6

FACTORIZATION

6.1 INTRODUCTION

In this chapter, we shall do the other way round, that is, we shall find two or more algebraic expressions whose product is equal to the given expression. The process of writing a given algebraic expression as the product of two or more expressions will be known as the factorization of the expression.

FACTORS If an algebraic expression is written as the product of numbers or algebraic expressions, then each of these numbers and expressions are called the factors of the given algebraic expression and the algebraic expression is called the product of these expressions.

Factorization : The process of writing a given algebraic expression as the product of two or more factors is called factorization.

Factors of a Monomial : Factors of a monomial consist of every literal, their product and number that will divide it exactly.

6.2 COMMON FACTORS AND GREATEST COMMON FACTOR OF MONOMIALS

Greatest common factor (GCF) or highest common factor (HCF) : The greatest common factor of given monomials is the common factor having greatest coefficient and highest power of the variables.

The following step-wise procedure will be helpful to find the GCFof two or more monomials.

Illustration 1

Find the greatest common factors of the monomials $14x^2y^3$, $21x^2y^2$, $35x^4y^5z$. Solution

The numerical coefficients of the given monomials are 14, 21 and 35 The greatest common factor of 14, 21 and 35 is 7 The common literals appearing in the three monomials are x and y The smallest power of 'x' in the three monomials = 2 The smallest power of 'y' in the three monomials = 2 The monomials of common literals with smallest power = x^2y^2 Hence, the greatest common factor = 7 x^2y^2 .

THEORY

6.3 FACTORISATION OF POLYNOMIALS

CASE I : When we have an Expression of the type ax + ay

By inspection, we find the greatest monomial factor which can divide each term of the expression.

Illustration 2

Factorise $3x^2 - 9xy + 12xy^2$

Solution

 $3x^{2} = 3 \times x \times x$ $9xy = 3 \times 3 \times x \times y$ $12xy^{2} = 3 \times 4 \times x \times y \times y$ H.C.F. is 3x $3x^{2} - 9xy + 12 \ xy^{2} = 3x \ (x - 3 \times y + 4 \times y \times y)$ $= 3x \ (x - 3y + 4y^{2})$

Illustration 3

Factorise x + 3 - 6xy - 18y

Solution

$$x+3-6xy-18 y = (x+3)-6y (x+3)$$
$$= (x+3) (1-6y)$$

Case II : Factorisation with the help of Algebraic Identities

Let us recall the following algebraic identities :

 $(x + y)^2 = x^2 + 2xy + y^2$ $(x - y)^2 = x^2 - 2xy + y^2; (x + y) (x - y) = x^2 - y^2$ $(x + a)(x + b) = x^2 + (a + b) x + ab$ Thus, we can say that Factors of $x^2 + 2xy + y^2$ are x + y and x + yFactor of $x^2 - 2xy + y^2$ are x - y and x - yFactors of $x^2 + (a + b) x + ab$ are x + a and x + bOn the basis of the above discussion let us deal with the following examples of factorisation.

A. Factorisation by using the Identities : $x^2 \pm 2xy + y^2 = (x \pm y)^2$

Illustration 4

```
Factorise : 25x^2 - 20x + 4
Solution
25x^2 - 20x + 4
\downarrow \qquad \uparrow \qquad \downarrow
= (5x)^2 - 2 \times 5x \times 2 + (2)^2
= (5x - 2)^2 = (5x - 2) (5x - 2)
```

Note that in these two examples in second step two arrows are downward and one arrow is upward. This shows that in the second step first we write 1st and 3rd terms on the basis of given terms and then write the middle term to complete the formula and then compare it with given middle term.

B. Factorisation by Using the Identity $x^2 - y^2 = (x + y)(x - y)$

Illustration 5

Factorize 121x² – 81y²

Solution $121x^2$

 $121x^2 - 81y^2 = (11x)^2 - (9y)^2$ (Using identity $x^2 - y^2 = (x - y) (x + y)$ = (11x - 9y) (11x + 9y)

C. Factorisation of Trinomial $x^2 + mx + n$ By splitting up the middle terms or factorisation by using the identity : $x^2 + (a + b) x + ab = (x + a)(x + b).$

We can find out two numbers a and b positive or negative, such that (a + b) is the same as the coefficient of x whereas the product ab is equal to the constant term in the given expression.

Let us consider examples to explain the above process.

Illustration 6

Factorise $x^2 + 6x + 8$.

Solution

```
Here we have to find out two numbers a and b such that :
a + b = 6 (the coefficient of x)
ab = 8 (constant term)
Thus given polynomial can be written as x^2 + 2x + 4x + 8
                                       = (x^{2} + 2x) + (4x + 8)
[Here 4 terms obtained in 2<sup>nd</sup> step have been written as sum of two groups].
                                       = (x + 2) (x + 4)
Again x + 2 which is common in both terms, has been taken out
                        or
       x^2 + 6x + 8
Here a = 4 and b = 2
       x^{2} + (4 + 2) x + (x \times 2)
...
       (x + 4) (x + 2)
\Rightarrow
(Using Identity x^2 + (a + b) x + ab = (x + a)(x + b)
```

6.4 DIVISION OF POLYNOMIALS 6.4.1 Division of a Monomial by Another Monomial

To divide a monomial by another monomial, follow the following steps :

Step 1 : Find the quotient of the numeical coefficients.

Step 2 : Find the quotient of the variables.

Step 3 : Find the product of the results obtained in steps 1 and 2.

Illustration 7

Divide $108x^3 y^3 z^7 by - 120x^2 y^2 z^2$

Solution

$$\frac{108x^3y^3z^7}{-120x^2y^2z^2} = \frac{-9}{10}xyz^5$$

Thus,
$$108x^3y^3z^7 \div (-120x^2y^2z^2) = \frac{-9}{10}xyz^5$$

Illustration 8

Divide
$$96x^3y^3z^2 - 36x^2y^2z^2 - 60xyz$$
 by $- 12xyz$

Solution

$$(96x^{3}y^{3}z^{2}-36x^{2}y^{2}z^{2}-60xyz) \div (-12xyz)$$

$$= \frac{96x^{3}y^{3}z^{2}-36x^{2}y^{2}z^{2}-60xyz}{-12xyz}$$

$$= \frac{96x^{3}y^{3}z^{2}}{-12xyz} - \frac{36x^{2}y^{2}z^{2}}{-12xyz} - \frac{60xyz}{-12xyz} = -8x^{2}y^{2}z + 3xyz + 5$$

6.4.2 Division of a Polynomial by Another Polynomial

A. Factorisation Method

Consider $(3x^2 + 12 x)$ divided by x + 4We can write the factors fo $3x^2 + 12x$ as 3x(x + 4)

Now
$$\frac{3x^2 + 12x}{x+4} = \frac{3x(x+4)}{(x+4)} = 3x$$

Illustration 9

Divide
$$9x^2 - 16y^2$$
 by $3x - 4y$

Solution

$$\frac{9x^2 - 16y^2}{3x - 4y} = \frac{(3x)^2 - (4y)^2}{3x - 4y} \text{ [Applying the identity } x^2 - y^2 = (x - y)(x + y)\text{]}$$
$$= \frac{(3x - 4y)(3x + 4y)}{3x - 4y} = 3x + 4y$$

Illustration 10

Divide $x^2 - 9x + 14$ by x - 2

Solution

$$\frac{x^2 - 9x + 14}{x - 2} = \frac{x^2 - 7x - 2x + 14}{x - 2} = \frac{x(x - 7) - 2(x - 7)}{x - 2}$$
$$= \frac{(x - 7)(x - 2)}{x - 2} = x - 7$$

B. Method of Long Division

1. Divide the first term (x^2) of the divident by the first term (x) of the divisor $x^2 \div x = x$

Thus, x is the first term of the quotient

- 2. Multiply the divisor (x + 1) by the first term of the quotient obtained is step 1.
- 3. Write the like terms of the product $x (x + 1) = x^2 + x$ below the terms of the dividend such that like terms are placed below each other and subtract. $(x^2 + 3x + 2) - (x^2 + x) = 2x + 2$
- 4. Now, divide the first term of the remainder (2x) by the first term (x) of the divisor $2x \div x = 2$

Thus, 2 is the next term of the quotient.

- 5. Multiply the divisor (x + 1) by the next term of the quotient (2) obtained in previous step.
- 6. Write the terms of the product 2(x + 1) = 2x + 2 below terms of 2x + 2 (remainder obtained in step 3) such that like terms are placed below each other and subtract

(2x + 2) - (2x + 2) = 0

Thus, the remainder is 0 and the quotient is x + 2

To verify the result

We know

 $Dividend = Divisor \times Quotient + Remainder$ x + 2R.H.S. = Divisor \times Quotient = Remainder x+1) $x^2 + 3x + 2$ $= (x + 1) \times (x + 2) + 0$ $x^2 \pm x$ = x(x + 2) + 1 (x + 2) + 02x + 2= x(x) + x(2) + x + 2 $2x \pm 2$ $= x^{2} + 2x + x + 2$ 0 $= x^{2} + 3x + 2$ L.H.S. = Dividend = $x^2 + 3x + 2$ L.H.S. = R.H.S. Hence, verified, that the answer is correct. As

SOLVED EXAMPLES

Example 1

Find the greatest common factor of $6x^3$ and $15 x^2y$.

Solution

Highest common factor of 6 and 15 is 3 and the highest common factor of x^3 and x^2y is x^2 . Hence, the highest common factor of $6x^3$ and $15x^2y$ is $3 \times x^2 = 3x^2$.

Example 2

Factorise ax + by + bx + aySolution ax + by + bx + ay = (ax + bx) + (by + ay)= x(a + b) + y (b + a)= (a + b)(x + y)

Example 3

Factorise 4a ² – 25	
Solution	

Solution

 $4a^{2} - 25 = (2a)^{2} - 5^{2}$ = (2a + 5)(2a - 5) [:: a^{2} - b^{2} = (a + b) (a - b)]

Example 4

(i)
$$4x^2 + 12x + 9$$
 (ii) $16 - 24x + 9x^2$
Solution
(i) $4x^2 + 12x + 9$
 $= (2x)^2 + 2 \times 2x \times 3 + 3^2$
 $= (2x + 3)^2 = (2x + 3)(2x + 3)$ [\because $(a + b)^2 = a^2 + 2ab + b^2$]
(ii) $16 - 24x + 9x^2 = 4^2 - 2 \times 4 \times 3x + (3x)^2$
 $= (4 - 3x)^2 = (4 - 3x)(4 - 3x)$ [\because $(a - b)^2 = a^2 - 2ab + b^2$]

Example 5

Factorise : (i) $q^2 - 10q + 21$ (ii) $p^2 + 6p - 16$ (iii) $3x^2 - 9x - 12$ **Solution** We have $q^2 - 10q + 21$ (i) Here a + b = -10 and ab = 21For a = -7 and b = -3, we have a + b = -10 and ab = 21. $q^2 - 10q + 21 = q^2 - 7q - 3q + 21$ So. =q(q-7)-3(q-7)= (q - 7) (q - 3)We have $p^2 + 6p - 16$ (ii) Here a + b = 6 and ab = -16For a = 8 and b = -2, we have a + b = 6 and ab = -16

So,
$$p^2 + 6p - 16 = p^2 + 8p - 2p - 16$$

= $p(p+8) - 2 (P+8)$
= $(p+8)(p-2)$

(iii) We have
$$3x^2 - 9x - 12 = 3(x^2 - 3x - 4)$$

Here $a + b = -3$ and $ab = -4$
For $a = -4$ and $b = 1$, we have
 $a + b = -3$ and $ab = -4$
So, $3(x^2 - 3x - 4) = 3(x^2 - 4x + x - 4)$
 $= 3\{x(x - 4) + 1(x - 4)\}$
 $= 3(x - 4)(x + 1)$

Factorise completely $x^4 - y^4$

Solution

$$\begin{aligned} x^4 - y^4 &= (x^2)^2 - (y^2)^2 \\ &= (x^2 - y^2)(x^2 + y^2) \\ &= [(x)^2 - (y)^2] (x^2 + y^2) \end{aligned}$$

[Using identity $a^2 - b^2 = (a - b)(a + b)$] [Using identity $a^2 - b^2 = (a - b)(a + b)$]

Example 7

Factorise : $(p-q)^2 - (p+q)^2$

Solution

 $(p-q)^2 - (p+q)^2 = (p-q+p+q)(p-q-p-q)$ [Using identity $a^2 - b^2 = (a+b)(a-b)$] = 2p(-2q) = -4pq

Example 8

Factorise : (i) $25a^2 - 4b^2 + 28bc - 49c^2$ (ii) $x^4 - (x - z)^4$ (iii) $a^4 - 2a^2b^2 + b^4$ Solution (i) $25a^2 - 4b^2 + 28bc - 49c^2$ $= 25a^2 - (4b^2 - 28bc + 49c^2)$ $= 25a^2 - \{(2b)^2 - 2 \times (2b) \times (7c) + (7c)^2\}$ $= (5a)^2 - (2b - 7c)^2$ = (5a + 2b - 7c)(5a - 2b + 7c)

(ii)
$$x^4 - (x - z)^4 = [x^2]^2 - [(x - z)^2]$$

= $\{x^2 - (x - z)^2\} \{x^2 + (x - z)^2\}$
= $\{(x - x + z) (x + x - z)\} \{x^2 + x^2 + z^2 - 2zx\}$
= $z (2x - z) (2x^2 + z^2 - 2xz)$

(iii)
$$a^4 - 2a^2b^2 + b^4 = (a^2)^2 - 2a^2b^2 + (b^2)^2$$

= $(a^2 - b^2)^2 = \{(a - b)(a + b)\}^2$
= $(a - b)^2 (a + b)^2$

Factorise the expressions and divide them as directed : (ii) $39y^3 (50y^2 - 98) \div 26y^2 (5y + 7)$ (i) $(m^2 - 14m - 32) \div (m + 2)$ **Solution** $(m^2 - 14m - 32) \div (m + 2)$ (i) $Dividend = m^2 - 14 m - 32$ $= m^2 - 16m + 2m - 32$ = m (m - 16) + 2 (m - 16)=(m-16)(m+2) $(m^2 - 14m - 32) \div (m + 2) = \frac{(m - 16)(m + 2)}{(m + 2)} = m - 16$ *.*.. Here, the dividend = $39y^3(50y^2 - 98)$ (ii) $= 39y^3 \times 2(25y^2 - 49)$ $= 2 \times 3 \times 13 \times y^3 [(5y)^2 - (7)^2]$ $= 2 \times 3 \times 13 \times y^3 (5y + 7)(5y - 7)$ $39y^{3} (50y^{2} - 98) \div 26y^{2} (5y + 7) = \frac{2 \times 3 \times 13 \times y^{3} (5y + 7)(5y - 7)}{2 \times 13 \times y^{2} (5y + 7)}$... = 3v(5v-7)

Example 10

Divide $5x - 6 + x^2$ by x - 1 and verify that Dividend = divisor × quotient + remainder. Solution

Step1. Write $5x - 6 + x^2$ in descending order as $x^2 + 5x - 6$.

$$\begin{array}{r} x+6 \\ x-1 \overline{\smash{\big)} x^2 + 5x - 6} \\ x^2 - x \\ - \\ \hline 6x-6 \\ 6x-6 \\ - \\ \hline - \\ \times \end{array}$$

- **Step 2.** Divide x² (first term of the dividend) by x (first term of the divisor). We get first term of the quotient as x.
- **Step3.** Multiply (x-1) (while divisor) by x (first term of the quotient), we get $x^2 x$ as product. Subtract $(x^2 - x)$ from $(x^2 + 5x - 6)$ (dividend), we get (6x - 6).
- **Step 4.** Divide 6x (first term of the remainder) by x, we get + 6 as quotient.
- **Step5.** Multiply (x-1) (while divisor) by + 6 (second term of the quotient). Finally we see that in this case the remainder is zero.

Check : We know that

Divident = (Divisor × Quotient) + Remainder

$$x^{2} + 5x - 6 = (x - 1) \times (x + 6) + 0 = x \times (x + 6) - 1 \times (x + 6)$$

= $x^{2} + 6x - x - 6 + 0 = x^{2} + 5x - 6$

 \therefore the division is correct.

Divide : (i) $27x^3 - 64$ by 3x - 4

(ii) $15x^4 + 6x^3 - 7x^2 + 11x - 21$ by $3x^2 + 4$

Solution

 $27x^{3} - 64$ can be written as $27x^{3} + 0x^{2} + 0x - 64$ Thus, quotient is $9x^{2} + 12x + 16$

$$\begin{array}{r}
\frac{9x^{2} + 12x + 16}{3x - 4} \\
3x - 4 \overline{\smash{\big)}27x^{3} + 0x^{2} + 0x - 64} \\
\underline{27x^{3} \mp 36x^{2}} \\
36x^{2} + 0x - 64 \\
\underline{36x^{2} \mp 48x} \\
48x - 64 \\
\underline{48x \mp 64} \\
x
\end{array}$$

Example 12

Factorise $10x^2 + 15xy^2 + 20z^2$ **Solution** $10x^2 = 2 \times 5 \times x \times x$ $15xy^2 = 3 \times 5 \times x \times y \times y$ $20z^2 = 2 \times 2 \times 5 \times z \times z$ $10x^{2} + 15xy + 20z^{2} = 2 \times 5 \times x \times y \times y + 2 \times 2 \times 5 \times z \times z$ *.*. The common factor is only 5. By taking out the common factors, we have ·. $10x^{2} + 15 xy^{2} + 20z^{2} = 5 \times (2 \times x \times x + 3 \times x \times y \times y + 4 \times z \times z)$ $15 \text{ xy}^2 = 3 \times 5 \times \text{x} \times \text{y} \times \text{y}$ $20 z^2 = 2 \times 2 \times 5 \times z \times z$ By taking out the common factors, we have ... $10x^{2} + 15xy^{2} + 20z^{2} = 5 \times (2 \times x \times x + 3 \times x \times y \times y + 2 \times 2 \times z \times z)$ $=5(2x^2+3xy^2+4z^2)$

Example 13

Find the highest common factor in each of the following.

(a) 45 $\vec{x^3y^2}$ and 30 x^4y (b) 20 a^2b^2 and 25 ab^2 Solution (a) 45 x^3y^2 and 30 x^4y $45x^3y^2 = 3 \times 3 \times 5 \times x \times x \times x \times y^2$ $30 x^4y = 3 \times 2 \times 5 \times x \times x \times x \times x \times y$ Highest common factor = $3 \times 5 \times x \times x \times x \times y = 15x^3y$

(b) 20
$$a^{2}b^{2}$$
 and 25 ab^{2}
20 $a^{2}b^{2} = 2 \times 2 \times 5 \times a \times a \times b \times b$
25 $ab^{2} = 5 \times 5 \times a \times b \times b$
Highest common factor = 5 × a × b × b = 5 ab^{2}

Factorise $9x^2 + 24xy + 16y^2$

Solution

We have,
$$9x^2 = (3x)^2$$
 and $16y^2 = (4y)^2$
 $24xy = 2 \times 3x \times 4y$
 $\therefore \quad 9x^2 + 24xy + 16y^2 = (3x)^2 + 2 \times 3x \times 4y + (4y)^2$
Comparing with $(a + b)^2 = a^2 + 2ab + b^2$
Here, $a = 3x$ and $b = 4y$
 $\therefore \quad 9x^2 + 24xy + 16y^2 = (3x + 4y)^2$

Example 15

Factorise
$$16a^2 - 40xy + 25y^2 = (4a)^2 - 2 \times 4a \times 5y + (5y)^2$$

Solution

We see that the first term and the last term are perfect squares and the second term has a negative sign. $16a^2 = (4a)^2$, $25y^2 = (5y)^2$ $40ay = 2 \times 4a \times 5y$

Clearly, this can be compared with $(a - b)^2 = a^2 - 2ab + b^2$ Here, a = 4a and b = 5y $\therefore 16a^2 - 40 ay + 25y^2 = (4a)^2 - 2 \times 4a \times 5y + (5y)^2$ which is the factorised form of the given compared on

expression.

 \therefore 16a² - 40ay + 25y² = (4a - 5y)²

Example 16

Factorise $25x^2 - 30xy + 9y^2 - 121$.

Solution

The first three terms taken together is given by $25x^2 - 30xy + 9y^2 = (5x)^2 - 2 \times 5x \times 3y + (3y)^2 = (5x - 3y)^2$ [Using the identity $(a - b)^2 = a^2 - 2ab + b^2$ where a = 5x, b = 3y] $\therefore 25x^2 - 30xy + 9y^2 - 121 = (5x - 3y)^2 - (11)^2$ We now use the identity on difference of square i.e., $a^2 - b^2 = (a + b)(a - b)$ where a = 5x - 3y and b = 11 $\therefore (5x - 3y)^2 - (11)^2 = (5x - 3y + 11)(5x - 3y - 11)$ This is the required factorisation.

Example 17

Factorise 64p⁴ – 25q⁴

Solution

 $64p^4 = (8p^2)^2$ and $25 q^4 = (5q^2)^2$ $64p^4 - 25q^4 = (8p^2)^2 - (5q^2)^2$ We use the identity on difference of squares, $a^2 - b^2 = (a + b)(a - b)$ [Here $a = 8p^2$, $b = 5q^2$] $\therefore 64p^4 - 25q^4 = (8p^2 + 5q^2) (8p^2 - 5q^2)$ These are the factors of the given expression.

Example 18 Divide $4p^8 - 6p^6 + 5p^4$ by p^4 Solution $4p^8 - 6p^6 + 5p^4 \div p^4$ $4p^8 - 6p^6 + 5p^4$ has a common factor p^4 . $\therefore 4p^8 - 6p^6 + 5p^4 = p^4 (4p^4 - 6p^2 + 5)$ $\therefore \frac{4p^8 - 6p^6 + 5p^4}{p^4} = p^4 \frac{(4p^4 - 6p^2 + 5)}{p^4} = 4p^4 - 6p^2 + 5$

Example 19

Divide $9x^2 - 16y^2$ by 3x - 4y

Solution

$$\frac{9x^2 - 16y^2}{3x - 4y} = \frac{(3x)^2 - (4y)^2}{3x - 4y} \text{ [Applying the identity } x^2 - y^2 = (x - y)(x + y)\text{]}$$
$$= \frac{(3x - 4y)(3x + 4y)}{3x - 4y} = 3x + 4y$$

Example 20

Find the quotient and the remainder when $2x^4 - 3x^3 + x^2 + 1$ is divided by x - 2. Solution

$$\begin{array}{r} 2x^{3} + x^{2} + 3x + 6 \\
x - 2 \overline{\smash{\big)}}2x^{4} - 3x^{3} + x^{2} + 1 \\
2x^{4} - 4x^{3} \\
 - + \\
 \overline{}x^{3} + x^{2} \\
 x^{3} - 2x^{2} \\
 - + \\
 \overline{}x^{2} \\
 - + \\
 \overline{}x^{2} - 6x \\
 - \\
 - + \\
 \overline{}x^{2} - 6x \\
 - \\
 -$$

(Since dividend is having no term containing 'x', so space has been left blank for this term) (Since after 'x²' one space is blank in the dividend, therefore nothing has been brought down in this step) Hence, quotient = $2x^3 + x^2 + 3x + 6$ and remainder = 13 Example 21 Is $x^2 + 1$ a factor of $x^4 + 2x^3 - x^2 - 2x + 1$?

Solution

We divide $x^4 + 2x^3 - x^2 - 2x + 1$ by $x^2 + 1$

As the remainder $\neq 0$

Thus, $x^2 + 1$ is not a factor of $x^4 + 2x^3 - x^2 - 2x + 1$

Example 22

 $(z + 5)^2 = z^2 + 25$, show the given statement is incorrect. Solution

> $(z + 5)^2 = z^2 + 25$ The given statement is incorrect. $\therefore \qquad (z + 5)^2 = z^2 + 2(z)(5) + (5)^2 = z^2 + 10z + 25$

 \therefore The correct statement is $(z+5)^2 = z^2 + 10z + 25$

Example 23

$$\frac{3x^2 + 1}{3x^2} = 1 + 1 = 2$$
, show the given statement is incorrect.

Solution

$$\frac{3x^2 + 1}{3x^2} = 1 + 1 = 2$$

$$\Rightarrow \qquad \text{The given statement is incorrect.}$$

Since
$$\frac{3x^2+1}{3x^2} = \frac{3x^2}{3x^2} + \frac{1}{3x^2}$$

$$\therefore$$
 The correct statement is $\frac{3x^2 + 1}{3x^2} = 1 + \frac{1}{3x^2}$

$$\frac{7x+5}{5} = 7x$$
, show the given statement is incorrect.

Solution

$$\frac{7x+5}{5} = 7x$$

$$\therefore \qquad \frac{7x+5}{5} = \frac{7x}{5} + \frac{5}{5} = \frac{7x}{5} + 1$$

$$\therefore \text{ The correct statement is } \frac{7x+5}{5} = \frac{7x}{5} + 1$$

Example 25

Factorise x – 9 + 9zy – xyz

Solution

By regrouping, we have

$$x-9+9zy-xyz = x-9-xyz+9zy$$

 $= 1 (x-9)-yz(x-9)$
 $= (x-9)(1-yz)$

Example 26

Divide $63(p^4 + 5p^3 - 24p^2)$ by 9p(p+8)Solution We have $63(p^4 + 5p^3 - 24p^2) \div 9p(p+8)$ $= \frac{63(p^4 + 5p^3 - 24p^2)}{9p(p+8)} = \frac{63p^2(p^2 + 5p - 24)}{9p(p+8)}$ $= \frac{63p^2}{9p} \left[\frac{p^2 + 8p - 3p - 24}{p+8} \right] = 7p \left[\frac{p(p+8) - 3(p+8)}{p+8} \right]$ $= 7p \left[\frac{(p+8)(p-3)}{(p+8)} \right] = p (p-3)$

Example 27

Divide : $81x^3(50x-98)$ by $27x^2(5x+7)$

Solution

We have
$$50x^2 - 98 = 2(25x^2 - 49)$$

= $2[(5x)^2 - (7)^2]$
= $2[(5x + 7)(5x - 7)]$ [Using $a^2 - b^2 = (a + b)(a - b)$]
Now, $\frac{81x^3[50x^2 - 98]}{27x^2[5x + 7]} = \frac{81x^3}{27x^2} \left[\frac{2(5x - 7)(5 \times +7)}{(5x + 7)}\right]$
= $3x \times [2(5x - 7)] = 3x \times 2 \times (5x - 7)$
= $6x(5x - 7)$

Find the value of 'k' if the divison of $(kx^3 + 9x^2 + 4x - 10)$ by (x + 3) leaves a remainder – 22.

Solution

Let $P(x) = kx^3 + 9x^2 + 4x - 10$, g(x) = (x + 3)Zero of g(x) is -3 \therefore Remainder of division P(x) by g(x) is P(-3) \therefore $P(-3) = k (-3)^3 + 9(-3)^2 + 4(-3) - 10$ p(-3) = -27k + 81 - 12 - 10 = -22 (given) \therefore -27 k + 59 = -22 \Rightarrow -27 k = -81 \Rightarrow k = 3

Example 29

Factorise : $27x^3 + y^3 + z^3 - 9xyz$

Solution

$$\begin{array}{rl} 27x^3 + y^3 + z^3 - 9xyz &= (3x)^3 + (y)^3 + (z)^3 - 3(3x)(y)(z) \\ &= (3x + y + z)[(3x)^2 + (y)^2 + (z)^2 - (3x)(y) - (y)(z) - (3x)z] \\ \Rightarrow & 27x^3 + y^3 + z^3 = (3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3xz) \end{array}$$

Example 30

Factorise : $(p-q)^3 + (q-r)^3 + (r-p)^3$

Solution

Let a = p - q, b = q - r, c = r - pWe see that a + b + c = (p - q) + (q - r) + (r - q) = 0 $\therefore a^3 + b^3 + c^3 = 3abc$ $\therefore (p - q)^3 + (q - r)^3 + (r - p)^3 = 3(p - q)(q - r)(r - p)$

Example 31

Prove that :
$$\frac{0.96 \times 0.96 \times 0.96 + 0.04 \times 0.04 \times 0.04}{0.96 \times 0.96 - 0.96 \times 0.04 \times 0.04 \times 0.04} = 1$$

Solution

$$\frac{0.96 \times 0.96 \times 0.96 + 0.04 \times 0.04 \times 0.04}{0.96 \times 0.96 - 0.04 + 0.04 \times 0.04} = \frac{(0.96)^3 + (0.04)^3}{(0.96)^2 - (0.96)(0.04) + (0.04)^2}$$
$$= \frac{a^3 + b^3}{a^2 - ab + b^2} \text{ where } a = 0.96, b = 0.04$$
$$= \frac{(a+b)(a^2 - ab + b^2)}{(a^2 - ab + b^2)} = (a+b)$$

0.96 + 0.04 = 1

Example 32 Evaluate : $(a) (204)^2$ (b) $(148)^2$ Solution $(204)^2 = (200 + 4)^2 = 200^2 + 2 \cdot 200 \cdot 4 + 4^2$ (a) $(204)^2 = 41616$ $(148)^2 = (150 - 2)^2 = (150)^2 - 2.150.2 + 2^2$ (b) = 22500 - 600 + 4 $(148)^2 = 21904$ Example 33 Evaluate the following products without direct multiplication. (a) 103 × 107 (b) 104 × 96 **Solution** (a) $103 \times 107 = (100 + 3) (100 + 7) = (100)^2 + (3 + 7) \times 100 + 3 \times 7$ $[using (x + a) (x + b) = x^2 + (a + b)x + ab]$ = 1000 + 1000 + 21 = 11021 $104 \times 96 = (100 + 4)(100 - 4)$ (b) $= 100^2 - 4^2$ $[\text{using}(x+a)(x-a) = x^2 - a^2]$ = 9984Example 34 Without actual multiplication, find (a) 109^2 (b) 95^2 (c) $127 \times 127 - 73 \times 73$ **Solution** $109^2 = (100 + 9)^2 = 100^2 = 100^2 + 9^2 + 2 \times 100 \times 9$ (a) = 10000 + 81 + 1800 = 11881 $95^2 = (100-5)^2 = 100^2 + 5^2 - 2 \times 100 \times 5$ (b) = 10000 + 25 - 1000 = 9025 $127 \times 127 - 73 \times 73 = (127)^2 - (73)^2$ (c) $=(127+73)(127-73)=200 \times 54 = 10800$ Example 35 Factorize : $18a^2 + 12ab - 3a - 2b$ Solution $18a^{2} + 12ab - 3a - 2b = (6a)(3a) + (6a)(2b) - 3a - 2b$ = 6a [3a + 2b] - 1 [3a + 2b]=(6a-1)(3a+2b)

Example 36

Factorize : $(t^2 - 1)^2 + (t^2 + 1)^2$ Solution $(t^2 - 1) + (t^2 + 1)^2 = (t^2)^2 - 2t^2 + 1 + (t^2)^2 + 2t^2 + 1$ $= 2(t^4 + 1)$

(i) $a^{4} (a^{2} + 20a + 84) \pm a(a + 14)$ (ii) $a^{2} b (625 a^{4} - 81 b^{4}) \pm (ab^{2} (5a + 3b))$ Solution (i) $a^{4} (a^{2} + 20a + 84) \pm a(a + 14) = \frac{a^{4} (a^{2} + 20a + 84)}{a(a + 14)}$ $= \frac{a^{4} (a^{2} + 6a + 14a + 84)}{a(a + 14)}$ $= \frac{a^{4} [a(a + 6) + 14(a + 6)]}{a(a + 14)}$ $= \frac{a^{4} (a + 6)(a + 14)}{a(a + 14)}$ $= a^{3} (a + 6)$ (ii) $\frac{a^{2} b(625a^{4} - 81b^{4})}{ab^{2} (5a + 3b)} = \frac{(ab)a((25a^{2})^{2} - (9b^{2})^{2})}{(ab)(b)(5a + 3b)}$ $= \frac{a(25a^{2} - 9b^{2})(25a^{2} + 9b^{2})}{b(5a + 3b)}$ $= \frac{a(5a + 3b)(5a - 3b)(25a^{2} + 9b^{2})}{b(5a + 3b)}$ $= \frac{a(5a - 3b)(25a^{2} + 9b^{2})}{b}$

Q.2

Sol.

 $16x^3$, $-4x^2$, 32x(vi) $16x^{3} = \underline{2} \times \underline{\underline{2}} \times 2 \times 2 \times \underbrace{x \times x}_{0} \times x \times x$ $-4x^{2} = -1 \times \underline{2} \times \underline{\underline{2}} \times \underbrace{x \times x}_{0} \times x$ $32x = \underline{2} \times \underline{\underline{2}} \times 2 \times 2 \times 2 \times x$ Common factors are 2 (occurs twice) and x (occurs once) H.C.F. = $2 \times 2 \times x = 4x$ ÷. (vii) 10 pq, 20 qr, 30 rp $10pq = 2 \times 5 \times p \times q$ $20 \text{ qr} = \underline{2} \times 2 \times \underline{5} \times q \times r$ $30rp = \underline{2} \times 3 \times \underline{5} \times r \times p$ Common factors are 2 and 5. *.*. H.C.F. = $2 \times 5 = 10$ (viii) $3x^2y^3$, $10x^3y^2$, $6x^2y^2z$ $3x^2y^2 = 3 \times \underline{x} \times \underline{\underline{x}} \times y \times y \times y \times y$ $10x^{3}y^{2} = 2 \times 5 \times \underline{x} \times \underline{\underline{x}} \times x \times y \times y_{0 \quad 00}$ $6x^2y^2z = 2 \times 3 \times \underline{x} \times \underline{\underline{x}} \times \underline{\underline{x}} \times \underbrace{y \times y \times z}_{0 \quad 00}$ Common factors are x (occurs twice) and y(occurs twice) H.C.F. = $\mathbf{x} \times \mathbf{x} \times \mathbf{y} \times \mathbf{y} = \mathbf{x}^2 \mathbf{y}^2$. *.*.. Factorise the following expressions : 7x - 42(ii) 6p – 12 q (i) $7a^2 + 14a$ $-16 z + 20 z^{3}$ (iii) (iv) $20 \ \ell^2 m + 30 \ a \ell m$ $5x^2y - 15xy^2$ **(v)** (vi) (viii) $-4a^2+4ab-4ca$ $10 a^2 - 15b^2 + 20 c^2$ (vii) $x^2yz + xy^2z + xyz^2$ $ax^2y + bxy^2 + cxyz$ (ix) (x) 7x - 42(i) $7\mathbf{x} = 7 \times \mathbf{x}$ $42 = 2 \times 3 \times 7$ $7x - 72 = 7 \times x - 2 \times 3 \times 7$ *.*.. $= 7 \times (x - 2 \times 3)$ $= 7 \times (x - 6)$ (ii) 6p - 12p $6p = 2 \times 3 \times p$ $12q = 2 \times 2 \times 3 \times q$ $6p - 12q = 2 \times 3 \times p - 2 \times 2 \times 3 \times q$ *.*.. $= 2 \times 3 \times (p - 2 \times p)$ = 6(p - 2q)

(iii)	7a2 + 14 a $7a2 = 7 \times a \times a$ $14a = 2 \times 7 \times a$
÷	$7a2 + 14a = 7 \times a \times a + 2 \times 7 \times a$ = 7 × a × (a + 2) = 7a (a + 2)
(iv)	-16z + 20 z3 $16z = 2 \times 2 \times 2 \times 2 \times z$ $20z3 = 2 \times 2 \times 5 \times z \times z \times z$
÷	$-16z + 20z^{3} = (-2 \times 2 \times 2 \times 2 \times z + 2 \times 2 \times 5 \times z \times z \times z)$ $= 4z (-4 + 5z^{2})$
(v)	$20\ell^{2}m + 30 a\ellm$ $20\ell^{2}m = 2 \times 2 \times 5 \times \ell \times \ell \times m$ $30 a\ellm = 2 \times 3 \times 5 \times a \times \ell \times m$ $20\ell^{2}m + 30 a\ellm = 2 \times 2 \times 5 \times \ell \times m \times m + 2 \times 3 \times 5 \times a \times \ell \times m$ $= 2 \times 5 \times \ell \times m \times (2 \times \ell + 3 \times a)$ $= 10 \ell m (2\ell + 3a)$
(vi)	$5x^{2}y - 15xy^{2}$ $5x^{2}y = 5 \times x \times x \times y$ $15 xy^{2} = 3 \times 5 \times x \times y \times y$ $\therefore 5x^{2}y - 15xy^{2} = 5 \times x \times x \times y - 3 \times 5 \times x \times y \times y$ $= 5 \times x \times y \times (x - 3 \times y)$ $= 5xy (x - 3y)$
(vii)	$10a^{2} - 15b^{2} + 20 c^{2}$ $10a^{2} = 2 \times 5 \times a \times a$ $15b^{2} = 3 \times 5 \times b \times b$ $20c^{2} = 2 \times 2 \times 5 \times c \times c$
÷	$10a2 - 15b2 + 20c2 = 2 \times 5 \times a \times a - 3 \times 5 \times b \times b + 2 \times 2 \times 5 \times c \times c$ = 5 \times (2 \times a \times a - 3 \times b \times b + 2 \times 2 \times c \times c) = 5(2a ² - 3b ² + 4c ²)
(viii)	$-4a2 + 4ab - 4ac$ $4a2 = 2 \times 2 \times a \times a$ $4ab = 2 \times 2 \times a \times b$ $4ca = 2 \times 2 \times c \times a$
	$-4a2 + 4ab - 4ca + 2 \times 2 \times a \times b - 2 \times 2 \times c \times a$ = 2 × 2 × a × (-a + b - c) = 4a(-a + b - c)
(ix)	$\mathbf{x}^{2}\mathbf{y}\mathbf{z} = \mathbf{x} \times \mathbf{x} \times \mathbf{y} \times \mathbf{z}$ $\mathbf{x}\mathbf{y}^{2} \mathbf{z} = \mathbf{x} \times \mathbf{y} \times \mathbf{y} \times \mathbf{z}$ $\mathbf{x}\mathbf{y}\mathbf{z}^{2} = \mathbf{x} \times \mathbf{y} \times \mathbf{z} \times \mathbf{z}$ $\mathbf{x}^{2}\mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{y}^{2}\mathbf{z} + \mathbf{x}\mathbf{y}\mathbf{z}^{2} = \mathbf{x} \times \mathbf{y} \times \mathbf{y} \times \mathbf{z} + \mathbf{x} \times \mathbf{y} \times \mathbf{z} + \mathbf{x} \times \mathbf{y} \times \mathbf{z} + \mathbf{z}$
	$x yz + xy z + xyz - x \wedge x \wedge y \wedge z + x \wedge y \wedge y \wedge z + x \wedge y \wedge z \times z$ $= x \times y \times z \times (x + y + z)$ $= xyz (x + y + z)$

	(x) ∴	$ax^{2}y + bxy^{2} + cxyz$ $ax^{2}y = a \times x \times x \times y$ $bxy^{2} = b \times x \times y \times y$ $cxyz = c \times x \times y \times z$ $ax^{2}y + bxy^{2} + cxyz = z$ $= x$	$a \times x \times x \times y + b$ $x \times y \times (a \times x + b)$ xy(ax + by + cz)	$\mathbf{b} \times \mathbf{x} \times \mathbf{y}$ $\mathbf{b} \times \mathbf{y} + \mathbf{y}$	$(x \times y + c \times x \times c \times z)$	$\mathbf{y} \times \mathbf{z}$	
Q.3	Factor (i) (iii)	rise $x^2 + xy + 8x + 8y$ ax + bx - ay - by		(ii) (iv)	15xy – 6x + 4 15pq + 15 + 9	5y – 2 9q + 25p	
Sol.	(v) (i)	z - 7 + 7xy - xyz. $x^{2} + xy + 8x + 8y = x = (y)$	x(x + y) + 8 (x + x + y)(x + 8)	y)	Taking $(x + y)$	common	
	(ii) (iii) ax	15 xy - 6x + 5y - 2 = = = = = = = = = = = = = = = = = = =	3x(5y-2) + 1 (5y-2)(3x + 1) +b) - y(a + b)	(5y – 2))	Taking (5y-2	2) common	
		=(a+b)	b)(x-y)		Taking $(a+b)$	common	
	(iv) (v)	15 pq + 15 + 9q + 25 $z - 7 + 7xy - xyz = z$ $= 1$ $= (z)$	p = 15 pq + 9q - = 3 q (5p + 3)= (5p + 3) (3c)- 7 - xyz + 7xy(z - 7) - xy(z - 7)z - 7)(1 - xy)	+ 25p +) + 5 (5j q + 5) 7)	15 p + 3) Taking (5p + 2) Taking (z - 7)	3) common common	
Q.1 Sol.	Factor (i) (iv) (vii) (viii) (i)	rise the following expr $a^{2} + 8a + 16$ $49 y^{2} + 84yz + 36 z^{2}$ $(\ell + m)^{2} - 4\ell m$ $a^{4} + 2a^{2}b^{2} + b^{4}$ $a^{2} + 8a + 16 = (a)^{2}$ $= (a + 1)^{2}$	EXERCI ressions : (ii) $p^2 - 10$ (v) $4x^2 - 8$ (Hint : Expand + 2(a)(4) + (4)^2 (4)^2	$\frac{SE - 2}{P + 25}$ $x + 4$ $d (\ell + n)$	(iii) (vi) 1) ² first) Applying Ider	$25 \text{ m}^2 + 30 \text{ m} + 9$ $121b^2 - 88bc + 16c^2$	
	(ii)	$p^2 - 10p + 25 = (p)^2 + (p - 1)^2$	$\begin{array}{l} -2(p) (5) + (5)^2 \\ 5)^2 \end{array}$		Using Identity	ν II	
	(iii)	25 m2 + 30 m + 9 = (5) = (5)	$(5m)^2 + 2(5m) (3)^2$ $(m+3)^2$	$(3)^{2}$	² Applying Identity I		
	(iv)	$49y^2 + 84yz + 36z^2 = 0$	$(7y)^2 + 2(7y)(6z)^2$ $(7y + 6z)^2$	$(6z)^2$	Using Indentit	ty I	
	(v)	$4x^{2} - 8x + 4 = 4(x^{2} - 4) = 4(x)^{2} = 4(x)^{2} = 4(x - 4)^{2}$	$2x + 1) - 2(x) (1) + (1)^{2}$	²]	Applying Ider	ntity II	

 $121b^2 - 88bc + 16c^2 = (11b)^2 - 2(11b)(4c) + (4c)^2$ (vi) $=(11b-4c)^{2}$ Using Identity II $(\ell + m) - 4 \ell m = (\ell^2 + 2\ell m + m^2) - 4\ell m$ Using Identity I (vii) $= \ell^2 + (2\ell m - 4\ell m) + m^2$ Combining the line terms $= \ell^2 - 2\ell m + m^2$ $= (\ell)^2 - 2(\ell)(m) + (m)^2$ $= (\ell - m)^2$ Applying Identity II (viii) $\mathbf{a}^4 + 2\mathbf{a}^2\mathbf{b}^2 + \mathbf{b}^4 = (\mathbf{a}^2)^2 + 2(\mathbf{a}^2)(\mathbf{b}^2) + (\mathbf{b}^2)^2$ = $(\mathbf{a}^2 + \mathbf{b}^2)^2$ Using Identity I Q.2 **Factorise:** $4p^2 - 9q^2$ (ii) 63 $a^2 - 112 b^2$ (iii) 49 $x^2 - 36$ (i) (iv) $16x^5 - 144x^3$ (v) (iv) $16x^5 - 144 x^3$ (v) $(\ell + m) - (\ell - m)^2$ (vi) 92 (vii) $(x^2 - 2xy + y^2) - z^2$ (viii) $25 a^2 - 4b^2 + 28bc - 49c^2$ $9x^2y^2 - 16$ (i) $4p^2 - 9q^2 = (2p)^2 - (3q)^2$ Sol. =(2p-3q)(2p+3q)Using Identity III $63a^2 - 112b^2 = 7(9a^2 - 16b^2)$ (ii) $= \{(3a)^2 - (4b)^2\}$ = 7 (3a - 4b) (3a + 4b)Applying Identity III $49x^2 - 36 = (7x)^2 - (6)^2$ (iii) = (7x-6)(7x+6)**16x⁵ - 144x³** = 16x³(x²-9) Using Identity III (iv) $=16x^{3}{(x)^{2}-(3)^{2}}$ $= 16x^{3}(x-3)(x+3)$ Using Identity III $(\ell + m)^2 - (\ell - m)^2 = \{(\ell + m) - (\ell - m)\} \{(\ell + m) + (\ell - m)\}$ **(v)** Applying Identity III $=(2m)(2\ell)$ $=4 \ell m$ $9x^2y^2 - 16 = (3xy)^2 - (4)^2$ (vi) =(3xy-4)(3xy+4)Using Identity III $(x^2 - 2xy + y^2) - z^2 = (x - y)^2 - z^2$ (vii) Using Identity II (viii) $25a^2 - 4b^2 + 28bc - 49c^2 = 25a^2 - \{(2b)^2 - 2(2b)(7c) + (7c)^2\}$ $= (5a)^2 - (2b - 7c)^2$ Using Identity II $= \{5a - (2b - 7c)\} \{5a + (2b - 7c)\}$ =(5a-2b+7c)(5a+2b-7c)

Q.3	Facto	rise the expressions :									
	(i)	$ax^2 + bx$	(ii)	$7p^2 + 21 q^2$							
	(iii)	$2x^3 + 2xy^2 + 2xz^2$	(iv)	$am^2 + bm^2 + bm^2$	$bn^2 + a$	n ²					
	(v)	$(\ell \mathbf{m} + \ell) + \mathbf{m} + 1$	(vi)	y(y + z) + 9(y + z)	$(\mathbf{z} + \mathbf{z})$						
	(vii)	$5y^2 - 20y - 8z + 2yz$	(viii)	10ab + 4a + 5	b + 2						
Sal	(IX) (i)	6xy - 4y + 6 - 9x $ax^2 + bx = x(ax + b)$									
501.	(I)	$\mathbf{ax} + \mathbf{bx} - \mathbf{x}(\mathbf{ax} + \mathbf{b})$									
	(ii)	$7p^2 + 21 q^2 = 7(p^2 + 3q^2)$									
	(iii)	$2x^3 + 2xy^2 + 2xz^2 = 2x(x^2 + y)$	$(z^2 + z^2)$								
	(iv)	$\mathbf{am}^2 + \mathbf{bm}^2 + \mathbf{bn}^2 + \mathbf{an}^2 = \mathbf{am}$	$^{2} + bm^{2}$	$+an^2+bn^2$							
		$= m^{2}(a + b) + n^{2}(a + b)$ $= (a + b) (m^{2} + n^{2})$									
	(v)	$(\ell m + \ell) + m + 1 = \ell (m + 1)$	+ 1 (m ·	+1)							
		$= (m + 1)(\ell + 1)$									
	(vi)	y(y + z) + 9 (y + z) = (y + z)(y + 9)									
	(viii)	$5v^2 - 20v - 8z + 2vz = 5v^2 - 20v + 2vz - 8z$									
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	= 5y(y-4) + 2z(y-4)									
	=(y-4)(5y+2z)										
	(viii)	10ab + 4a + 5b + 2 = 2a(5a + 2) + 1(5b + 2)									
	(*)	= (5b+2)(2a+1)									
	(iv)	$\mathbf{x} = 6 \mathbf{x} \mathbf{y} + 6 0 \mathbf{y} - 6 \mathbf{y} \mathbf{y} + 6$									
	(14)	(xy - yy + 0 - x - 0xy - 4y - 2x + 0) = 2y(3x - 2) - 3(3x - 2)									
		=(3x-2)(2	(2y - 3)	,							
Q.4	Facto	rise: $4 + 4$	4 01			4 (
	(l) (i-r)	$a^{-} - b^{-}$ (11)	$p^{-} - 8$	l 21.2 + 1.4	(Ш)	$\mathbf{x}^{T} - (\mathbf{y} + \mathbf{z})^{T}$					
Sal	(IV) (i)	$\mathbf{x}^{4} - (\mathbf{x} - \mathbf{z})^{2}$ (V) $\mathbf{a}^{4} - \mathbf{b}^{4} = (\mathbf{a}^{2})^{2} - (\mathbf{b}^{2m})^{2}$	$a^2 - 2a$	$1^{-}D^{-} + D^{-}$							
501.	(I)	$a - b = (a^2 - b^2)(a^2 + b^2)$									
		$= (a - b)(a + b)(a^2 + b)(a^$	Using Identity III								
			C	2							
	(ii)	$\mathbf{p}^4 - 81 = (\mathbf{p}^2)^2 - (9)^2$									
		$= (p^2 - 9) (p^2 + 9)$	Using	Identity III							
		$= \{(p)^{2} - (3)^{2} (p^{2} + 9) \\= (n - 3) (n + 3) (n^{2} + 3) $	Using Identity III								
		-(h-2)(h+2)(h+2)	<i>)</i>]		Using	Identity III					
		4 4 2 2	2 2								

(iii)
$$\mathbf{x^4} - (\mathbf{y} + \mathbf{z})^4 = (\mathbf{x}^2)^2 - \{(\mathbf{y} + \mathbf{z})^2\}^2$$

 $= \{\mathbf{x}^2 - (\mathbf{y} + \mathbf{z})^2\}\{\mathbf{x}^2 + (\mathbf{y} + \mathbf{z})^2\}$ Using Identity III
 $= \{\mathbf{x} - (\mathbf{y} + \mathbf{z})\}\{\mathbf{x} + (\mathbf{y} + \mathbf{z})\}$
 $= \{\mathbf{x}^2 + (\mathbf{y} + \mathbf{z})^2\}$ Using Identity III
 $= (\mathbf{x} - \mathbf{y} - \mathbf{z})(\mathbf{x} + \mathbf{y} + \mathbf{z})\{\mathbf{x}^2 + (\mathbf{y} + \mathbf{z})^2\}$

(iv)
$$x^4 - (x - z)^4 = (x^2)^2 - \{(x - z)^2\}^2$$

 $= \{x^2 - (x - z)^2\} \{x^2 + (x - z)^2\}$ Using Identity III
 $= \{x - (x - z)\} \{x + (x - z)\} \{x^2 + (x - z)^2\}$ Applying Identity III
 $= \{x - (x - z)\} \{x + (x - z)\} \{x^2 + (x - z)^2\}$
 $= z(2x - z) \{x^2 + (x - z)^2\}$
 $= z(2x - z) \{x^2 + (x - z)^2\}$
 $= z(2x - z) (x^2 + x^2 - 2xz + z^2)$ Using Identity II
 $= z(2x - z) (2x^2 - 2xz + z^2)$
(v) $a^4 - 2a^2b^2 + b^4 = (a^2)^2 - 2(a^2) (b^2) + (b^2)^2$
 $= (a^2 - b^2)^2$ Using Identity II
 $= \{(a - b)^2 (a + b)^2\}$
Q.5 Factorise the following expressions.
(i) $p^2 + 6p + 8 = p^2 + 6p + 9 - 1$
 $= \{(p)^2 + 2 (p)(3) + (3)^2\} - (1)^2$
 $= (p + 3)^2 - (1)^2$ Using Identity I
 $= (p + 3 - 1) (p + 3 + 1)$ Using Identity III
 $= (p + 2) (p + 4)$
(ii) $q^2 - 10q + 21 = q^2 - 10q + 25 - 4$
 $= \{(q)^2 - 2(q) (5) + (5)^2\} - 4$
 $= \{(q)^2 - 2(q) (5) + (5)^2\} - 4$
 $= \{(q)^2 - 2(q) (5) + (5)^2\} - 4$
 $= (q - 5)^2 - (2)^2$ Using Identity II
 $= (q - 7)(q - 3)$

(iii)
$$p^2 + 6p - 16 = p^2 + 6p + 9 - 25$$

= $(p)^2 + 2(p) (3) + (3)^2 - (5)^2$
= $(p + 3)^2 - (5)$ Using Identity I
= $(p + 3 - 5) (p + 3 + 5)$ Applying Identity III
= $(p - 2)(p + 8)$

EXERCISE - 3

Q.1 Carry out the following divisions : (i) $28x^4 \div 56x$ (ii) $-36y^3 \div 9y^2$ (iii) $66pq^2r^3 \div 11qr^2$ (iv) $34x^3y^3z^3 \div 51xy^2z^2$ (v) $12a^8b^8 \div (-6a^6b^4)$ Sol. (i) $28x^4 + 56x$ $28x^4 \div 56x = \frac{28x^4}{56x} = \frac{2 \times 2 \times 7 \times x \times x \times x \times x}{2 \times 2 \times 2 \times 7 \times x} = \frac{x \times x \times x}{2} = \frac{x^3}{2}$ (ii) $-36y^3 \div 9y^2 = \frac{-36y^3}{9x^2} = \frac{-2 \times 2 \times 3 \times 3 \times y \times y \times y}{2 \times 2 \times 2 \times 7 \times x}$

$$= -3 \text{ by } = -\frac{9 \text{ y}^2}{9 \text{ y}^2} = -\frac{3 \times 3 \times \text{ y} \times \text{ y}}{3 \times 3 \times \text{ y} \times \text{ y}}$$
$$= -2 \times 2 \times \text{ y} = -4 \text{ y}$$

(iii)
$$66pq^2r^3 \div 11 qr^2 = \frac{66pq^2r^3}{11qr^2} = \frac{2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r}{11 \times q \times r \times r}$$

= 2 × 3 × p × q × r = 6 pqr
(iv) $34x^3y^3r^3 \div 51xy^2r^3 = \frac{34x^3y^3z^3}{11x^3}$

(iv)
$$34x^{2}y^{2}z^{2} \div 51xy^{2}z^{3}$$
$$= \frac{2 \times 17 \times x \times x \times x \times y \times y \times y \times z \times z \times z}{3 \times 17 \times x \times y \times y \times z \times z \times z} = \frac{2 \times x \times x \times y}{3} = \frac{2}{3}x^{2}y$$

Q.2 Divide the given polynomial by the given monomial :
(i)
$$(5x^2 - 6x) \div 3x$$
 (ii) $(3x^8 - 4y^6 + 5y^4) \div y^4$
(iii) $8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) \div 4x^2y^2z^2$ (iv) $(x^3 + 2x^2 + 3x) \div 2x$
(v) $(p^3q^6 - p^6q^3) \div p^3q^3$

Sol. (i)
$$(5x^2 - 6x) \div 3x = \frac{5x^2 - 6x}{3x} = \frac{5x^2}{3x} - \frac{6x}{3x} = \frac{5}{3}x - 2 = \frac{1}{3}(5x - 6)$$

(ii)
$$(3x^8 - 4y^6 + 5y^4) \div y^4 = \frac{3y^8 - 4y^6 + 5y^4}{y^4} = \frac{3y^8}{y^4} - \frac{4y^6}{y^4} + \frac{5y^4}{y^4} = 3y^4 - 4y^2 + 5$$

(iii)
$$8(x^{3}y^{2}z^{2} + x^{2}y^{3}z^{2} + x^{2}y^{2}z^{3}) \div 4x^{2}y^{2}z^{2} = \frac{8(x^{3}y^{2}z^{2} + x^{2}y^{3}z^{2} + x^{2}y^{2}z^{3})}{4x^{2}y^{2}z^{2}}$$

$$=\frac{8x^2y^2z^2(x+y+z)}{4x^2y^2z^2}=2(x+y+z)$$

(iv)
$$(\mathbf{x}^3 + 2\mathbf{x}^2 + 3\mathbf{x}) \div 2\mathbf{x} = \frac{\mathbf{x}^3 + 2\mathbf{x}^2 + 3\mathbf{x}}{2\mathbf{x}} = \frac{\mathbf{x} \times (\mathbf{x}^2 + 2\mathbf{x} + 3)}{2 \times \mathbf{x}} = \frac{1}{2} (\mathbf{x}^2 + 2\mathbf{x} + 3)$$

(v)
$$(\mathbf{p^3q^6} - \mathbf{p^6q^3}) \div \mathbf{p^3q^3} = \frac{\mathbf{p^3q^6} - \mathbf{p^6q^3}}{\mathbf{p^3q^3}} = \frac{\mathbf{p^3q^3(q^3 - p^3)}}{\mathbf{p^3q^3}}$$

= $q^3 - p^3$.

Q.3 Work out the following divisions :

- (i) $(10x 25) \div 5$
- (ii) $(10x-25) \div (2x-5)$
- (iii) $10y (6y + 21) \div 5(2y + 7)$
- (iv) $9x^2y^2(3z-24) \div 27 xy(z-8)$
- (v) 96 abc $(3a 12) (5b 30) \div 144 (a 4) (b 6)$.

(i)
$$(10x - 25) \div 5 = \frac{5(2x - 5)}{5} = 2x - 5$$

(ii)
$$(10x-25) \div (2x-5) = \frac{10x-25}{2x-5} = \frac{5(2x-5)}{2x-5} = 5$$

(iii) 10y (6y + 21) ÷ 5 (2y + 7) =
$$\frac{10y(6y+21)}{5(2y+7)} = \frac{10y \times 3(2y+7)}{5(2y+7)} = 6y$$

(iv)
$$9x^2y^2(3z-24) \div 27xy(z-8) = \frac{9x^2y^2(3z-24)}{27xy(z-8)} = \frac{9x^2y^2 \times 3(z-8)}{27xy(z-8)} = xy$$

(v) 96abc
$$(3-12)(5b-30) \div 144 (a-4)(b-6)$$

= $\frac{96abc(3a-12)(5b-30)}{144(a-4)(b-6)} = \frac{96abc(3a-4)\times 5(b-6)}{144(a-4)(b-6)} = 10$ abc.

Q.4 Divide as directed.

- (i) $5(2x+1)(3x+5) \div (2x+1)$
- (ii) $26xy(x+5)(y-4) \div 13 x(y-4)$
- (iii) $52pqr(p+q)(q+r)(r+p) \div 104 pq(q+r)(r+p)$
- (iv) $20 (y+4) (y^2+5y+3) \div 5 (y+4)$
- (v) $x(x+1)(x+2)(x+3) \div x(x+1)$

Sol. (i)
$$5(2x+1)(3x+5) \div (2x+1) = \frac{5(2x+1)(3x+5)}{2x+1} = 5(3x+5)$$

(ii)
$$26xy(x+5)(y-4) \div 13 \ x(y-4) = \frac{26xy(x+5)(y-4)}{13x(y-4)} = 2y(x+5)$$

(iii) 52pqr (p+q)(q+r)(r+p) ÷ 104 pq(q+r)(r+p)
=
$$\frac{52pqr(p+q)(q+r)(r+p)}{104pq(q+r)(r+p)} = \frac{1}{2}r(p+q)$$

(iv) 20 (y+4) (y² + 5y + 3) ÷ 5 (y + 4) =
$$\frac{20(y+4)(y^2 + 5y + 3)}{5(y+4)} = 4(y^2 + 5y + 3)$$

(v)
$$\mathbf{x}(\mathbf{x}+1)(\mathbf{x}+2)(\mathbf{x}+3) \div \mathbf{x}(\mathbf{x}+1) = \frac{\mathbf{x}(\mathbf{x}+1)(\mathbf{x}+2)(\mathbf{x}+3)}{\mathbf{x}(\mathbf{x}+1)} = (\mathbf{x}+2)(\mathbf{x}+3)$$

Q.5 Factorise the expressions and divide them as directed.
(i)
$$(y^2 + 7y + 10) \div (y + 5)$$
 (ii) $(m^2 - 14m - 32) \div (m + 2)$
(iii) $(5p^2 - 25p + 20) \div (p - 1)$ (iv) $4yz(z^2 + 6z - 16) \div 2y(z + 8)$
(v) $5pq(p^2 - q^2) \div 2p(p + q)$ (vi) $12xy (9x^2 - 16y^2) \div 4xy(3x + 4y)$
(vii) $39 y^3(50 y^2 - 98) \div 26y^2(5y + 7)$
Sol. (i) $(y^2 + 7y + 10) \div (y + 5) = \frac{y^2 + 7y + 10}{y + 5} = \frac{y^2 + 2y + 5y + 10}{y + 5}$ Using Identity IV
 $= \frac{y(y + 2) + 5(y + 2)}{y + 5} = \frac{(y + 2)(y + 5)}{y + 5} = y + 2$
(ii) $(m^2 - 14m - 32) \div (m + 2) = \frac{m^2 - 14m - 32}{m + 2}$
 $= \frac{m^2 - 16m + 2m - 32}{m + 2}$ Using Identity IV
 $= \frac{m(m - 16) + 2m(m - 16)}{m + 2}$
 $= \frac{(m - 16)(m + 2)}{m + 2} = m - 16$

(iii)
$$(5p^2 - 25p + 20) \div (p - 1) = \frac{5(p^2 - 5p + 4)}{p - 1}$$

 $= \frac{5(p^2 - p - 4p + 4)}{p - 1}$ Applying
 $= \frac{5\{p(p - 1) - 4(p - 1)\}}{p - 1}$
 $= \frac{5(p - 1)(p - 4)}{p - 1} = 5 (p - 4)$

(iv)
$$4yz(z^2 + 6z - 16) + 2y(z + 8)$$

 $4yz(z^2 + 6z - 16) \div 2y(z + 8) = \frac{4yz(z^2 + 6z - 16)}{2y(z + 8)} = \frac{2z(z^2 + 6z - 16)}{z + 8}$
 $= \frac{2z(z^2 + 8z - 2z - 16)}{z + 8}$ Using Identity IV
 $= \frac{2z[z(z + 8) - 2(z + 8)]}{z + 8}$
 $= z(z - 2)$

PAGE# 26

(v) $5pq(p^2-q^2) \div 2p(p+q) = \frac{5pq(p^2-q^2)}{2p(p+q)}$ $= \frac{5pq(p+q)(p-q)}{2p(p+q)}$ Using Identity III $= \frac{5}{2} q (p-q)$ (iv) $12xy (9x^2 - 16y^2) \div 4xy(3x + 4y) = \frac{12xy(9x^2 - 16y^2)}{4xy(3x + 4y)} = \frac{3(9x^2 - 16y^2)}{3x + 4y}$ $= \frac{3\{(3x)^2 - (4y^2)\}}{3x + 4y} = \frac{3(3x + 4y)(3x - 4y)}{3x + 4y}$ = 3(3x - 4y)(vii) $39y^3 (50y^2 - 98) \div 26y^2 (5y + 7) = \frac{39y^3(50y^2 - 98)}{26y^2(5y + 7)} = \frac{39y^3 \times 2 \times (25y^2 - 49)}{26y^2(5y + 7)}$ $= \frac{39y^3 \times 2 \times \{(5y)^2 - (7)^2\}}{26y^2(5y + 7)}$ $= \frac{39y^3 \times 2 \times (5y - 7)(5y - 7)}{26y^2(5y + 7)}$ Using Identity III

$$= \frac{39y^2 \times 2 \times (5y + 7)(5y - 7)}{26y^2(5y + 7)}$$
 Using Identity
= 3y (5y - 7)

EXERCISE - 4

Find and correct the errors in the following mathematical statements. 4(x-5) = 4x-50.1 4(x-5) = 4x - 20Sol. Q.2 $x(3x+2) = 3x^2 + 2$ Sol. $x(3x+2) = 3x^2 + 2x$ 0.3 2x + 3y = 5xy2x + 3y = 2x + 3ySol. **O.4** $\mathbf{x} + 2\mathbf{x} + 3\mathbf{x} = 5\mathbf{x}$ **Sol.** x + 2x + 3x = 6xQ.5 5y + 2y + y - 7y = 0Sol. 5y + 2y + y - 7y = y $Q.6 \qquad 3x + 2x = 5x^2$ **Sol.** 3x + 2x = 5x

Q.7 Sol.	$(2x)^{2} + 4(2x)_{0} + 7 = 2x^{2} + 8x + 7$ $(2x)^{2} + 4(2x) + 7 = 4x^{2} + 8x + 7$
Q.8 Sol.	$(2x)^2 + 5x = 4x + 5x = 9x$ $(2x)^2 + 5x = 4x^2 + 5x$
Q.9 Sol.	$(3x + 2)^2 = 3x^2 + 6x + 4$ $(3x + 2)^2 = 9x^2 + 12x + 4$
Q.10	Substituting $x = -3$ in (a) $x^2 + 5x + 4$ gives $(-3)^2 + 5(-3) + 4$ = 9 + 2 + 4 = 15
	Sol. $x^2 + 5x + 4 = (-3)^2 - 5(-3) + 4$ = 9 - 15 + 4 = -2 and not 15
	(b) $x^2 - 5x$ gives $(-3)^2 - 5(-3) + 4$ = $9 - 15 + 4 = -2$
	Sol. $x^2 - 5x + 4 = (-3)^2 - 5(-3) + 4$ = 9 + 15 + 4 = 28 and not - 2
Q.11 Sol.	$(y-3)^{2} = y^{2} - 9$ (y-3) ² = y ² - 2 (y) (3) + (3) ² = y ² - 6y + 9 and not equal to y ² - 9
Q.12 Sol.	$(z + 5)^2 = z^2 + 25$ $(z + 5)^2 = z^2 + 2(z) (5) + (5)^2$ $= z^2 + 10z + 25$ and not equal to $z^2 + 25$
Q.13 Sol.	(2a + 3b) (a - b) = 2a2 - 3b2 2a + 3b (a -b) = 2a (a - b) + 3b (a - b) = 2a ² - 2ab + 3ba - 3b ² = 2a ² + ab - 3b ² and not equal to 2a ² - 3b ²
Q.14 Sol.	(a + 4) (a + 2) = a2 + 8 (a + 4)(a + 2) = a (a + 2) + 4 (a + 2) = a ² + 2a + 4a + 8 = a ² + 6a + 8 and not equal to a ² + 8
Q.15 Sol.	$(a-4)(a-2) = a^2 - 8$ (a-4)(a-2) = a (a-2) - 4 (a-2) = a^2 - 2a - 4a + 8 = a^2 - 6a + 8 and not equal to a^2 - 8
Q.16.	$\frac{3x^2}{3x^2} = 0$
Sol.	$\frac{3x^2}{3x^2} = 1$ and not equal to 0

Q.17.	$\frac{3x^2+1}{3x^2}$	$\frac{1}{2} = 1 + 1 = 2$						
Sol.	$\frac{3x^2+1}{3x^2}$	$\frac{1}{3x^2} = \frac{3x^2}{3x^2} + \frac{1}{3x^2}$	$=1+\frac{1}{3}$	$\frac{1}{x^2}$ and no equ	al to $1 + 1$	1 = 2		
Q.18	$\frac{3x}{3x+2}$	$=\frac{1}{2}$						
Sol.	$\frac{3x}{3x+2}$	$=\frac{3x}{3x+2}$ and	not equa	al to $\frac{1}{2}$				
Q.19	$\frac{3}{4x+3}$	$=\frac{1}{4x}$						
Sol.	$\frac{3}{4x+3}$	$=\frac{3}{4x+3}$ and	not equa	al to $\frac{1}{4x}$				
Q.20	$\frac{4x+5}{4x}$	= 5						
Sol.	$\frac{4x+5}{4x}$	$=\frac{4x}{4x} + \frac{5}{4x} \text{ ar}$	nd not ec	qual to 5				
Q.21	$\frac{7x+5}{5}$	=7x						
Sol.	$\frac{7x+5}{5} = \frac{7x}{5} + \frac{5}{5} = \frac{7x}{5} + 1$ and not equal to 7x							
				<u>TRYT</u>	HESE			
Q.1	Factor	rise :						
C 1	(i)	12x + 36	(ii)	22y – 33 z	(iii)	14 pq + 35 pqr		
Sol.	(l) Wahay	12x + 6						
	wenav	$12\mathbf{x} = 2 \times 2 \times 2$	< 3 × x					
		$36 = 2 \times 2$	3×3					
	The tw	o term have 2,	2 and 3	as common fac	tors.			
	Therefo	ore,						
	12x + 3	36						
		$=(2 \times 2 \times 3 \times$	$(x \times x) + (2)$	$2 \times 2 \times 3 \times 3$)				
		$= 2 \times 2 \times 3 \times$	(x + 3)					
		Comb	oining the	e terms				
		$= 12 \times (\mathbf{x} + 3)$) = 12 ((x + 3)		Required factor form		

(ii) 22y - 33zWe have $22y = 2 \times 11 \times y$ $33 z = 3 \times 11 \times z$ The two terms have 11 as common factor. Therefore, $22y - 33z = (11 \times 2 \times y) - (11 \times 3 \times z)$ $= 11 \times [(2 \times y) - (3 \times z)]$ Combining the terms $= 11 \times (2y - 3z)$ = 11 (2y - 3z)Required factor form

(iii) 14 pq + 35 pqr

we have

 $14 pq = 2 \times 7 \times p \times q$ $35 pqr = 5 \times 7 \times p \times q \times r$

The terms have 7, p and q as common factors.

Therefore,

$$14pq + 35 pqr = 7 \times p \times q \times 2 + 7 \times p \times q \times 5 \times r$$

= 7 × p × q × [2 + (5 × r)] \implies 7pq (2 + 5r)
Required factors form

Q.2 Divide:
(i) 24 xy²z³ by 6yz² (ii) 63a²b⁴c⁶ by 7a²b²c³
Sol. (i) 24xy²z³ by 6yz² =
$$\frac{2 \times 2 \times 2 \times 3 \times x \times y \times y \times z \times z \times z}{2 \times 3 \times y \times z \times z}$$

= $\frac{2 \times 2 \times x \times y \times z}{1}$ = 4xyz

(ii)
$$63a^{2}b^{4}c^{6} \text{ by } 7a^{2}b^{2}c^{3}$$

$$63a^{2}b^{4}c^{6} \div 7 a^{2}b^{2}c^{3} = \frac{3 \times 3 \times 7 \times a \times a \times b \times b \times b \times c \times c \times c \times c \times c \times c}{7 \times a \times a \times b \times b \times c \times c \times c}$$

$$= \frac{3 \times 3 \times b \times b \times c \times c \times c}{1} = 9 b^{2}c^{3}$$

Co	NCEPT API	PLICATION	LEVEL - II						
SECTION - A									
\triangleright	Fill in the blanks								
Q.1	Divide $\left(x^2 + \frac{1}{x^2} + 2\right)$	$by\left(x+\frac{1}{x}\right)$							
Q.2 Q.3 Q.4 Q.5 Q.6	Express $10 xy (x + 3)$ Divide $-15m^2n by -3$ Divide $a^2x^2 - 25 by (a$ Factorise : $x^4 - 1$ The process of writi	as irreducible factor for 5 mn 1 mx + 5) 1 mg a given expression	rm n as the product of tw	- wo or more factors is called					
Q.7	If 'a' is any rational nu	model actorization. mber, then a \times a \times a \times _	m	times.					
Q.8	$\frac{9x^2-16}{6x+8}$ is written in	its lowest terms as = _							
Q.9 Q.10 Q.11 Q.12 Q.13	$4x^{2} + 6xy = ___________________________________$								
		SECTI	ON - B						
► Q.1	Multiple Choice Que Which of the followin (A) (x+1)(x-1)	estions g are the factor of $1 - x^2$ (B) $(1 - x) (1 + x)$	$^{2}?$ (C) (1-x) (1-x)	(D) $(1-x)(1-x)$					
Q.2	Which of the following $5xy$, $3pqr$ and $40xyz$	g is the common factor o ?	f:	(D) 1					
0.0			(C) Xy	(D) 1					
Q.3	(A) $6 yz$	g is quotient obtained of $(B) - 6 yz$	1000000000000000000000000000000000000	-3xz? (D) 6 xy					
Q.4	Which of the followin	g is quotient obtained o	n dividing $(x^2 - b)(x - b)$	a) by $-(x-a)$?					
	(A) $(x^2 - b)$	$(B) \frac{-(x^2-b)}{(x-a)}$	$(\mathbf{C}) - (\mathbf{x}^2 - \mathbf{b})$	(D) - (x + a)					
Q.5	Which of the following (A) $ab - a - b + 1 = ($ (C) $ab - a - b + 1 = ($	g is true? (1 + a) (1 - b) (1 - a)(b - 1)	(B) $ab - a - b + 1 =$ (D) $ab - a - b + 1 =$	(a-1)(b-1) (a-1)(1-b)					
Q.6	Which of the followin (A) $x (1-15x)(1+1)(C) x(1-15x)(1-1$	g is equal to $x^3 - 225 x$ 5 x) x)	(B) $x(x-15)(x+15$	i) (5x)					
Q.7	Which of the followin $(A) x(x+3)$	g is the quotient when 4 (B) $2x(x+3)$	$4x^{2}(x^{2}-5x-24)$ is di (C) $2(x-3)$	vided by $22x(x-8)$: (D) x (x-3)					

Q.8	By which of the follow (A) $a^2 + b^2$	ving $a^4 - b^4$ be divided to (B) $a - b$	b get quotient $(a^2 + b^2)(a + b)(a + b)$	(D) and, remainder as 0.: (D) $a^2 - b^2$
Q.9	Factorise : $\left(5x - \frac{1}{x}\right)^2$	$+5\left(5x-\frac{1}{x}\right)+6$		
	$(A)\left(5x-\frac{1}{x}+3\right)\left(5x\right)$	$-\frac{1}{x}+2$	$(B)\left(5x-\frac{1}{x}-3\right)\left(5x-\frac{1}{x}\right)$	$-\frac{1}{x}-2$
	$(C)\left(5x-\frac{1}{x}+3\right)\left(5x\right)$	$-\frac{1}{x}-2$	$(D)\left(5x-\frac{1}{x}-3\right)\left(5x\right)$	$-\frac{1}{x}+2$
Q.10	Factors of $\left(x^3 + \frac{1}{x^3} - \frac{1}{x^3}\right)$	2) are :		
	$(A)\left(x+\frac{1}{x}+1\right)\left(x^2-\frac{1}{x}\right)$	$+\frac{1}{x^2}+\frac{1}{x}+1$	$(B)\left(x+\frac{1}{x}-1\right)\left(x^2+\frac{1}{x}\right)\left$	$\left(\frac{1}{x^2} - \frac{1}{x} + x\right)$
	$(C)\left(x+\frac{1}{x}-1\right)\left(x^2+\frac{1}{x}-1\right)\left(x$	$\frac{1}{x^2} - \frac{1}{x} + x \bigg)$	(D) None of these	
Q.11	$(x^{51}-1)$ is always divis (A) $(x+1)$	sible by $(B)(x-1)$	(C)(x+2)	(D) $(x-2)$
Q.12	The factors of $y^2 + 2 +$	$-\frac{1}{y^2}$ are :		
	$(A)\left(y+\frac{1}{y}\right)^2$	$(B)\left(y-\frac{1}{y}\right)^2$	$(C)\left(y+\frac{1}{y}+1\right)^2$	$(D)\left(y+\frac{1}{y}-1\right)^2$
Q.13	When $16x^2 - 9y^2$ is res (A) $(8x - 3y)^2$	solved into factors, we g (B) $(4x - 3y)(4x + 3y)$	et $(C) (4x - 3y)^2$	(D) $(3x - 4y)(3x + 4y)$
Q.14	The factors of $y^2 + 7y$ (A) $(y-5)(y-2)$	+ 10 are (B) $(y-5) (y+2)$	(C) $(y+5)(y+2)$	(D) $(y+5)(y-2)$
Q.15	Which of the following (A) 5	g is a common factor is 1 (B) 3x	5x ² and 18xy ² ? (C) 5x	(D) 6
Q.16	Which of the following (A) 2	g is the common factor o (B) 3	of $(2x-3)$ and $(4x-6)$? (C) $2x-3$	(D) $4x - 6$
Q.17	55 $xy^2 \div 11 xy =$ (A) 5y	(B) 5x	(C) 5xy ²	(D) 5xy
Q.18	$\frac{5x+10}{2} = $			
	(A) $5x + 5$	(B) $\frac{5x}{2}$ + 10	(C) $\frac{5x}{2} + \frac{5}{2}$	(D) $\frac{5x}{2} + 5$

PAGE# 32

Q.19	Which (A) 5x	of the following + 6y	g is/are the factors(s) of (B) $5x - 6y$	$25x^2 - 3$ (C) 25	$36y^2?$ $5x^2 - 36y^2$	(D) All of these	
Q.20	ac + ad (A) (a -	$\frac{1 + bc + bd}{+ b} = -$	(B) $(a + d)(b + c)$	(C) (a	(a + b)(c + d)	(D) None of these	
Q.21	Find th	e value of $9x^2$ -	$+3x+1$, when $x = -\frac{1}{3}$				
	(A) 1		(B) 2	(C) 3		(D) 4	
Q.22	Factori (A) (2t	$(ze: 4t^4 + 4t^2 + t^2)^2$	1 (B) $(2t+2)^2$	(C) (2	$(t^2 - 1)^2$	(D) $(4t+4)^2$	
Q.23	Factori (A) (xy	$x^{2}ze: x^{2}y + xy^{2} + x$	-3x + 3y (B) (xy + 3) (3x + y)	(C) (x	(+2y)(2x+y)	(D) $(xy+3)(y+3x)$	
Q.24	Divide (A) x –	$x^2 - 9x + 14 by$	y x - 2 (B) x - 8	(C) x ·	- 5	(D) $x - 2$	
Q.25	Divide	$4p^2q^4r^3 \div 12p$	oqr.				
	(A) $\frac{1}{3}$ p	pq^3r^2	(B) pqr	(C) $p^2q^3r^2$		(D) $3pq^3r^2$	
Q.26	Divide	$4(12x^4-25x^3)$	$(-7x^2)$ by $8x(4x+1)$				
	(A) x (4	4x+1)	(B) $\frac{x}{2}(3x-7)$	(C) $\frac{x}{x}$	$\frac{(x+3)}{2}$	(D) None	
Q.27	Divide (A) (x ·	$3x^3 + 7x^2 + 2x$ + 3) (x + 4)	-2 by x + 1 and find th (B) $3x^2 + 4x - 2$	e quotie (C) x ²	ent. $t^2 + 5x - 6$	(D) None	
			SECTIO	ON - C			
► Q.1	Match Match	the Column : the Column					
	(\mathbf{A})	ColumnA $x^4 + x^2 + x^4$		(\mathbf{n})	Column B $(y \pm 1) (y^2 \pm 1)$)	
	(A) (B)	$\frac{x + x y + y}{1 - x^2 + 2xy} = \frac{x + y}{1 - x^2}$	y^2	(\mathbf{p}) (\mathbf{q})	(x + 1)(x + 1)(x + 1)(1 + x - y)(1) - x + y)	
	(C)	$x^3 + x^2 + x + 1$	l	(r)	$(x^2 + xy + y^2)($	$(x^2 - xy + y^2)$	
Q.2	Match	the Column Column-A			Column B		
	(A)	$\left(\frac{2}{3}a^2b\right)\left(\frac{-9}{4}\right)$	ab^2	(p)	$\frac{-4}{9}p^5q^5$		
	(B)	(- pq)(- 2.3 p	$^{2} q^{2}$)	(q)	$-0.45 a^3 b^3$		
	(C)	$(-1.5 a^2 b) (0.$	3 ab ²)	(r)	$\frac{-3}{2}a^3b^3$		
	(D)	$\left(\frac{-3}{7}p^3q^2\right)\left(\frac{-3}{2}$	$\left(\frac{-14}{9}\mathrm{pq}^2\right)\left(\frac{-2}{3}\mathrm{pq}\right)$	(s)	$-2.3 p^3 q^3$		

ANSWER KEY

CONCEPT APPLICATION LEVEL - II SECTION-A

SECTION - B								
Q.9 Q.12	2x(2x+3y) (2x+13y)(2x-13y)	y) (Q.10 Q.13	(x+8) (x+3) (2x+7) (2x+7)	Q.11 7)	(x-7)(x-4)		
Q.5	$(x^2 + 1)(x + 1)(x -$	1). (Q.6	prime	Q.7	a ^m	Q.8	$\frac{3x-4}{2}$
Q.1	$x + \frac{1}{x}$ Q.2	$2 \times 5 \times x$	х × у (2	x + 3)	Q.3	3m	Q.4	ax – 5

Q.1	В	Q.2	D	Q.3	А	Q.4	С	Q.5	В	Q.6	В	Q.7	В
Q.8	С	Q.9	А	Q.10	D	Q.11	В	Q.12	А	Q.13	В	Q.14	С
Q.15	В	Q.16	С	Q.17	А	Q.18	D	Q.19	D	Q.20	С	Q.21	А
Q.22	А	Q.23	А	Q.24	А	Q.25	А	Q.26	BQ.27	В			

SECTION - C

- Q.1 (A)-(r); (B)-(q); (C)-(p)
- Q.2 (A)-(r); (B)-(s); (C)-(q); (D)-(p)