CONCEPT TREE

14.1 INTRODUCTION

In lower classes, we have studied properties of triangles and also how these properties can be used in construction of triangles. In this chapter we will learn how to use properties of quadrilaterals in the construction of quadrilaterals. It is known that three independent measurements are required to construct a triangle. That is, to determine three points, three measurements are required. Now, to construct a quadrilateral we need to determine four vertices. Three measurements are required to determine three vertices, so another two measurements are required to determine fourth vetex. Therefore five independent measurements are required to construct a quadrilateral. In the following section we will learn how to construct a quadrilateral when five independent measurements are provided.

A simple closed plane figure bounded by four line segments is called a quadrilateral

- When four sides and one diagonal are given a quadrilateral can be constructed.
- When two diagonals and three sides are given a quadrilateral can be constructed.
- When two adjacent sides and three angles are given a quadrilateral can be constructed.
- When three sides and two included angles are given a quadrilateral can be constructed

14.2 CONSTRUCTION OF QUADRILATERALS
 14.2.1 When two diagonals and three sides are given

Illustration 1

Construct a quadrilateral $P Q R S$, with $P Q=4.2 \mathrm{~cm}, P S=5.4 \mathrm{~cm}, R S=4.8 \mathrm{~cm}, P R=5.4 \mathrm{~cm}$ and QS = 6.8 cm .

Solution

Rough sketch of the quadrilateral will help us to select the sequence of steps
Step-1: Draw a triangle PSR as the three sides are known.

Step-2: With P as centre, with a radius equal to 4.2 cm draw an arc.

Step-3: With 'S' as centre with a radius of 6.8 cm draw an arc which intersects previous arc at Q .

Step-4: Join QP and QR

Example 2:

Construct a quadrilateral ABCD , given that $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=3.5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BD}=5.8 \mathrm{~cm}$.

Solution:

Step-1: Draw AB $=5.5 \mathrm{~cm}$.
Step-2: With A as centre and radius equal to 6 cm , draw an arc.
Step-3: With B as, centre and radius equal to 4 cm , draw another arc cutting first arc at C.
Step-4: Join AC and BC.
Step-5: With C as centre and radius equal to 3.5 cm , draw an arc.
Step-6: With B as centre and radius equal to 5.8 cm , draw another arc cutting the first arc at D.
Step-7: Joint AD, CD and BD. Then ABCD is the required quadrilateral.

Example 3:

Construct a quadrilateral ABCD , given that $\mathrm{AB}=4.3 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{CD}=4.5 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\angle \mathrm{C}=12 \mathbf{0}^{\circ}$. First draw a rough figure.

Solution:
Step-1: Draw $\mathrm{AB}=4.3 \mathrm{~cm}$.
Step-2: At B draw $\angle \mathrm{XBA}=60^{\circ}$.
Step-3: With B as centre and radius equal to 5 cm , draw an arc cutting $B X$ at C.
Step-4: At C draw $\angle \mathrm{YCB}=120^{\circ}$
Step-5: With C as centre and radius equal to 4.5 cm , draw an arc cutting CY at D .
Step-6: Join AD . Then ABCD is the required quadrilateral.

14.2.2 When two adjacent sides and three angles are given

Example 4:

Construct a quadrilateral ABCD where $\mathrm{AB}=3.4 \mathrm{~cm}, \mathrm{BC}=2.4 \mathrm{~cm}, \angle \mathrm{~A}=72^{\circ}, \angle \mathrm{B}=108^{\circ}$ and $\angle \mathrm{C}=\mathbf{1 2 0}^{\circ}$.

Solution:

Rough sketch of the quadrilateral will help us to select the sequence of steps

Step-1: Draw a line segment $\mathrm{AB}=3.4 \mathrm{~cm}$.

$$
\mathrm{A}=3.4 \mathrm{~cm} \mathrm{~B}
$$

Step-2: Draw $\overrightarrow{B X}$ such that $\angle \mathrm{ABX}=108^{\circ}$.

Step-3: Mark the point C on $\overrightarrow{\mathrm{BX}}$ such that $\mathrm{BC}=2.4 \mathrm{~cm}$

Step-4:Draw $\overrightarrow{\mathrm{AZ}}$ and $\overrightarrow{\mathrm{CY}}$ such that $\angle \mathrm{BAZ}=72^{\circ}$ and $\angle \mathrm{BCY}=120^{\circ}$ respectively. Mark their intersection point as D .

14.2.3 When four sides and one angle are given

Example 5:

Construct a quadrilateral ABCD in which $\mathrm{AB}=4.2 \mathrm{~cm}, \angle \mathrm{~A}=80^{\circ}, \mathrm{BC}=2.4 \mathrm{~cm}, \mathrm{CD}=3.3 \mathrm{~cm}$ and $\mathrm{AD}=2.4 \mathrm{~cm}$.

Solution:

Step-1: Draw a line segment $\mathrm{AB}=4.2 \mathrm{~cm}$
Step-2: Draw $\angle \mathrm{BAX}=80^{\circ}$.
Step-3: Mark D on AX, such that $A D=2.4 \mathrm{~cm}$
Step-4:Taking D as the centre and 3.3 cm as the radius, draw an arc and taking ' B ' as the centre and 2.4 cm as radius. draw another arc to intersect the previous arc at C .

Step-4: Join CD and BC. ABCD is the required quadrilateral.

14.2.4 When three consecutive sides and two included angles are given.

Example 6: Construct a quadrilateral ABCD with $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=2.8 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\angle \mathrm{C}=105^{\circ}$.

Solution:

Step-1: Draw a line segment $\mathrm{AB}=4 \mathrm{~cm}$
Step-2: Draw $\overrightarrow{\mathrm{BX}}$ such that $\angle \mathrm{ABX}=75^{\circ}$.
Step-3: Mark on $\overrightarrow{\mathrm{BX}}$ such that $\mathrm{BC}=2.8 \mathrm{~cm}$
Step-4: Draw $\overrightarrow{\mathrm{CY}}$ with makes an angle 105° with $\overrightarrow{\mathrm{BX}}$.
Step-5:Mark D on CY, such that $C D=4 \mathrm{~cm}$.
Step-6:Join AD. ABCD is the required quadrilateral.

14.2.5 When four sides and one diagonal are given

Example 7:

Construct a quadrilateral ABCD in which $\mathrm{AB}=4.6 \mathrm{~cm}, \mathrm{BC}=2.6 \mathrm{~cm}, \mathrm{CD}=3.5 \mathrm{~cm}, \mathrm{AD}=2.6 \mathrm{~cm}$ and the diagonal $\mathrm{AC}=4.9 \mathrm{~cm}$.

Solution:

Step-1: Draw a line segment $\mathrm{AB}=4.6 \mathrm{~cm}$.
Step-2: With A and B as centres, draw two arcs of radii 4.9 cm and 2.6 cm respectively to intersect each other at C.
Step-3: With C and A as centres, draw two arcs of radii 3.5 cm and 2.6 cm respectively to intersect at D.

Step-4:Join BC, CD and AD to form quadrilateral $\mathrm{ABCD} . \mathrm{ABCD}$ is the required quadrilateral.

In a parallelogram opposite sides are equal and diagonals need not be equal while diagonal bisect each other.

14.3 CONSTRUCTION OF A PARALLELOGRAM

14.3.1 When two consecutive sides and the included angle are given

Example 8:

Construct a parallelogram $A B C D$, when $A B=4 \mathrm{~cm}, B C=2.5 \mathrm{~cm}$ and $\angle B=100^{\circ}$,

Solution:

Step-1: Draw a line segment $A B=4 \mathrm{~cm}$.
Step-2: Construct line BX such that $\angle A B X=100^{\circ}$.
Step-3: Taking B as the centre and the radius $=2.5 \mathrm{~cm}$, draw an arc to cut $\overrightarrow{\mathrm{BX}}$ at C .
Step-4:With C and A as centres draw two arcs and with 4 cm and 2.5 cm as radii respectively to intersect at D .
Step-5:Join AD and CD. ABCD is the required parallelogram,

14.3.2 When two adjacent sides and one diagonal are given.

Example 9:

Construct a parallelogram $P Q R S$, when $P Q=3.7 \mathrm{~cm}, Q R=2.3 \mathrm{~cm}$ and $P R=4.8 \mathrm{~cm}$.

Solution:

Step-1: Draw a line segment $\mathrm{PQ}=3.7 \mathrm{~cm}$.
Step-2: Draw an arc with P as the centre and a radius of 4.8 cm .
Step-3: With Q as the centre and $\mathrm{QR}=2.3 \mathrm{~cm}$, draw another arc to intersect the previous arc of Step 2 at R and join QR .

Step-4: With R as the centre, draw an arc of radius 3.7 cm .
Step-5:With P as the centre, draw another arc of radius 2.3 cm to intersect the arc in step-4 at S. Join RS and PS. PQRS is the required parallelogram.

In a parallelogram, if one angle is a right angle, then it is called a rectangle. In a rectangle the diagonals are equal and they bisect each other.

14.4 CONSTRUCTION OF A RECTANGLE 14.4.1 When two adjacent sides are given

Example 10:

Construct a rectangle $P Q R S$ with $P Q=5.2 \mathrm{~cm}$ and $Q R=2.6 \mathrm{~cm}$.

Solution:

Step-1: Draw PQ = 5.2 cm
Step-2: At Q, construct a right angle, such that $\angle \mathrm{PQX}=90^{\circ}$.
Step-3: Taking Q as the centre and 2.6 cm as radius, draw an arc to cut $\overrightarrow{\mathrm{QX}}$, at R .
Step-4:With R and P as centres draw two arcs with radii 5.2 cm and 2.6 cm respectively to cut each other at S . Join PS and RS. PQRS is the required rectangle.

14.4.2 When a side and a diagonal are given.

Example 11:

Construct a rectangle PQRS with $\mathrm{PQ}=5.3 \mathrm{~cm}$ and diagonal $\mathrm{PR}=5.8 \mathrm{~cm}$.

Solution:

Step-1: Draw a line segment $\mathrm{PQ}=5.3 \mathrm{~cm}$.
Step-2: At Q, construct $\angle \mathrm{PQX}=90^{\circ}$.
Step-3: Taking P as the centre and 5.8 cm as radius, draw an arc to cut $\overrightarrow{\mathrm{QX}}$ at R .
Step-4:With R and Q as centres, 5.3 cm and 5.8 cm respectively as radii, draw two arcs to intersect each other at S.
Step-5:Join RS and PS to form the required rectangle PQRS.

14.4.3 When one diagonal and the angle between two diagonals are given

Example 12:

Construct a rectangle $P Q R S$ such that $\mathrm{PR}=\mathbf{5 . 2} \mathbf{~ c m}$ and the angle between the diagonals is 50°. Solution:

Step-1: Draw a line segment $\mathrm{PR}=5.2 \mathrm{~cm}$.
Step-2: Mark the midpoint of PR as O.
Step-3: Draw $\overleftrightarrow{X Y}$ which makes an angle of 50° with $\overline{\mathrm{PR}}$ at the point O .
Step-4: With O as the centre and with radius equal to $\frac{1}{2}(\mathrm{PR})=2.6 \mathrm{~cm}$ cut $\overrightarrow{\mathrm{OX}}$ and $\overline{\mathrm{OY}}$ at S and Q respectively,
Step-5:Join PQ, QR, RS and PS to form the required rectangle PQRS.

In a square the diagonals bisect each other at right angles and they are equal in length.

14.5 CONSTRUCTION OF A SQUARE

14.5.1 When one side is given

Example 13:

Construct a square of side $\mathbf{3} \mathbf{~ c m}$.

Solution:

Step-1: Draw a line segment $\mathrm{PQ}=3 \mathrm{~cm}$.
Step-2: Construct $\angle \mathrm{PQX}=90^{\circ}$.
Step-3: Mark the point R on $\overrightarrow{Q X}$ such that $Q R=3 \mathrm{~cm}$.
Step-4: With R and P as centres and with radii of 3 cm each draw two arcs to intersect each other at S . Step-5: Join PS and RS to form the required square PQRS.

14.5.2 When a diagonal is given.

Example 14:

Construct a square with its diagonal as 4 cm .

Solution:

Step-1: Draw a line segment $A C=4 \mathrm{~cm}$.
Step-2: Draw perpendicular bisector $X Y$ of $\overline{A C}$ to bisect $\overline{A C}$ at O.
Step-3: Mark the points B and D on $\overrightarrow{O Y}$ and $\overrightarrow{O X}$ respectively such that $O B=O D=2 \mathrm{~cm}$.
Step-4:Join AB, BC, CD and DA to form the required square $A B C D$.

In a rhombus, the diagonals need not be equal and diagonals bisect each at right angle. Pythagoras theorem can be applied to rhombus. It has all sides equal.

14.6 CONSTRUCTION OF A RHOMBUS
 14.6.1 When one side and one angle are given

Example 15:

Construct a rhombus PQRS with $\mathrm{PQ}=\mathbf{3 . 6} \mathrm{cm}$ and $\angle \mathrm{P}=50^{\circ}$.

Solution:

Step-1: Draw a line segment $\mathrm{PQ}=3.6 \mathrm{~cm}$.
Step-2: Construct $\angle \mathrm{QPX}=50^{\circ}$.
Step-3: Taking P as the centre and a radius equal to 3.6 cm , draw an arc to cut $\overrightarrow{\mathrm{PX}}$ at S such that $\mathrm{PS}=3.6 \mathrm{~cm}$.
Step-4: From Q and S, draw two arcs with radii 3.6 cm each to meet each other at R.
Step-5: Join QR and SR to form the required rhombus PQRS.

14.6.2 When one side and one diagonal are given

Example 16:

Construct a rhombus $P Q R S$ such that $P Q=3.2 \mathrm{~cm}$ and $P R=4.2 \mathrm{~cm}$.

Solution:

Step-1: Draw a line segment $\mathrm{PQ}=3.2 \mathrm{~cm}$.
Step-2: Taking P as the centre and a radius equal to 4.2 cm , draw $\mathrm{an} \operatorname{arc}$ and taking Q as centre, radius as 3.2 cm draw another arc to cut the previous arc at R .
Step-3: With R and P as centres and the radii equal to 3.2 cm each, draw two arcs to meet at S .
Step-4: Join PS, RS and QR to form Rhombus PQRS.

- Three measurements are required to construct a triangle uniquely.
- Five independent measurements are required to construct a quadrilateral uniquely.
- Three independent measurements are required to construct a parallelogram uniquely.
- Two independent measurements are required to construct a rectangle or a rhombus uniquely.
- The measurements of sides or diagonal is required to construct a square uniquely.

SOLVED EXAMPLES

Example 1 :

Construct a rhombus ABCD in which diagonal $\mathrm{AC}=6.6 \mathrm{~cm}$ and $\mathrm{AB}=5 \mathrm{~cm}$.

Solution :

First draw a rough figure.

Step of construction:

1. Draw AC $=6.6 \mathrm{~cm}$
2. With A as centre and radius equal to 5 cm , draw an arc above the line segment AC and another below AC.
3. Again with C as centre and radius equal to 5 cm , draw two arcs one above the line segment AC and another below the line segment $A C$ cutting the first two arcs at point D and B respectively.
4. Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA . Then, ABCD is the required rhombus.

Example 2:

Solution :

First draw a rough figure.

Step of construction:

1. Draw $\mathrm{AB}=5 \mathrm{~cm}$
2. With A as centre and radius equal to 5 cm , draw an arc above the line segment AC and another below AC.
3. Again with C as centre and radius equal to 5 cm , draw two arcs one above the line segment AC and another below the line segment AC cutting the first two arcs at point D and B respectively.
4. Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA . Then, ABCD is the required rhombus.

CONCEPT APPLICATION LEVEL - I [NCERT Qustions

EXERCISE - 1

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral ABCD
$\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{BC}=5.5 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{AD}=6 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$
(ii) Quadrilateral JUMP
$\mathrm{JU}=3.5 \mathrm{~cm}, \mathrm{UM}=\mathbf{4} \mathrm{cm}, \mathrm{MP}=5 \mathrm{~cm}, \mathrm{PJ}=4.5 \mathrm{~cm}, \mathrm{PU}=6.5 \mathrm{~cm}$
(iii) Parallelogram MORE
$\mathrm{OR}=6 \mathrm{~cm}, \mathrm{RE}=4.5 \mathrm{~cm}, \mathrm{EO}=7.5 \mathrm{~cm}$
(iv) Rhombus BEST
$\mathrm{BE}=4.5 \mathrm{~cm}, \mathrm{ET}=6 \mathrm{~cm}$
Sol. (i) Steps of construction

1. Draw $\mathrm{AB}=4.5 \mathrm{~cm}$
2. With A as centre and radius $\mathrm{AC}=7 \mathrm{~cm}$, draw an arc.
3. With B as centre and radius $\mathrm{BC}=5.5 \mathrm{~cm}$, draw another arc to the intersect the arc of step (2) at C.
4. With A as centre and radius $\mathrm{AD}=6 \mathrm{~cm}$, draw an arc on the side of $A C$, opposite to that of B.
5. With C as centre and radius $\mathrm{CD}=4 \mathrm{~cm}$, draw another arc to intersect the arc of step (4) at D.

6. Join BC, CD, DA and AC.

Then, ABCD is the required quadrilateral.
(ii) Steps of construction

1. Draw JU $=3.5 \mathrm{~cm}$
2. With J as centre and radius $\mathrm{JP}=4.5 \mathrm{~cm}$, draw an arc.
3. With U as centre and radius $U P=6.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 2 at P .
4. With U as centre and radius $\mathrm{UM}=4 \mathrm{~cm}$, draw an arc on the side of PU opposite to that of J .

5. With P as centre and radius $\mathrm{PM}=5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at M .
6. Join UM, MP, PJ and UP.

Then, JUMP is the required quadrilateral.
(iii) Steps of Construction

1. Draw $\mathrm{MO}=4.5 \mathrm{~cm}$
2. With M as centre and radius $\mathrm{ME}=6 \mathrm{~cm}$, draw an arc.
3. With O as centre radius $\mathrm{OE}=7.5 \mathrm{~cm}$, draw an arc to intersect the arc of step 2 at E .
4. With O as centre and radius $\mathrm{OR}=6 \mathrm{~cm}$, draw an arc on the side of OE opposite to that of M.
5. With E as centre and radius $E R=4.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at the
 E.
6. Join OR, RE, EM and EO.

Then, MORE is the required parallelogram.

(iv) Steps of Construction

1. Draw $\mathrm{BE}=4.5 \mathrm{~cm}$
2. With B as centre and BT $=4.5 \mathrm{~cm}$, draw an arc.
3. With E as centre and radius $\mathrm{ET}=6 \mathrm{~cm}$, draw another arc to intersect arc of step 2 at T .
4. With E as centre and radius $\mathrm{ES}=4.5 \mathrm{~cm}$, draw
 an arc on the side of ET opposite to that of B.
5. With T as centre and radius $\mathrm{TS}=4.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at S.
6. Join ES, ST, TB and TE.

Then, BEST is the required rhombus.

EXERCISE - 2

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral LIFT
$L I=4 \mathrm{~cm}, I F=3 \mathrm{~cm}, T L=2.5 \mathrm{~cm}, L F=4.5 \mathrm{~cm}, I T=4 \mathrm{~cm}$.
(ii) Quadrilateral GOLD
$\mathrm{OL}=7.5 \mathrm{~cm}, \mathrm{GL}=6 \mathrm{~cm}, \mathrm{GD}=6 \mathrm{~cm}, \mathrm{LD}=5 \mathrm{~cm}, \mathrm{OD}=10 \mathrm{~cm}$
(iii) Rhombus BEND

$$
\mathrm{BN}=5.6 \mathrm{~cm}, \mathrm{DE}=6.5 \mathrm{~cm}
$$

Sol. (i) Steps of construction

1. Draw $\mathrm{LI}=4 \mathrm{~cm}$.
2. With L as centre and radius $\mathrm{LT}=2.5 \mathrm{~cm}$, draw an arc.
3. With I as centre and radius $\mathrm{IT}=4 \mathrm{~cm}$, draw another arc to intersect the arc of step 2 at T .
4. With I as centre and radius $\mathrm{IF}=3 \mathrm{~cm}$, draw an arc.
5. With Las centre and radius $\mathrm{LF}=4.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at F .
6. Join IF, FT, TL, LF and IT.

Then, LIFT the required quadrilateral.

(ii) Steps of construction

1. Draw LD=5cm.
2. With L as centre and radius $\mathrm{LG}=6 \mathrm{~cm}$, draw an arc.
3. With D as centre and radius $\mathrm{DG}=6 \mathrm{~cm}$, draw another arc to intersect the arc of step 2 at G.
4. With Las centre and radius $\mathrm{LO}=7.5 \mathrm{~cm}$, draw an arc.
5. With D as centre and radius $\mathrm{DO}=10 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at O.

6. Join DG, GO, OL, LG and DO.

Then GOLD is the required quadrilateral.

(iii) Steps of Construction

1. Draw $\mathrm{DE}=6.5 \mathrm{~cm}$.
2. Draw perpendicular bisector PQ of DE. Let M be the mid-point of DE.
3. $\operatorname{Cut~MN}=\frac{1}{2} \times 5.6 \mathrm{~cm}=2.8 \mathrm{~cm}$ from MP.
4. $\operatorname{Cut} \mathrm{MB}=\frac{1}{2} \times 5.6 \mathrm{~cm}=2.8 \mathrm{~cm}$ from MQ.
5. Join DN, NE, EB and BD.

Then, BEND is the required rhombus.

EXERCISE - 3

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral MORE
$\mathrm{MO}=6 \mathrm{~cm}, \mathrm{OR}=4.5 \mathrm{~cm}, \angle \mathrm{M}=60^{\circ}, \angle \mathrm{O}=105^{\circ}, \angle \mathrm{R}=105^{\circ}$
(ii) Quadrilateral PLAN
$\mathrm{PL}=\mathbf{4} \mathrm{cm}, \mathrm{LA}=6.5 \mathrm{~cm}, \angle \mathrm{P}=90^{\circ}, \angle \mathrm{A}=110^{\circ}, \angle \mathrm{N}=85^{\circ}$
(iii) Parallelogram HEAR
$\mathrm{HE}=5 \mathrm{~cm}, \mathrm{EA}=6 \mathrm{~cm}, \angle \mathrm{R}=85^{\circ}$
(iv) Rectangle OKAY
$O K=7 \mathrm{~cm}, K A=5 \mathrm{~cm}$
Sol. (i) Steps of construction

1. Draw $\mathrm{MO}=6 \mathrm{~cm}$.
2. At O , draw ray OX such that $\angle \mathrm{MOX}=105^{\circ}$
3. $\mathrm{Cut} \mathrm{OR}=4.5 \mathrm{~cm}$ from ray OX .
4. At M, draw ray MY such that $\angle \mathrm{OMY}=60^{\circ}$
5. At R, draw ray RZ such that $\angle \mathrm{ORZ}=105^{\circ}$ Let the rays. MY and RZ meet at E .
Then, MORE is the required quadrilateral.

(ii) Steps of construction
6. Draw PL=4cm.
7. At L , draw ray LX such that $\angle \mathrm{PLX}=75^{\circ}$. By Angle-sum property of quadrilateral, $\angle \mathrm{P}+\angle \mathrm{A}+\angle \mathrm{N}+\angle \mathrm{L}=360^{\circ}$
$\Rightarrow \quad 90^{\circ}+110^{\circ}+85^{\circ}+\angle \mathrm{L}=360^{\circ}$
$\Rightarrow \quad 285^{\circ}+\angle \mathrm{L}=360^{\circ}$
$\Rightarrow \quad \angle \mathrm{L}=360^{\circ}-285^{\circ}=75^{\circ}$
8. Cut LA $=6.5 \mathrm{~cm}$ from ray LX .
9. At A, draw ray AY such that $\angle \mathrm{LAY}=110^{\circ}$.
10. At P , draw ray PZ such that $\angle \mathrm{LPZ}=90^{\circ}$. Let the rays AY and PZ meet at N .

Then, PLAN is the required quadrilateral.
(iii) Steps of construction

1. Draw $\mathrm{HE}=5 \mathrm{~cm}$.
2. At E, draw ray EX such that $\angle \mathrm{HEX}=85^{\circ}$. Opposite angles of a parallelogram are equal.
3. Cut $E A=6 \mathrm{~cm}$ from the ray $E X$.
4. With A as centre and radius $\mathrm{AR}=5 \mathrm{~cm}$, draw an arc.
5. With H as centre and radius $\mathrm{HR}=6 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at R .
6. Join AR and HR.

Then, HEAR is the required parallelogram.

(iv) Steps of construction

1. Draw $\mathrm{OK}=7 \mathrm{~cm}$.
2. At K , draw ray KX such that $\angle \mathrm{OKX}=90^{\circ}$.
3. Cut KA $=5 \mathrm{~cm}$ from ray KX .
4. Taking A as centre and radius $\mathrm{AY}=7 \mathrm{~cm}$, draw an arc.
5. Taking O as centre and radius $\mathrm{OY}=5 \mathrm{~cm}$, draw
 another arc to intersect the arc of step 4 at Y .
6. Join AY and OY.

Then OKAY is the required rectangle.

EXERCISE - 4

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral DEAR

$$
\mathrm{DE}=4 \mathrm{~cm}, \mathrm{EA}=5 \mathrm{~cm}, \mathrm{AR}=4.5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}, \angle \mathrm{A}=90^{\circ}
$$

(ii) Quadrilateral TRUE

[Sol. (i) Steps of construction

1. Draw $\mathrm{DE}=4 \mathrm{~cm}$.
2. AtE draw ray EX such that $\angle \mathrm{DEX}=60^{\circ}$.
3. From ray $E X$, cut $E A=5 \mathrm{~cm}$.
4. At A, draw ray $A Y$ such that $\angle \mathrm{EAY}=90^{\circ}$

$5 \quad$ Cut $\mathrm{AR}=4.5 \mathrm{~cm}$ from ray AY .
5. Join RD.

Then, DEAR is the required quadrilateral.
(ii) Steps of construction

1. Draw TR $=3.5 \mathrm{~cm}$.
2. At R, draw ray $R X$ such that $\angle T R X=75^{\circ}$.
3. $\operatorname{Cut} R U=3 \mathrm{~cm}$ from ray RX .
4. At U, draw ray $U Y$ such that $\angle R U Y=120^{\circ}$.
5. $\operatorname{Cut} U E=4 \mathrm{~cm}$ from ray $U Y$.

6. JoinET.

Then, TRUE is the required quadrilateral.

EXERCISE - 5

Q. 1 Draw the following:

1. The square READ with $R E=5.1 \mathrm{~cm}$.
2. A rhombus where diagonals are 5.2 cm and 6.4 cm long.
3. A rectangle with adjacent sides of lengths 5 cm and 4 cm .
4. A parallelogram $O K A Y$ where $O K=5.5 \mathrm{~cm}$ and $K A=4.2 \mathrm{~cm}$.

Sol. (1) Steps of construction

1. Draw $\mathrm{RE}=5.1 \mathrm{~cm}$.
2. At R, draw a ray $R X$ such that $\angle E R X=90^{\circ}$.
3. From ray RX , cut $\mathrm{RD}=5.1 \mathrm{~cm}$.
4. At E , draw a ray EY such that $\angle \mathrm{REY}=90^{\circ}$.
5. From ray EY, cut $\mathrm{EA}=5.1 \mathrm{~cm}$.
6. Join AD.

Then, READ is the required square.

(2) Steps of Construction

1. Draw $\mathrm{AC}=5.2 \mathrm{~cm}$.
2. Construct its perpendicular bisector.Let them meet at O.
3. Cut off $\frac{6.4}{2}=3.2 \mathrm{~cm}$ lengths on of the drawn
 bisector, we get B and D .
4. Join AB, BC, CD and DA.

Then, ABCD is the required rhombus.
(3) Steps of Construction

1. Draw $\mathrm{PQ}=5 \mathrm{~cm}$.
2. At Q , draw a ray QX such that $\angle \mathrm{PQX}=90^{\circ}$.
3. From ray QX , cut $\mathrm{QR}=4 \mathrm{~cm}$.
4. Through P , draw a ray PY parallel to QR .
5. Through R , draw a ray RZ parallel to QP to meet the ray of step 4 at S.
Then, PQRS the required rectangle.
(4) Steps of Construction
6. Draw $\mathrm{OK}=5.5 \mathrm{~cm}$.
7. At K, draw a ray $K X$.
8. From ray KX , cut $\mathrm{KA}=4.2 \mathrm{~cm}$.
9. Through A, draw a ray AT parallel to KO.
10. Through O, draw a ray OZ parallel to KA to

cut the ray of step 4 at Y.
Then, OKAY is the required parallelogram.

TRYTHESE

Q. 1 Arshad has five measurements of a quadrilateral ABCD . These are $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~A}=50^{\circ}$, $A C=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$. Can he construct a unique quadrilateral?
Give reasons for your answer.
Sol. We cannot construct a unique quadrilateral because
(i) We can construct $\triangle \mathrm{ABD}$ but not $\triangle \mathrm{BCD}$
(ii) Neither we can construct $\triangle \mathrm{ACD}$ not $\triangle \mathrm{ABC}$.
Q. 2 (i) We saw that 5 measurements of a quadrilateral can determine a quadrilateral uniquely. Do you think any five measurements of the quadrilateral can do this?
(ii) Can you draw a parallelogram BATS where $\mathrm{BA}=5 \mathrm{~cm}, \mathrm{AT}=6 \mathrm{~cm}$ and $\mathrm{AS}=6.5 \mathrm{~cm}$? Why?
(iii) Can you draw a rhombus ZEAL where $\mathrm{ZE}=3.5 \mathrm{~cm}$, diagonal $\mathrm{EL}=5 \mathrm{~cm}$? Why?
(iv) A student attempted to draw a quadrilateral PLAY where $P L=3 \mathrm{~cm}, L A=4 \mathrm{~cm}$, $A Y=4.5 \mathrm{~cm}, P Y=2 \mathrm{~cm}$ and $\mathrm{LY}=6 \mathrm{~cm}$, but could not draw it. What is the reason?
Sol. (i) No! Any five measurements cannot determine a quadrilateral uniquely. To determine a quadrilateral uniquely, we require any one of the following sets of measurements.
(a) four sides and one diagonal.
(b) two sides and three diagonals.
(c) two adjacent sides and three angles.
(d) three sides and two included angles.
(ii) Yes, we can draw a parallelogram BATS, where $\mathrm{BA}=5 \mathrm{~cm}, \mathrm{AT}=6 \mathrm{~cm}$ and $\mathrm{AS}=6.5 \mathrm{~cm}$ because the opposite sides of a parallelogram are equal in length.
(iii) Yes! we can draw a rhombus ZEAL because all the four sides of a rhombus are equal in length.
(iv) The students could not draw it because PL $+\mathrm{PY}<\mathrm{LY}$. Actually the sum of the lengths of any two sides of a triangle must always be greater than the length of the third side.
Q. 3 How will you construct a rectangle PQRS if you know only the lengths PQ and QR?

Sol. Steps of construction

1. Draw PQ of given length.
2. At Q , draw a ray QX such that $\angle \mathrm{PQX}=90^{\circ}$.
3. From ray QX , cut QR of given length.
4. Through P, draw a ray PY parallel to QR.
5. Through R, draw a ray RZ parallel to QP to meet the ray of step 4 at S.
Then, PQRS the required rectangle.

Q. 4 Construct the kite EASY, if $A Y=8 \mathrm{~cm}, E Y=4 \mathrm{~cm}$ and $S Y=6 \mathrm{~cm}$. Which properties of the kite did you use in the process.
Sol. Kite EASY cannot be constructed with the given measurements as a kite has two pairs of equal consecutive sides. Here,
$\mathrm{AE}=\mathrm{EY}=4 \mathrm{~cm}$
$\mathrm{AY}=8 \mathrm{~cm}$
$\therefore \mathrm{AE}+\mathrm{EY}=8 \mathrm{~cm}=\mathrm{AY}$
which is not possible as the sum of the lengths of any two sides of a triangle must be greater than the third side.

CONCEPT ApPLCATION LEVEL-II

Q. 1 Construct a quadrilateral ABCD having given $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4.5 \mathrm{~cm}$, $\mathrm{DA}=5 \mathrm{~cm}$ and $\angle \mathrm{B}=60^{\circ}$.

Sol. Steps of Construction:

1. $\operatorname{Draw~} \mathrm{AB}=3.5 \mathrm{~cm}$.
2. At B draw $\angle \mathrm{ABY}=60^{\circ}$.
3. Cut off from $B Y$, a segment $B C=4 \mathrm{~cm}$
4. With A as centre and radius 5 cm draw an arc.

5. With C as centre and radius 4.5 cm draw an arc cutting the first arc at D .
6. Join A to D and also C to D . Then ABCD is the required quadrilateral.
Q. 2 Construct a quadrilateral ABCD , given $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}, \mathrm{AD}=3.5 \mathrm{~cm}$, diagonal $A C=5 \mathrm{~cm}$ and diagonal $\mathrm{BD}=6 \mathrm{~cm}$.
Sol. Steps of Construction:
7. Draw $\mathrm{BC}=3 \mathrm{~cm}$.
8. With B as centre and radius 4 cm draw an arc.
9. With C as centre and radius 5 cm draw an arc cutting the first arc at A .
10. Join B to A and also C to A .
11. With A as centre and radius 3.5 cm draw an arc.

12. with B as centre and radius 6 cm draw an arc cutting the first arc at D.
13. Join C to D, B to D and also A to D.

Then ABCD is the required quadrilateral.
Q. 3 Construct a quadrilateral $A B C D$, given $A B=5 \mathrm{~cm}, B C=4 \mathrm{~cm}, \angle B=60^{\circ}, \angle A=90^{\circ}$ and $\angle \mathrm{C}=135^{\circ}$.

Sol. Steps of Construction:

1. Draw $\mathrm{AB}=5 \mathrm{~cm}$.
2. $A t B$ draw $\angle \mathrm{ABY}=60^{\circ}$
3. From BY cut off $B C=4 \mathrm{~cm}$
4. At A draw $\angle \mathrm{BAX}=90^{\circ}$.
5. \quad At C draw $\angle \mathrm{BCD}=135^{\circ}$, so
that its arm CD cuts AX at D .

Then ABCD is the required quadrilateral.
Q. 4 Construct a parallelogram ABCD , given that $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=5.5 \mathrm{~cm}$ and $\angle \mathrm{B}=75^{\circ}$.

Sol. Steps of Construction:

1. Draw $\mathrm{BC}=5.5 \mathrm{~cm}$.
2. At B draw $\angle \mathrm{CBY}=75^{\circ}$.
3. From BY, cut off $B A=3.5 \mathrm{~cm}$.
4. With A as centre and radius $5.5 . \mathrm{cm}$ draw an arc.
5. With C as centre and radius 3.5 cm draw another arc cutting the first arc at D .
6. Join A to D and C to D . Then ABCD is the required parallelogram.
Q. 5 Construct a parallelogram ABCD , given that $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$ and diagonal $\mathrm{BD}=6.5 \mathrm{~cm}$.
Sol. Steps of Construction:
7. Draw $\mathrm{AB}=5.5 \mathrm{~cm}$.
8. With A as centre and radius 4 cm draw an arc.
9. With B as centre and radius 6.5 cm draw another arc cutting the first arc at D.
10. Joint A to D
11. Now with D as centre and radius $5.5 \mathrm{~cm}(=\mathrm{AB})$ draw an arc.
12. With B as centre and radius $4 \mathrm{~cm}(=\mathrm{AD})$ draw another arc cutting the arc of step 5 at C .
13. Join D to C and also B to C .

Then ABCD is the required parallelogram.

Q. 6 Construct a parallelogram ABCD , given that $\mathrm{AC}=4.5 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}$ and the angle between the diagonals is 30°.
Sol. Steps of Construction:

1. Draw $\mathrm{AC}=4.5 \mathrm{~cm}$.
2. Draw PQ , the perpendicular bisector of AC meeting AC at O .
3. Through O draw a line XY making $\angle \mathrm{XOC}=30^{\circ}$.
4. Cut off $\mathrm{OD}=\mathrm{OB}=2 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{BD}\right)$ from XY .
5. Joint A to B, B to C, C to D and A to D.

Then ABCD is the required parallelogram.

Q. 7 Construct a square ABCD , given that diagnonal $\mathrm{AC}=6 \mathrm{~cm}$.

Sol. Steps of Construction:

1. Draw a segment $\mathrm{AC}=6 \mathrm{~cm}$.
2. Draw XY , the right bisector of AC meeting AC at O .
3. Cut off $\mathrm{OD}=\mathrm{OB}=3 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{AC}\right)$ from OX and OY respectively.
4. Join A to B, B to C, C to D and A to D .

Then ABCD is the required square.

Q. 8 Construct a rectangle ABCD whose diagonal $\mathrm{AC}=6 \mathrm{~cm}$ and the angle between the diagonals is 30°.
Sol. Steps of Construction:

1. Draw $\mathrm{AC}=6 \mathrm{~cm}$.
2. Bisect AC at O .
3. AtO, draw XY making $\angle \mathrm{COX}=30^{\circ}$.
4. Cut off $\mathrm{OB}=\mathrm{OD}=3 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{AC}\right)$.
5. Join A to B, B to C, C to D and A to D .

Then ABCD is the required rectangle.

Q. 9 Construct a rectangle ABCD given that side $\mathrm{AB}=5 \mathrm{~cm}$ and the diagonal $\mathrm{AC}=5.5 \mathrm{~cm}$.

Sol. Steps of construction:

1. Draw $\mathrm{AB}=5 \mathrm{~cm}$.
2. AtB, draw $\mathrm{BP} \perp \mathrm{AB}$.
3. With A as centre and radius 5.5 cm draw an arc cutting BP at C .
4. With C as centre and radius 5 cm draw an arc.
5. With A as centre and radius equal to BC draw another arc cutting the first arc at D .
6. Join A to D and also C to D .

Then ABCD is the required rectangle.

Q. 10 Construct a rhombus ABCD given that side $\mathrm{AB}=4.5 \mathrm{~cm}$ and a diagonal is 7 cm .

Sol. Step of Construction:

1. Draw $\mathrm{AC}=7 \mathrm{~cm}$.
2. With A and C as centres and radius 4.5 cm draw arcs on both sides of CC , cutting each other at B and D.
3. Join A to B, C to B and C to D, A to D.

Then ABCD is the required rhombus.

Q. 11 Construct a rhombus $A B C D$ whose diagonals $A C$ and $B D$ are 7 cm and 5 cm respectively.

Sol. Step of Construction:

1. Draw $\mathrm{AC}=7 \mathrm{~cm}$
2. Draw PQ , the perpendicular bisector of AC , meeting AC at O .
3. From OP and OQ cut off $\mathrm{OD}=\mathrm{OB}=2.5 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{BD}\right)$ respectively.
4. Join A to B, B to C, C to D and D to A.

Then $A B C D$ is the required rhombus.

Q. 12 To construct a unique rectangle, the minimum number of measurements required is
[IMO-2016]
(A) 4
(B) 3
(C) 2
(D) 1
Q. 13 Given below are the steps of construction to construct a quadrilateral ABCD where $\mathrm{AB}=5.6 \mathrm{~cm}$, $\mathrm{BC}=4.1 \mathrm{~cm}, \mathrm{CD}=4.4 \mathrm{~cm}, \mathrm{AD}=3.3 \mathrm{~cm}$ and $\angle \mathrm{A}=75^{\circ}$. Which of the following is INCORRECT step?
Step-I : Draw $\mathrm{AB}=5.6 \mathrm{~cm}$ and construct $\angle \mathrm{BAX}=75^{\circ}$.
Step-II: With A as centre and radius $=3.3 \mathrm{~cm}$, cut off AD $=3.3 \mathrm{~cm}$ along AX.
Step-III : Join BD. With D as centre and radius $=4.1 \mathrm{~cm}$, draw an arc.
Step-IV : With B as centre and radius $=4.1 \mathrm{~cm}$, draw an arc to cut the arc drawn in above step at C . Join BC, CD to obtain the required quadrilateral ABCD .
[IMO-2016]
(A) Step-I
(B) Step-II
(C) Step-III
(D) Step-IV

ANSWER KEY \rightarrow Q. $12 \quad$ C \quad Q. $13 \quad$ C

