	252,	The prime fac	ctorisation of	f 252 is 252	$2 = 2 \times 2 \times 2$	$3 \times 3 \times 7$.		
		As the	prime factor 7	has no pair, 2	252 is not a	perfect squ	lare.		$\frac{2}{2}$ $\frac{252}{126}$
		If 7 get	ts a pair, then th	e number wi	ll be a perfe	ect square.			$\frac{2}{3}$ $\frac{126}{63}$
		So, we	multiply 252 b	by 7 to get					$\frac{3}{3}$ $\frac{03}{21}$
		252 ×	$7 = \underline{2 \times 2} \times \underline{3} \times$	$\times 3 \times 7 \times 7$					7
		Now e	ach prime facto	or has a pair.					
		Theref	fore, $252 \times 7 =$	1764 is a per	fect square	e.			
		Thus the second	he required sma	llest number	is 7.				
		Thus,	$\sqrt{1764} = 2 \times 3$	$3 \times 7 = 42$					
	(ii)	180, T	he prime facto	risation of 18	30 is 180 =	$2 \times 2 \times 3 \times$	$\times 3 \times 5.$		
		As the	prime factor 5	has no pair, 1	80 is not a	perfect squ	lare.		$\frac{2}{2}$ 180
		If 5 get	ts a pair, then th	e number wil	ll be a perfe	ect square.			$\frac{2}{3}$ $\frac{90}{45}$
		So, we	multiply 180 b	by 5 to get					$\frac{3}{3}$ $\frac{43}{15}$
		$180 \times$	$5 = \underline{2 \times 2} \times \underline{3} \times$	$\times 3 \times 5 \times 5$					5
		Now e	ach prime facto	or has a pair.					
		Theref	fore, $180 \times 5 =$	900 is a perfe	ect square.				
		Thus th	he required sma	llest number	is 5.				
		Thus,	$\sqrt{900} = 2 \times 3$	$\times 5 = 30$					
	(iii)	1008,	The prime fact	orisation of	1008 is 10	$08 = 2 \times 2 >$	$\times 2 \times 2 \times 3 \times$	3×7	2 1008
		As the	prime factor 7	has no pair, 1	008 is not	a perfect so	quare.		$\frac{2}{2}$ 504
		If 7 get	ts a pair, then th	e number wil	ll be a perfe	ect square.			2 252
		So, we	multiply 1008	by 7 to get					2 126
		1008 >	$< 7 = \underline{2 \times 2} \times \underline{2}$	$\times 2 \times 3 \times 3$	$\times \underline{7 \times 7}$				$\frac{3}{2}$ $\frac{63}{21}$
		Now e	ach prime facto	or has a pair.					$\frac{3}{7}$
		Theref	fore, 1008 × 7 =	= 7056 is a pe	erfect squa	re.			'
		Thus th	he required sma	llest number	is 7.				
		Thus,	$\sqrt{7056} = 2 \times 2$	$2 \times 3 \times 7 = 8$	4				

Q.6

Ans.

(iv)	2028, The prime fact	orisation of 20)28 is 202	$28 = 2 \times 2 \times$	$3 \times 13 \times 13$			
. ,	As the prime factor 3	has no pair, 20	28 is not	a perfect sq	uare.		2	2028
	If 3 gets a pair, then the	e number will	be a perfe	ect square.			$\frac{2}{2}$	1014
	So, we multiply 2028	by 3 to get	1	1			$\frac{2}{3}$	507
	$2028 \times 3 = 2 \times 2 \times 3$	$\times 3 \times 13 \times 13$	3				13	169
	Now each prime fact	or has a pair	_					13
	Therefore 2028×3	= 6084 is a per	fect squa	re				
	Thus the required sma	illest number is	3					
			5.					
	Thus, $\sqrt{6084} = 2 \times$	$3 \times 13 = 78$						
(v)	1458. The prime fact	torisation of 14	458 is 14:	$58 = 2 \times 2 \times 2$	$3 \times 3 \times 3 \times 3 \times 3$	$3 \times 3 \times 3$		
(.)	As the prime factor 2	has no pair 14	58 is not	a perfect so	uare		$2 \mid$	1/158
	If 2 gets a pair then the	e number will	be a perfe	ect square			$\frac{2}{3}$	729
	So we multiply 1458	$\frac{1}{2}$ by 2 to get	ocupent	et square.			$\frac{3}{3}$	243
	$1458 \times 2 = 2 \times 2 \times 3$	$\times 3 \times 3$	3 × 3				$\frac{3}{3}$	81
	Now each prime fact	or has a pair	<u> </u>				3	27
	Therefore 1458×2 :	= 2016 is a per	fect saua	re			3	9
	Thus the required sm?	llest number is	2	IC.				3
		inest number is	2.					
	Thus, $\sqrt{2916} = 2 \times$	$3 \times 3 \times 3 = 54$						
(vi)	768, The prime facto	orisation of 768	8 is 768 =	= 2 × 2 × 2 ×	$2 \times 2 \times 2 \times 2 \times 2$	$2 \times 2 \times 3$		
	As the prime factor 3	has no pair, 76	58 is not a	perfect squ	are.		າ ∣	768
	If 3 gets a pair, then the	e number will	be a perfe	ect square.			$\frac{2}{2}$	384
	So, we multiply 768	by 3 to get	1	1			$\frac{2}{2}$	192
	$768 \times 3 = 2 \times 2 \times 2$	$\times 2 \times 2 \times 2 \times 2$	$2 \times 2 \times 3$	× 3			2	96
	Now each prime fact	or has a pair.					2	48
	Therefore, 768×32	= 2304 is a per	fect squa	re.			2	24
	Thus the required sma	llest number is	3.				$\frac{2}{2}$	12
	$\frac{1}{2204} = 2 \times 10^{-1}$	2 ~ 2 ~ 2 _ 5 4					$\frac{2}{2}$	$\frac{6}{2}$
	Thus, $\sqrt{2504} = 2 \times$	$3 \times 3 \times 3 = 54$						3
For ea	ach of the following nu	mbers, find th	e smalles	t whole nun	nber by whic	ch it shou	ld b	e divided
so as t	to get a perfect squar	e. Also find th	e square	root of the	e square nur	nber so o	bta	ained.
(i)	252 (ii)	2925	(iii)	396	(iv)	2645		
(V)	2800 (VI) 252 The university of the state	1620	.:- 252	<u> </u>	7			
(1)	252, The prime facto	risation of 252	2 18 252 =	$2 \times 2 \times 3 \times$	1.		<u>າ</u> ∣	252
	We see that the prime	factor / has no	o pair.				$\frac{2}{2}$	$\frac{232}{126}$
	So, if we divide 252 l	by 7, then we g	et				$\frac{2}{3}$	$\frac{120}{63}$
	$252 \div 7 = 2$	$\underline{\langle 2} \times \underline{3 \times 3}$					$\frac{3}{3}$	$\frac{00}{21}$
	Now each prime fact	or has a pair.					-	7
	Therefore, $252 \div 7 =$	36 is a perfect	square.				I	
	Thus, the required sm	allest number is	s 7.					
	Hence, $\sqrt{36} = 2 \times 3$	= 6						

(ii)	2925, The prime factorisation of 2925 is $2925 = 3 \times 3 \times 5 \times 5 \times 13$. We see that the prime factor 13 has no pair. So, if we divide 2925 by 13, then we get $2925 \div 13 = 3 \times 3 \times 5 \times 5$ Now each prime factor has a pair. Therefore, $2925 \div 13 = 225$ is a perfect square. Thus, the required smallest number is 13. Hence, $\sqrt{225} = 3 \times 5 = 15$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(iii)	396, The prime factorisation of 396 is $396 = 2 \times 2 \times 3 \times 3 \times 11$. We see that the prime factor 11 has no pair. So, if we divide 396 by 11, then we get $396 \div 11 = 2 \times 2 \times 3 \times 3$ Now each prime factor has a pair. Therefore, $396 \div 11 = 36$ is a perfect square. Thus, the required smallest number is 11. Hence, $\sqrt{36} = 2 \times 3 = 6$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(iv)	2645, The prime factorisation of 2645 is $2645 = 5 \times 23 \times 23$ We see that the prime factor 5 has no pair. So, if we divide 2645 by 5, then we get $2645 \div 5 = \underline{23 \times 23}$ Now each prime factor 23 has a pair. Therefore, $2645 \div 5 = 529$ is a perfect square. Thus, the required smallest number is 5. Hence, $\sqrt{529} = 23$	$ \frac{5 2645}{23 529} \\ 23 $
(v)	2800, The prime factorisation of 2800 is $2800 = 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 7$ We see that the prime factor 7 has no pair. So, if we divide 2800 by 7, then we get $2800 \div 7 = 2 \times 2 \times 2 \times 2 \times 5 \times 5$ Now each prime factor has a pair. Therefore, $2800 \div 7 = 400$ is a perfect square. Thus, the required smallest number is 7. Hence, $\sqrt{400} = 2 \times 2 \times 5 = 20$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(vi)	1620, The prime factorisation of 1620 is $1620 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5$ We see that the prime factor 5 has no pair. So, if we divide 1620 by 5, then we get $1620 \div 5 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$ Now each prime factor has a pair. Therefore, $1620 \div 5 = 324$ is a perfect square. Thus, the required smallest number is 5. Hence, $\sqrt{324} = 2 \times 3 \times 3 = 18$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Q.7 The students of class VIII of a school donated Rs.2401 in all, for Prime Minister's National Relief Fund. Each student donated as many rupees as the number of students in the class. Find the number of students in the class.
- **Ans.** Let the number of students in the class be x.

Then rupees donated by each student = Rs. x.

- \therefore Rupees donated by x students = Rs.x × x = x²
- : The students of class VIII of a school donated Rs.2401 for Prime Minister's National Relief Fund.

$$\therefore \qquad x^2 = 2401 \qquad \Rightarrow \qquad x = \sqrt{2401}$$

The prime factorisation of 2401 is

 $2401 = \underline{7 \times 7} \times \underline{7 \times 7}$

$$\therefore \qquad \mathbf{x} = \sqrt{2401} = \sqrt{\underline{7} \times \underline{7} \times \underline{7} \times \underline{7}}$$

$$\Rightarrow \qquad \mathbf{x} = 7 \times 7 = 49$$

Hence, the number of students in the class is 49.

Q.8 2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

Ans. Let the number of row be x.

Then number of plants in each row = x.

 $\therefore \qquad \text{Number of plants in x rows} = x \times x = x^2$ But 2025 plants are to be planted in a garden.

$$\therefore \qquad x^2 = 2025 \qquad \Rightarrow \qquad x = \sqrt{2025}$$

The prime factorisation of 2025 is

2025 =	3	$\times 3$	×	3	Х	3	×	5	\times	5	
				_							

$$\therefore \qquad \mathbf{x} = \sqrt{2025} = \sqrt{3 \times 3} \times 3 \times 3 \times 5 \times 5$$

 $\Rightarrow \qquad x = 3 \times 3 \times 5 \quad \Rightarrow \qquad x = 45$

Hence, the number of row is 45 and the number of plants in each row is 45.

Q.9 Find the smallest square number that is divisible by each of the numbers 4, 9 and 10.

The least number divisible by each one of 4, 9, and 10 is their L.C.M. Ans. The LCM of 4, 9 and 10 is $2 \times 2 \times 3 \times 3 \times 5 = 180$. Now prime factorisation of 180 is $180 = 2 \times 2 \times 3 \times 3 \times 5$ $2 \mid 4, 9, 10$ $\overline{2}$ 2, 9, 5 The prime factor 5 is not is pair. Therefore 180 is not a perfect square. 3 1, 9, 5 In order to get a perfect square, each factor of 180 must be paired. 3 1, 3, 5 So we need to make pair of 5. 5 1, 1, 5 Therefore 180 should be multiplied by 5. 1, 1, 1 Hence, the required smallest square number is $180 \times 5 = 900$.

7	2401
7	343
7	49
	7

3

3

3

3 75

 $\frac{5 \quad 25}{5}$

2025

675

225

Q.10 Ans.	Find The le	the sma l east num	llest square nur ber divisible by e	nber th each one	hat is divisible e of 8, 15 and 2	e by each of t 0 is their LCN	he numbe M	rs 8, 15 a	and	20.
	The L	.CM of 8	3, 15 and 20 is 2	$\times 2 \times 2$	$2 \times 3 \times 5 = 120$).			2	8,15,20
	Now	prime fac	torisation of 120) is					2	4, 15, 20
		120 =	$2 \times 2 \times 2 \times 3 \times$	5					$\frac{2}{2}$	2,15,5
	The p	rime fact	tors 2, 3 and 5 ar	e not in	pairs.				$\frac{3}{5}$	1,15,5
	There	fore, 120) is not a perfect	square.	6100				5	1, 5, 5
	In ord	ler to get	a perfect square	, each f	$actor of 120 \mathrm{m}$	ust be paired				1, 1, 1
	50, W There	e need to fore 120	should be multi-	2, 3 and plied by	13. $y_2 \times 3 \times 5.$ i.e.	30				
	Hence	e, the req	uired smallest so	juare n	umber is $120 \times$	30 = 3600.				
				E	XERCISE -	<u>- 4</u>				
Q.1	Find	the squa	re root of each	of the f	following num	bers by Divi	ision meth	od.		
	(i)	2304	(ii)	4489	(iii)	3481	(iv)	529		
	(v)	3249	(vi)	1369	(vii)	5776	(viii)	7921		
	(IX)	5/6	(X)	1024	(XI)	3136	(XII)	900		
			48		T 1 0					
Ans.	(i)	2304,	$4 \overline{23} \overline{04}$		Therefore, $$	2304 = 48				
			-16							
			88 7 04							
			-7 04							
			0							
			67							
	(ii)	4489.	$6\overline{\overline{14}}\overline{\overline{90}}$	=	Therefore $$	4489 = 67				
	(")	,	-36	,		1109 07				
			127 8 89	_)						
			-8 89							
			0	-						
			59							
	(iii)	3481,	$5\overline{\overline{34}}\overline{81}$	-	Therefore, $$	3481 = 59				
		,	-25		, ,					
			109 9 81							
			-9 81	_						
			0							
			23							
	(iv)	529,	$2\overline{5}\overline{29}$		Therefore, $$	529 = 23				
			-4							
			43 1 29							
			-1 29							
			0							

(v) 3249,
$$5 \begin{bmatrix} 57\\ 32 & 49\\ -25\\ 7 & 49\\ -7 & 49\\ 0 \end{bmatrix}$$
 Therefore, $\sqrt{3249} = 57$
(vi) 1369, $3 \begin{bmatrix} 37\\ -25\\ 7 & 49\\ -7 & 49\\ 0 \end{bmatrix}$ Therefore, $\sqrt{1369} = 37$
(vii) 5776, $7 \begin{bmatrix} 76\\ -4 & 69\\ -4 & 69\\ 0 \end{bmatrix}$ Therefore, $\sqrt{5776} = 76$
(viii) 5776, $7 \begin{bmatrix} 76\\ -49\\ -49\\ 8 & 76\\ -8 & 76\\ 0 \end{bmatrix}$ Therefore, $\sqrt{5776} = 76$
(viii) 7921, $8 \begin{bmatrix} 89\\ 79 & 21\\ -15 & 21\\ 0 \end{bmatrix}$ Therefore, $\sqrt{7921} = 89$
(viii) 7921, $8 \begin{bmatrix} 89\\ 79 & 21\\ -15 & 21\\ 0 \end{bmatrix}$ Therefore, $\sqrt{7921} = 89$
(x) 1024, $3 \begin{bmatrix} 24\\ -4\\ 1 & 76\\ -1 & 76\\ 0 \end{bmatrix}$ Therefore, $\sqrt{576} = 24$
(x) 1024, $3 \begin{bmatrix} 32\\ 10 & 24\\ -9 \\ 1 & 24\\ -1 & 24\\ 0 \end{bmatrix}$ Therefore, $\sqrt{1024} = 32$

Q.2 Find the number of digits in the square root of each of the following numbers (without any calculation)

- (i) 64 (ii) 144 (iii) 4489 (iv) 27225
 - (v) **390625**

Ans. (i) 64, Number (n) of digits in 64 = 2 which is even.

 \therefore Number of digits in the square root of $64 = \frac{n}{2} = \frac{2}{2} = 1$

(ii) 144, Number (n) of digits in
$$144 = 3$$
 which is odd.

$$\therefore \qquad \text{Number of digits in the square root of } 144 = \frac{n+1}{2} = \frac{3+1}{2} = \frac{4}{2} = 2$$

(iii) 4489, Number (n) of digits in 4489 = 4 which is even.

$$\therefore$$
 Number of digits in the square root of $4489 = \frac{n}{2} = \frac{4}{2} = 2$

(iv) 27225, Number (n) of digits in
$$27225 = 5$$
 which is odd.

$$\therefore \qquad \text{Number of digits in the square root of } 27225 = \frac{n+1}{2} = \frac{5+1}{2} = \frac{6}{2} = 3$$

(v) **390625**, Number (n) of digits in 390625 = 6 which is even.

:. Number of digits in the square root of
$$390625 = \frac{n}{2} = \frac{6}{2} = 3$$

Q.3	2.3 Find the square root of the following decimal numbers.						
	(i) (v)	2.56 31.36	(ii) 7.2	.9 (iii)	51.84	(iv)	42.25
Ans.	(i)	2.56,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hence, $\sqrt{2}$.	56 = 1.6		
	(ii)	7.29,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hence, $\sqrt{7}$.	29 = 2.7		
	(iii)	51.84,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hence, $\sqrt{51}$	1.84 = 7.2		
	(iv)	42.25,	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Hence, $\sqrt{2}$.	56 = 1.6		
	(v)	31.36,	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Hence, $\sqrt{31}$	1.36 = 5.6		

Q.4 Find the least number which must be subtracted from each of the following numbers so as to get a perfect square. Also find the square root of the perfect square so obtained.

-			-		-	-	
	403		1000		2250	()	015
(1)	402	(11)	1989	(111)	3230	$(\mathbf{I}\mathbf{V})$	023
()	-	()					

- (v) 4000
- **Ans. (i) 402,** We have

This shows that 20^2 is less than 402 by 2. This is means that if we subtract the remainder from the number, we get a perfect square. So, the required least number is 2.

Therefore, the required perfect square is 402 - 2 = 400

Hence, $\sqrt{400} = 20$

(ii) 1989, We have

$$\begin{array}{r}
 4 & 4 \\
 4 & \overline{19} & \overline{89} \\
 -16 \\
 84 & \overline{3} & 89 \\
 -3 & 36 \\
 \overline{53}
 \end{array}$$

This shows that 44^2 is less than 1989 by 53. This is means that if we subtract the remainder from the number, we get a perfect square. So, the required least number is 53. Therefore, the required perfect square is 1989 - 53 = 1936

Hence, $\sqrt{1936} = 44$

(iii) **3250**, We have

This shows that 57^2 is less than 3250 by 1. This means that if we subtract the remainder from the number, we get a perfect square. So, the required least number is 1. Therefore, the required perfect square is 3250 - 1 = 3249

Hence,
$$\sqrt{3249} = 57$$

(iv) 825, We have

This shows that 28^2 is less than 825 by 41. This means that if we subtract the remainder from the number, we get a perfect square. So, the required least number is 41.

Therefore, the required perfect square is 825 - 41 = 784

Hence, $\sqrt{784} = 28$

(v) 4000, We have

$$\begin{array}{r}
 63 \\
 6 \overline{40} \quad \overline{00} \\
 -36 \\
 -36 \\
 -3 \quad 69 \\
 \overline{31}
\end{array}$$

This shows that 63^2 is less than 4000 by 31. This means that if we subtract the remainder from the number, we get a perfect square. So, the required least number is 31. Therefore, the required perfect square is 4000 - 31 = 3969

Hence,
$$\sqrt{3969} = 63$$

Q.5 Find the least number which must be added to each of the following numbers so as to get a perfect square. Also find the square root of the perfect square so obtained.

	(i)	525	(ii)	1750	(iii)	252	(iv)	1825		
	(v)	6412					. ,		22	
Ans.	(i)	525, This sh Next pe Hence, Therefo Hence,	We have ows that $22^2 <$ erfect square is the number to ore, the perfect $\sqrt{529} = 23$	525. s $23^2 = 529$ b be added t square so	9. is 23 ² – 525 = obtained is 5	= 529 - 52 25 + 4 = 5	25 = 4 29	2 42	$ \overline{5} \overline{2} \\ -4 \\ 1 2 \\ -8 \\ 2 $	$\overline{\overline{5}}$
	(ii)	1750, This sh Next pe Hence, Therefo Hence,	We have ows that $41^2 <$ erfect square is the number to ore, the perfect $\sqrt{1764} = 42$	< 1750. s $42^2 = 176$ b be added t square so	54. is $42^2 - 1750$ obtained is 1) = 1764 - 750 + 14 =	- 1750 = 14 = 1764	4 81	$\begin{array}{r} 41 \\ \hline 17 \\ \hline -16 \\ 1 \\ \hline 5 \\ -8 \\ \hline 6 \end{array}$	$\overline{50}$ $\overline{0}$ 1 $\overline{59}$

	(iii)	252, We have This shows that $15^2 < 252$. Next perfect square is $16^2 = 256$. Hence, the number to be added is $16^2 - 252 = 256 - 252 = 4$ Therefore, the perfect square so obtained is $252 + 4 = 256$ Hence, $\sqrt{256} = 16$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(iv)	1825, We have This shows that $42^2 < 1825$. Next perfect square is $43^2 = 1849$. Hence, the number to be added is $43^2 - 1825 = 1849 - 1825 = 24$ Therefore, the perfect square so obtained is $1825 + 24 = 1849$ Hence, $\sqrt{1849} = 43$	$ \begin{array}{r} 42 \\ 4 \overline{18} \overline{25} \\ -16 \\ 82 \\ 2 25 \\ -1 64 \\ \hline 61 \\ \end{array} $
	(v)	6412, We have This shows that $80^2 < 6412$. Next perfect square is $81^2 = 6412$. Hence, the number to be added is $81^2 - 6412 = 6561 - 6412 = 149$ Therefore, the perfect square so obtained is $6412 + 149 = 6561$ Hence, $\sqrt{6561} = 81$	$ \begin{array}{r} 80\\ 8\overline{64} \overline{12}\\ -64\\ 160\\ 12\\ -0\\ 12\\ \end{array} $
Q.6 Ans.	Find t Area c ∴ Theref Hence	the length of the side of a square whose area is 441 m ² . of the square = 441 m ² Length of the side of the square = $\sqrt{441}$ m fore, $\sqrt{441} = 21$ m e, the length of the side of the square is 21 m.	$2 \boxed{\begin{array}{c} 21 \\ 2 \overline{4} & \overline{41} \\ -4 \\ 41 \hline \begin{array}{c} -4 \\ -41 \\ \hline 0 \end{array}}$
Q.7 Ans.	In a ri (a) (b) (a)	ight triangle ABC $\angle B = 90^{\circ}$. If AB = 6 cm, BC = 8 cm, find AC If AC = 13 cm, BC = 5 cm, find AB. In the right triangle ABC, $\therefore \angle B = 90^{\circ}$ [Given] $\therefore By phytagoras theorem$ $AC^2 = AB^2 + BC^2$ $\Rightarrow AC^2 = AB^2 + BC^2$ $\Rightarrow AC^2 = 6^2 + 8^2$ $\Rightarrow AC^2 = 36 + 64$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		\Rightarrow AC = $\sqrt{100}$	

31

- Q.8 A gardener has 1000 plants. He wants to plant these in such a way that the number of rows and the number of columns remain same. Find the minimum number of plants he needs more for this.
- **Ans.** Let the number of rows be x.

	3	$\overline{10}$	$\overline{00}$
Then the number of columns is x.	61	-9	
So, the number of plants is $x \times x = x^2$ which is a perfect square.	01	100	!
Let us find out the square root of 1000 by division method.		$\frac{-01}{39}$	
This shows that $31^2 < 1000$.	I	57	
Next perfect square number is $32^2 = 1024$.			
Hence, the minimum number of plants he needs more for this $= 1024 - 1000 = 24$.			

Q.9 There are 500 children in a school. For a P.T. drill they have to stand in such a manner that the number of rows is equal to number of column. How many children would be left out in this arrangement?

Ans.	Let the number of rows be x.	22
	Then the number of columns is x.	$2 \overline{5} \overline{00}$
	So, The number of children is $x \times x = x^2$ which is a perfect square.	
	Let us find out the square.	42 100 84
	Let us find out the square root of 500 by division method.	- 84
	We get the remainder 16. It shows that 22^2 is less than 500 by 16.	10
	This means that 16 children would be leftout in this arrangement.	

CONCEPT APPLICATION LEVEL - II SECTION - A

• FILL IN THE BLANKS

- Q.1 Square numbers can only have _____ number of zeros at the end.
- Q.2 Numbers obtained when a number is multiplied by itself three times are known as ______.
- Q.3 The number of zeroes at the end of the square of a number is ______ the number of zeroes at the end of the number.
- Q.4 The smallest number by which 81 should be divided to make it a perfect cube is ______.
- Q.5 If a number ends in two 9's then its cube ends in _____ number of 9's.
- Q.6 The square root of a 4-digit or a 3 digit number is a _____ digit number.
- Q.7 A number n is a perfect cube only if there is an integer m such that _____.
- Q.8 Square of a _____ number between 0 and 1 is _____ than the number itself.
- Q.9 If 'a' is a square root of 'b' then 'b' is of 'a'.
- Q.10 A number whose square root it exact is called a _____.
- Q.11 Square root of 0.01 is _____
- Q.12 When a 'n' digit number is squared, then the number of digits in the square thus obtained is ______.
- Q.13 If $7^2 = 49$ and $0.7^2 = 0.49$, then $0.007^2 =$
- Q.14 The square of a proper fraction is always ______ than itself.

SECTION - B

• MULTIPLE CHOICE QUESTIONS

- Q.1 The smallest number by which 136 must be multiplied so that it becomes a perfect square is (A) 2 (B) 17 (C) 34 (D) None of these
- Q.2The product of two numbers is 1936. If one number is 4 times the other, the numbers are
(A) 16, 121(B) 22, 88(C) 44, 44(D) None of these
- Q.3 The least square number exactly divisible by 4, 6, 10, 15 is (A) 400 (B) 100 (C) 25 (D) 900
- Q.4 The value of $\sqrt{388 + \sqrt{127 + \sqrt{289}}}$ is (A) 17 (B) 12 (C) 20 (D) None of these

Q.5 A gardener arranges plants in rows to form a square. He finds that in doing so 15 plants are left out. If the total number of plants are 3984, the number of plants in each row are
 (A) 62 (B) 63 (C) 64 (D) None of these

Q.6 If a is a natural number then $a^2 + \frac{1}{a^2}$ is always greater than or equal to (A) 6 (B) 4 (C) 3 (D) 2

Q.7 If
$$\sqrt{0.04 \times 0.4 \times a} = 0.4 \times 0.04 \times \sqrt{b}$$
, then value of $\frac{b}{a}$ is
(A) 0.016 (B) $\frac{125}{2}$ (C) 0.16 (D) None of these

Q.8 The hypotenuse of an isosceles right angled triangular field has a length of $30\sqrt{2}$ m, then length of other side is

(A)
$$30\sqrt{2}$$
 m (B) 30 m (C) 25 m (D) None of these

Q.9 The sides of a triangle are denoted by x, y and z. Area of the triangle and semi perimeter of the triangle are denoted by P and q respectively. If $P = \sqrt{q(q-x)(q-y)(q-z)}$ and x+y-z=y+z-x=z+x-y=4. Find P (in square units).

(A)
$$2\sqrt{3}$$
 (B) $3\sqrt{3}$ (C) $4\sqrt{3}$ (D) $6\sqrt{3}$

Q.10 Find the square root of
$$\frac{81b^2a^4}{36x^2y^6}$$
.

(A)
$$\frac{3ba^2}{2xy^3}$$
 (B) $\frac{3b^2a}{2x^2y}$ (C) $\frac{3ba}{2x^3y}$ (D) $\frac{3ba}{2xy^2}$

- Q.11 Which of the following can be a perfect square?
 (A) A number ending in 3 or 7
 (B) A number ending with odd number of zeros
 (C) A number ending with even number of zeros
 (D) A number ending in 2.

 Q.12 Which of the following can be the square of a natural number 'n'?

 (A) sum of the squares of first n natural numbers
 (B) Sum of the first n natural numbers
- (C) sum of first (n-1) natural numbers (D) sum of first 'n' odd natural numbers

Q.13 Which of the following is the number of non-perfect square number' between the squares of the numbers n and n + 1? (A) n + 1 (B) n (C) 2n (D) 2n + 1

Q.14 Which of the following is the difference between the squares of two consecutive natural numbers is
 (A) sum of the two numbers
 (B) difference of the numbers
 (D) twice the sum of the two numbers

СН-3: 8	SQUARE AND SQUARE R	DOTS		MATHEMATICS / CLASS-VIII
Q.15	Which of the followin (A) 613	g is the number of non-p (B) 35	perfect square number be (C) 34	etween 17 ² and 18 ² ? (D) 70
Q.16	Which of the followin (A) 21	g is the difference betwee (B) 22	een the squares of 21 and (C) 42	122? (D) 43
Q.17	Which of the followin (A) 3	g is the number of zeros (B) 4	in the square of 900? (C) 5	(D) 2
Q.18	If a number of n-digits number of digits of its	s is a perfect square and square root?	'n' is an even number, the	en which of the following is the
	(A) $\frac{n-1}{2}$	(B) $\frac{n}{2}$	(C) $\frac{n+1}{2}$	(D) 2n
Q.19	If a number of n-digit i of digits of its square r	s perfect square and 'n' is root?	an odd number then whic	ch of the following is the number
	(A) $\frac{n-1}{2}$	(B) $\frac{n}{2}$	(C) $\frac{n+1}{2}$	(D) 2n
Q.20	Which of the following (A) n, $(n^2 - 1)$ and $(n^2 - 1)$ (C) $(n + 1)$, $(n^2 - 1)$ a	g is a pythagorean-triplet $(n^2 + 1)$ nd $(n^2 + 1)$? (B) $(n-1)$, (n^2-1) ar (D) 2n, (n^2-1) and (n	nd $(n^2 + 1)$ $n^2 + 1)$
Q.21	The greatest four digit (A) 9701	number which is also a (B) 9801	perfect square is (C) 9901	(D) None of these
Q.22	The greatest perfect so (A) 50	quare of a natural numbe (B) 2500	er smaller than $(51)^2$ is (C) 3600	(D) 2551
Q.23	$\sqrt{176 + \sqrt{2401}}$ is equ (A) 12	ual to (B) 13	(C) 14	(D) 15
Q.24	If $\frac{1872}{\sqrt{x}} = 234$, then x	is equal to		
	(A) 8	(B) 64	(C) 256	(D) 4
Q.25	If $140\sqrt{x} + 315 = 101$ (A) 15	5, then x is equal to (B) 225	(C) 5	(D) 25
Q.26	$\frac{\sqrt{25} + \sqrt{121}}{\sqrt{256}}$ is equal	to		
	(A) 2	(B) 1	(C) 3	(D) 4

Q.27	$\sqrt{110\frac{1}{4}}$ is equal to			
	(A) 10.25	(B) 10.5	(C) 10.45	(D) 10.75
Q.28	$\frac{(0.9)^2 + (0.1)^3}{(0.8)^3 + (0.2)^3 + 3 \times (0.2)^3}$	$)^{2} + 2 \times (0.9)(0.1)$ $0.8)^{2}(0.2) + 3 \times (0.8)(0.2)$	$\frac{1}{2}$ is equal to	
	(A) $\frac{9}{8}$	(B) 1	(C) 2	(D) $\frac{91}{82}$
Q.29	If $\sqrt{24} = 4.899$, then t	the value of $\sqrt{\frac{8}{3}}$ is		
	(A) 2.633	(B) 1.633	(C) 1.666	(D) 2.666
Q.30	The least square numb (A) 3600	er which is exactly divis (B) 900	sible by 10, 12, 15 and 1 (C) 1600	8 is (D) 2500
Q.31	If $x * y * z = \sqrt{\frac{(x+2)}{(z+2)}}$	$\frac{y}{y+3}$, then the value	of 7 * 6 * 8 * is	
	(A) 2	(B) 9	(C) 3	(D) 4
Q.32	The value of $(0.9)^2 - ((A))^2 - ($	0.1) ² is (B) 0.8	(C) 0.64	(D) 10.16
Q.33	A general wishes to art that some of them are $\begin{bmatrix} A \end{bmatrix}$	range his 36581 soldiers left over. The number of (B) 100	s in the form of a square. soldiers left over is (C) 121	After arranging them he found $(D) 144$
Q.34	A man plants 15129 aj	ople trees in his garden a	nd arrange them so that	there are as many rows as there
	(A) 124	row, then the number of (B) 125	(C) 122	(D) 123
Q.35	If $\frac{\sqrt{1296}}{x} = \frac{x}{2.25}$, the	n x is equal to		
	(A) 7	(B) 8	(C) 9	(D) None of these
Q.36	The product of two nu	mbers is 1575 and their	quotient is $\frac{9}{7}$. Find the	numbers.
	(A) 21, 75	(B) 35, 45	(C) 63, 25	(D) 105, 15
Q.37	Find the smallest squa (A) 360	re number divisible by e (B) 720	ach one of the numbers (C) 3600	8, 9 and 10. (D) 2500

PAGE# 47

Q.38	Find the least number (A) 236	which must be subtract (B) 40	ed from 182565 to make (C) 265	e it a perfect square (D) 65
Q.39	Find the least number (A) 460	which must be added to (B) 462	o 306452 to make it a pe (C) 464	rfect square. (D) 468
Q.40	Find the greatest numb (A) 999999	per of six digits which is (B) 100000	a perfect square. (C) 998001	(D) 998000
Q.41	Find the value of $\sqrt{99}$	$\times \sqrt{396}$		
	(A) 196	(B) 197	(C) 198	(D) 199
Q.42	Find the value of $\sqrt{14^2}$	$\overline{7} \times \sqrt{243}$		
	(A) 189	(B) 181	(C) 180	(D) 294
Q.43	Find the square root o	f0.00008281.		
	(A) 0.0091	(B) 0.0092	(C) 0.0093	(D) 0.0094
Q.44	Find the value of $\sqrt{15}$	$\overline{625}$ and the use it to fin	d the value of $\sqrt{156.25}$	$+\sqrt{1.5625}$.
	(A) 13.25	(B) 13.35	(C) 13.65	(D) 13.75
Q.45	Find the square root o	f 2 correct to three place	es of decimal.	
	(A) 1.401	(B) 1.141	(C) 1.414	(D) 1.410
Q.46	7396 students are sitting there are rows in the au	ng in an auditorium in s iditorium How many ro	uch a manner that there a	are as many students
	(A) 96	(B) 86	(C) 87	(D) 98
		<u>SECT</u>	ION - C	

• MATCH THE COLUMN

Q.1 Statements (A, B, C, D) in column I have to be matched with statements (p, q, r, s) in column II. Column I Column II Value of $1 - (0.5)^2$ is (A) 33.30 (p) If $\sqrt{6.4} = 2.53$ then value of $\sqrt{640} + \sqrt{64}$ (B) 0.029 (q) Value of $\sqrt{2980}$ correct to two decimal place is (C) (r) 54.59 Given $\sqrt{8.5} = 2.915$ and $\sqrt{85} = 9.320$. Value of (D) 0.75 (s)

 $\sqrt{0.00085}$ is

in a row as

Q.2 Statements (A, B, C, D) in column I have to be matched with statements (p, q, r, s) in column II.

	Column I		Column II
(A)	If $\sqrt{(75.24 + x)} = 8.71$ then the value of x is	(p)	324
(B)	If $\sqrt{0.04 \times 0.4 \times a} = 0.4 \times 0.04 \times \sqrt{b}$ then the value	(q)	64
	of $\frac{a}{b}$ is		
(C)	If $\sqrt{256} \div \sqrt{x} = 2$ then the value of x is	(r)	0.016
(D)	If $\sqrt{\frac{x}{169}} = \frac{54}{39}$ then the value of x is	(s)	0.6241

Q.3 Match the column

	Column I	Column II			
(A)	There are '2n' non-perfect square numbers	(p)	$\frac{n+1}{2}$		
	between the square of the number				
(B)	For any natural number greater than 1,	(q)	$\frac{n}{2}$		
	are called a Pythagoren Triplet				
(C)	If n is an even number of digits of a square number then the number of digits in its	(r)	n and $n + 1$		
	square root are				
(D)	If n is an odd number of digits of a square-	(s)	$2n,(n^2-1)$ and (n^2+1)		
	number then the number of digits in its				
	square-root are				

ANSWER KEY

CONCEPT APPLICATION LEVEL - II

SECTION-A

Q.1	even	Q.2	cube numbers	Q.3	twice	Q.4	3
Q.5	two	Q.6	two	Q.7	$n = m^3$	Q.8	decimal, less
Q.9	square	Q.10	perfect square	Q.11	0.1	Q.12	2n or 2n - 1
Q.13	0.000049	Q.14	Less				

SECTION - B

Q.1	С	Q.2	В	Q.3	D	Q.4	С	Q.5	В	Q.6	D	Q.7	В
Q.8	В	Q.9	С	Q.10	А	Q.11	С	Q.12	D	Q.13	С	Q.14	А
Q.15	С	Q.16	С	Q.17	В	Q.18	В	Q.19	С	Q.20	D	Q.21	В
Q.22	В	Q.23	D	Q.24	В	Q.25	D	Q.26	В	Q.27	В	Q.28	В
Q.29	В	Q.30	В	Q.31	С	Q.32	В	Q.33	В	Q.34	D	Q.35	С
Q.36	В	Q.37	С	Q.38	А	Q.39	С	Q.40	С	Q.41	С	Q.42	А
Q.43	А	Q.44	D	Q.45	С	Q.46	В						

SECTION - C

- Q.1 (A)- s; (B)- p; (C)- r; (D)-q
- Q.2 (A)- s; (B)- r; (C)- q; (D)- p
- Q.3 (A)-(r); (B)-(s); (C)-(q); (D)-(p)