5

ALGEBRAIC EXPRESSIONS AND IDENTITIES

THEORY

5.1 INTRODUCTION

Algebra is the branch of mathematics concerning the study of the rules of operations and relations. Elementary algebra is the most basic form of algebra. It is taught to students who are presumed to have no knowledge of mathematics beyond the basic principles of arithmetic. In arithmetic, only numbers and their arithmetical operations (such as $+, -, \times, \div$) occur. In algebra, numbers are often denoted by symbols (such as a, x or y). This is useful because :

A polynomial is an expression that is constructed from one or more variables and constants, using only the operations of addition, subtraction, and multiplication.

for example, $x^2 + 2x - 3$ is a polynomial in the single variable x.

An important class of problems in algebra is factorization of polynomials, that is expressing a given polynomial as a product of other polynomials. The above polynomial can be factored as (x - 1) (x + 3).

5.2 ALGEBRAIC EXPRESSIONS

The branch of mathematics which deals with numbers is called Arithmetic. Algebra can be considered as generalisation of arithmetic, where we use letter in place of numbers.

- **Constants:** A symbol having a fixed numerical value is called a constant. For example, $8, -6, 5/7, \pi$ etc are all constants
- Variables: A symbol which may be assinged different numerical values is known as a variable.
 For example, circumference of a circle is given by

 $c = 2\pi r$

Here, 2 and π are constants, while c and r are variables.

For model and the several parts of an algebraic expression separated by + or - operations are called the terms of the expression.

For example : $4 + 9x - 5x^2y + \frac{3}{5}xy$ is an algebraic expression containing four terms, namely, 4, 9x, $-5x^2y$ and 3/5xy.

Factors of term :

Ex. The term $9y^2$ is a product of 9, y and y. Thus 9, y and y are the factors of $9y^2$.

- **Coefficient of a term :** Consider a algebraic expression $3x^2 + 5x + 6$. In $3x^2 + 5x + 6$, $3x^2$ is first term, 5x is second term and 6 is the third term. In the first term $3x^2$, 3 is called numerical coefficient and x^2 is called literal coefficient. Similarly in the second term 5x, 5 is called numerical coefficient and x is called literal coefficient.
- Like terms : In any algebraic expression, the terms having the same literal coefficients are called like terms.

For example : $6x^3$, $-x^3$, $2x^3$ and $\frac{1}{4}x^3$ are like terms.

Unlike terms : In any algebraic expression, the terms having different literal coefficient are called unlike terms.
 For example : 7x, x², 2x³ and 15x⁴ are unlike terms.

Algebraic Expressions: A combination of constants and variables, connected by operations $+, -, \times$ and \div is known as an algebraic expressions.

5.2.1 Type of Algebraic Expressions

- Monomial one term. Ex. : $3p^2q^2$
- **Binomial -** two terms. **Ex.**: 3x + 4y
- **Trinomial -** three terms. **Ex.** : $x^2 + y^2 + 6$

5.3 POLYNOMIALS

An algebraic expression f(x) of the form $f(x) = a_0 + a_1x + a_2x^2 + \dots + a^nx^n$; where $a_0, a_1, a_2, \dots, a_n$ are real numbers and all the indices of variable x are non-negative integers, is called a polynomial in variable x and the highest indices n is called the degree of the polynomial, if $a_n \neq 0$. Here, a_0, a_1x, a_2x^2 and a_nx^n are called the terms of the polynomial and $a_0, a_1, a_2, \dots, a_n$ are called various coefficients of the polynomial f(x). A polynomial in x is said to be in standard form when the terms are written either in increasing order or in decreasing order of the indices of x in various terms.

For example: $x^2 - a^2$, $ax^2 + bx + c$, $x^3 + 3x^2 + 3x + 1$, $y^3 - 7y + 6$ etc. are the polynomials written in their standard form.

- Simplest form of Polynomial : A polynomial is said to be in simplest form when no two of the polynomial are like terms. For example : $3x^2 + 4x + 2$.
- Standard form of Polynomial : When a polynomial is written in either ascending or descending power of variable.

For example : $x^3 - 2x^2 + 3x - 6$

- **Degree of a Polynomial in One Variable :** In case of a polynomial in one variable, the highest power of the variable is called the degree of the polynomial.
- Degree of a Polynomial in Two or More Variables : In case of polynomials in more than one variable, the sum of the powers of the variables in each term is taken up and the highest sum so obtained is called the degree of the polynomial.

5.3.1 Types of polynomials

Polynomials can be classified on the basis of number of terms and on the basis of degree.

On the basis of degree :

- **Zero polynomial :** A polynomial f(x) = 0 is called zero polynomial. Its degree is not defined. (i)
- (ii) **Constant polynomial :** A polynomial of degree zero is called a constant polynomial. For example : 2, -5, 7. Every real number is a constant polynomial
- (iii) Linear polynomial : A polynomial of degree 1 is called a linear polynomial. For example: 9x + 5 is a linear polynomial in x.

x + y + 4 is a linear polynomial in x and y.

- (iv) Quadratic polynomial: A polynomial of degree 2 is called a quadratic polynomial. For example: $2y^2 - 8y + 5$ is a quadratic polynomial in y. 2xy+5x+3y+4 is a quadratic polynomial in x and y.
- **(v) Cubic polynomial :** A polynomial of degree 3 is called a cubic polynomial. For example: $2x^3 - 3x^2 + 5x + 1$ is a cubic polynomial in x $2x^2y + 5xy^2 + 8$ is a cubic polynomial in x and y.
- **Biquadratic polynomial**: A polynomial of degree 4 is called a biquadratic polynomial. (vi) For example: $z^4 + 6z^3 + 10z^2 + 6z + 1$ is biquadratic polynomial in z. $3x^2yz + 4xy^2z + 5xyz^2$ is biquadratic polynomial in, x, y and z.

Illustration 1

Find the degree of each of the following polynomials.

(i) $2x^3 + x^2 - x + 4$ (ii) $x + 4 - 3x^3 + x^4$ (iii) **10**

Solution

- $2x^3 + x^2 x + 4$: The highest power term is $2x^3$. The power of variable in this (i) term is 3. So the degree of given polynomial is 3.
- $x + 4 3x^3 + x^4$: The highest power term is x^4 . **(ii)** \therefore Degree of polynomial is 4.
- (iii) 10:10 is a constant polynomial. It can be written as 10. x^{0} (As $x^{0} = 1$) where x is any variable. Highest power of variable is 0 (zero), so the degree of constant polynomial is '0'.

'0' itself is a constant polynomial.

Illustration 2

Classify the following polynomials as linear, quadratic or cubic polynomials. (iv) $y + y^3$ (i) $10x^2$ (ii) y (iii) 1 + z(v) $x^2 + x + 5$

Solution

(i) $10x^2$: Degree of polynomial $10x^2$ is '2' so it is a quadratic polynomial.

- (ii) y : Degree of polynomial is '1' so the polynomial is a quadratic polynomial.
- (iii) 1 + z: Degree of polynomial is '1'. It is a linear polynomial.
- (iv) $v + v^3$: Degree of polynomial is '3'. It is a cubic polynomial.
- (v) $x^2 + x + 5$: Degree of polynomial is '2'. It is a quadratic polynomial.

5.4 ADDITION AND SUBTRACTION OF ALGEBRAIC EXPRESSIONS

For addition or subtraction of two or more than two algebraic expressions, we first collect like terms and then find the sum or difference of coefficients of these terms.

Illustration 3

Add : $l^{2} + m^{2}$, $m^{2} + n^{2}$, $n^{2} + l^{2}$ and 2lm + 2mn + 2nlSolution Required sum $= l^{2} + m^{2} + m^{2} + n^{2} + l^{2} + 2lm + 2mn + 2nl$ $= (l^{2} + l^{2}) + (m^{2} + m^{2}) + (n^{2} + n^{2}) + 2lm + 2mn + 2nl$ (Collecting like terms) $= 2l^{2} + 2m^{2} + 2n^{2} + 2lm + 2mn + 2nl$ $= 2(l^{2} + m^{2} + n^{2} + lm + mn + nl)$

Illustration 4

Subtract : $4p^2q - 3pq + 5pq^2 - 8p + 7q - 10$ from $18-3p - 11q + 5pq - 2pq^2 + 5p^2q$.

Solution

We have

Illustration 5

Subtract the sum of $3l - 4m - 7n^2$ and $2l + 3m - 4n^2$ from the sum of $9l + 2m - 3n^2$ and $-3l + m + 4n^2$.

Solution

Sum of $3l - 4m - 7n^2$ and $2l + 3m - 4n^2$ = $3l - 4m - 7n^2 + 2l + 3m - 4n^2$ = $(3l + 2l) + (3m - 4m) + (-7n^2 - 4n^2)$ = $5l - m - 11n^2$ Sum of $9l + 2m - 3n^2$ and $-3l + m + 4n^2$ = $9l + 2m - 3n^2 - 3l + m + 4n^2$ = $(9l - 3l) + (2m + m) + (-3n^2 + 4n^2)$ = $6l + 3m + n^2$ Required difference = $6l + 3m + n^2 - (5l - m - 11n^2)$ = $6l + 3m + n^2 - 5l + m + 11n^2$ = $(6l - 5l) + (3m + m) + (n^2 + 11n^2)$ = $l + 4m + 12n^2$.

5.5 MULTIPLICATION OF ALGEBRAIC EXPRESSIONS

We know that the product of two integers with the same sign is positive and the product of two integers with the opposite signs is negative.

i.e.,
$$(+) \times (+) = (+), (-) \times (-) = (+)$$

 $(+) \times (-) = (-), (-) \times (+) = (-)$

Also, from the chapters of exponents, we know that

(i)
$$\mathbf{x}^m \times \mathbf{x}^n = \mathbf{x}^{m+n}$$

(ii) $(x^m)^n = x^{mn}$, where x, m, n are non-zero integers.

While multiplying algebraic expressions, we shall make use of these concepts.

5.5.1 Multiplying Two Monomials

Consider, $2x^3 \times 3x$ We known, $2x^3 = 2 \times x \times x \times x$ and $3x = 3 \times x$ So, $2x^3 \times 3x = (2 \times x \times x \times x) \times (3 \times x)$ $= (2 \times 3) \times (x \times x \times x \times x)$ $= 6x^4$

How did we perform the above multiplication ?

There are three steps :

- (i) Multiply the coefficients of both the monomials.
- (ii) Multiply the variables.
- (iii) Multiply the above two results.

Illustration 6

Multiply each of the following :

(i)
$$6xy$$
 and $5x^2y^2z$ (ii) $-7x^2yz$ and $\frac{2}{3}xy^3$ (iii) $\frac{-8}{5}a^2bc^3$ and $\frac{-3}{4}ab^2x$

Solution

(i)
$$6xy \times 5x^2y^2z = (6 \times 5) \times (x \times x^2) \times (y \times y^2) \times z$$

 $= (6 \times 5) \times x^{1+2} \times y^{1+2} \times z$ (Using $x^m \times x^n = x^{m+n}$)
 $= 30x^3y^3z$
(ii) $(-7x^2yz) \times \left(\frac{2}{3}xy^3\right) = \left(-7 \times \frac{2}{3}\right) (x^2 \times x) \times (y \times y^3) \times z$
 $= \frac{-14}{3}x^{2+1}y^{1+3}z$ (Using $x^m \times x^n = x^{m+n}$)
 $= \frac{-14}{3}x^3y^4z$
(iii) $\left(\frac{-8}{5}a^2bc^3\right) \times \left(\frac{-3}{4}ab^2x\right) = \left(\frac{-8}{5} \times \frac{-3}{4}\right) \times (a^2 \times a) \times (b \times b^2) \times c^3 \times$
 $= \frac{6}{5}a^{2+1}b^{1+2}c^3x = \frac{6}{5}a^3b^3c^3xc$

Х

5.5.2 Multiplying Three or More Monomials

The following rule can be used for multiplying any number of monomials.

- (i) The coefficient of the product of the given monomials is the product of the coefficients of these monomials.
- (ii) The exponent of each literal is the sum of the exponents of this literal in the given monomials.


```
Illustration 7
              Find the product of
                             5xyz, 10x<sup>2</sup>y<sup>2</sup>z<sup>2</sup>, -3x<sup>2</sup>y<sup>3</sup>z<sup>4</sup> and 6x<sup>2</sup>y<sup>2</sup>z<sup>5</sup>
              (i)
                            -8xyz, 4x^{3}y^{2}z^{2}, 3x^{2}y^{2}z^{2} and -2yz
              (ii)
Solution
              5xyz \times 10x^2y^2z^2 \times (-3x^2y^3z^4) \times 6x^2y^2z^5
(i)
              = 5 \times 10 \times (-3) \times 6 \times (x \times x^2 \times x^2 \times x^2) \times (y \times y^2 \times y^3 \times y^2) \times (z \times z^2 \times z^4 \times z^5)
              = -900 \times x^{1+2+2+2} y^{1+2+3+2} z^{1+2+4+5}
              = -900 \text{ x}^7 \text{ v}^8 \text{ z}^{12}
              (-8xyz) \times 4x^3y^2z^2 \times 3x^2y^2z^2 \times (-2yz)
(ii)
              = -8 \times 4 \times 3 \times (-2) \times (x \times x^3 \times x^2) \times (y \times y^2 \times y^2 \times y) \times (z \times z^2 \times z^2 \times z)
              = 192 \times x^{1+3+2} \times y^{1+2+2+1} \times z^{1+2+2+1}
              = 192 x^{6} y^{6} z^{6}
```

Illustration 8

Obtain the volume of the rectangular box whose length, breadth and height are xy, $2x^2y$ and $2xy^2$ respectively.

Solution

We know that volume of a rectangular box is the product of its length, breadth and height.

 $\therefore \quad \text{Volume of the box} = xy \times 2x^2y \times 2xy^2$ $= 2 \times 2 \times (x \times x^2 \times x) \times (y \times y \times y^2)$ $= 4 \times x^4 \times y^4 = 4x^4y^4.$

Illustration 9

Find the value of
$$5a^6 \times (-10ab^2) \times \left(-\frac{1}{25}a^2b^3\right)$$
 for $a = 1$ and $b = 2$.

Solution

We have,

$$5a^{6} \times (-10ab^{2}) \times \left(-\frac{1}{25}a^{2}b^{3}\right) = 5 \times (-10) \times \left(-\frac{1}{25}\right) \times (a^{6} \times a \times a^{2}) \times (b^{2} \times b^{3})$$
$$= 2 \times a^{6+1+2} \times b^{2+3} = 2a^{9}b^{5}$$

Putting a = 1 and b = 2, we have $2a^9b^5 = 2 \times (1)^9 \times (2)^5 = 2 \times 1 \times 32 = 64$

5.5.3 Multiplying a Monomial by a Bionomial

In the case of integers we use the distributive property of multiplication over addition for simplifying the products like $x \times (y + z)$. Similarly, in case of algebraic expressions, we use this property. If A, B and C are three monomials, then $A \times (B + C) = A \times B + A \times C$

Illustration 10

Find the product of $9x^2y$ and (x + 2y).

Solution

$$9x^{2}y \times (x + 2y) = (9x^{2}y \times x) + (9x^{2}y \times 2y)$$
$$= 9x^{3}y + 9 \times 2 \times (x^{2}y \times y)$$
$$= 9x^{3}y + 18x^{2}y^{2}$$

The method of multiplying a monomial and a binomial discussed above is called the **horizontal** or **row method**, because the working is done horizontally. We can also multiply a monomial and a binomial vertically i.e., from top to bottom in columns, which is called **vertical method**. Observe the following example :

e.g. Multiply 9xy and $3xy + 5y^2$.

Solution

$$3xy + 5y^2$$

 $\begin{array}{c|c} & \times & 9xy \\ \hline & & 27x^2y^2 + 45xy^3 \\ \hline & & \\$

5.5.4 Multiplying a Monomial by a Trinomial

If A, B, C and D are four monomials, then $A \times (B + C + D) = A \times B + A \times C + A \times D$

Illustration 11

Multiply 3l and l - 4m + 5n

Solution

 $3l(l-4m+5n) = 3l \times l - 3l \times 4m + 3l \times 5n$

 $= 3l^2 - 12lm + 15ln$

5.5.5 Multiplying a Binomial by a Binomial

Multiplication of two binomials can be performed using distributive property of multiplication over addition twice. If A, B, C and D are four monomials, then

 $(A + B) \times (C + D) = A \times (C + D) + B \times (C + D)$ = A × C + A × D + B × C + B × D = AC + AD + BC + BD. This multiplication can also be performed by column method, as follows :

$$\begin{array}{c} A+B \\ \times C+D \\ \hline AD+BD \\ AC+BC \\ \hline AC+AD+BC+BD \\ \hline AC+AD+BC+BD \end{array} \qquad [Multiply (A+B) by C]$$

5.5.6 Multiplying a Binomial by a Trinomial

Multiplication of a binomial and a trinomial can be performed using distributive property of multiplication over addition. If A, B, C, D and E are five monomials, then

 $(A + B) \times (C + D + E) = A \times (C + D + E) + B \times (C + D + E)$ = AC + AD + AE + BC + BD + BE.

This multiplication can also be performed by column method, al follows :

 $\begin{array}{c} C+D+E\\ \times A+B\\ BC+BD+BE\\ AC+AD+AE\\ \hline AC+AD+AE+BC+BD+BE\\ \hline \end{array}$

Illustration 12

Multiply the following :

(i)
$$(9a+6b)$$
 and $(6a+9b)$

(ii)
$$(2x^2y + 3y^2)$$
 and $(8y - 4x^2)$

Solution

(i) Using distributive property of multiplication over addition :

$$(9a+6b) \times (6a+9b) = 9a \times (6a+9b) + 6b \times (6a+9b)$$

= 9a × 6a + 9a × 9b + 6b × (6a + 9b)
= 54a² + 81ab + 36ab + 54b²
= 54a² + 117ab + 54b²

By column method :

$$9a + 6b \\ \times 6a + 9b \\ \hline 81ab + 54b^2 \\ 54a^2 + 36ab \\ \hline 54a^2 + 117ab + 54b^2 \\ \hline$$

(ii) Using distributive property of multiplication over addition :

 $\begin{aligned} (2x^2y + 3y^2) &\times (8y - 4x^2) \\ &= 2x^2y \times (8y - 4x^2) + 3y^2 \times (8y - 4x^2) \\ &= 2x^2y \times 8y + 2x^2y \times (-4x^2) + 3y^2 \times 8y + 3y^2 \times (-4x^2) \\ &= 16x^2y^2 - 8x^4y + 24y^3 - 12x^2y^2 \\ &= 16x^2y^2 - 12x^2y^2 - 8x^4y + 24y^3 \\ &= 4x^2y^2 - 8x^4y + 24y^3 \end{aligned}$

Illustration 13 Subtract 3a(a+b+c)-2b(a-b+c) from 4c(-a+b+c). **Solution** We have 3a(a+b+c) - 2b(a-b+c) $= (3a \times a + 3a \times b + 3a \times c) - (2b \times a - 2b \times b + 2b \times c)$ $= 3a^2 + 3ab + 3ac - 2ab + 2b^2 - 2bc$ $= 3a^{2} + (3ab - 2ab) + 3ac - 2bc + 2b^{2}$ $= 3a^2 + ab + 3ac - 2bc + 2b^2$ = 4c (-a + b + c) $=4c \times (-a) + 4c \times b + 4c \times c$ $=-4ac+4bc+4c^{2}$ Now. $4c(-a+b+c) - \{3a(a+b+c) - 2b(a-b+c)\}$... $= -4ac + 4bc + 4c^2 - (3a^2 + ab + 3ac - 2bc + 2b^2)$ $= -4ac + 4bc + 4c^2 - 3a^2 - ab - 3ac + 2bc - 2b^2$ $= (-4ac - 3ac) + (4bc + 2bc) - ab + 4c^2 - 3a^2 - 2b^2$

$$= -7ac + 6bc - ab - 3a^2 - 2b^2 + 4c^2$$

Illustration 14

Simplify the following : $9x^2 + 7x(3x - 2y) + 5xy$ Solution

 $Or ^2$

$$9x^{2} + 7x (3x - 2y) + 5xy$$

= 9x² + 21x² - 14xy + 5xy
= 30x² - 9xy.

Illustration 15

Simplify:
$$9x^4 (2x^3 - 5x^4) \times 5x^6 (x^4 - 3x^2)$$

Solution

$$9x^{4} (2x^{3} - 5x^{4}) \times 5x^{6} (x^{4} - 3x^{2})$$

$$= (9x^{4} \times 2x^{3} - 9x^{4} \times 5x^{4}) \times (5x^{6} \times x^{4} - 5x^{6} \times 3x^{2})$$

$$= (18x^{7} - 45x^{8}) \times (5x^{10} - 15x^{8})$$

$$= 18x^{7} \times (5x^{10} - 15x^{8}) - 45x^{8} \times (5x^{10} - 15x^{8})$$

$$= 18x^{7} \times 5x^{10} - 18x^{7} \times 15x^{8} - 45x^{8} \times 5x^{10} + 45x^{8} \times 15x^{8}$$

$$= 90x^{17} - 270x^{15} - 225 x^{18} + 675x^{16}$$

$$= -225x^{18} + 90x^{17} + 675x^{16} - 270x^{15}$$

Illustration 16

Multiply:
$$(2x^2 - 3x + 5)$$
 by $(5x + 2)$
Solution
We have,
 $(5x + 2) \times (2x^2 - 3x + 5)$
 $= 5x \times (2x^2 - 3x + 5) + 2 \times (2x^2 - 3x + 5)$
 $= 5x \times 2x^2 + 5x \times (-3x) + 5x \times 5 + 2 \times 2x^2 + 2 \times (-3x) + 2 \times 5$
 $= 10x^3 - 15x^2 + 25x + 4x^2 - 6x + 10$
 $= 10x^3 - 11x^2 + 19x + 10$

Illustration 17

Find the product :
$$\left(2x - \frac{1}{2}y\right)\left(\frac{3}{4}x - 10y + 8\right)$$

Solution

$$\begin{pmatrix} 2x - \frac{1}{2}y \end{pmatrix} \begin{pmatrix} \frac{3}{4}x - 10y + 8 \end{pmatrix}$$

= $2x \begin{pmatrix} \frac{3}{4}x - 10y + 8 \end{pmatrix} - \frac{1}{2}y \begin{pmatrix} \frac{3}{4}x - 10y + 8 \end{pmatrix}$
= $2x \times \frac{3}{4}x + 2x \times (-10y) + 2x \times 8 - \frac{1}{2}y \times \frac{3}{4}x - \frac{1}{2}y \times (-10y) - \frac{1}{2}y \times 8$
= $\frac{3}{2}x^2 - 20xy + 16x - \frac{3}{8}xy + 5y^2 - 4y$

5.6 DIVISION OF POLYNOMIALS

Division is the inverse process of multiplication.

When we divide one expression by another, we find a third expression which when multiplied by the second gives the first, i.e., if $a \div b = x$ then a = bx. In $a \div b = x$, a is called the **Dividend**, b the **Divisor** and x is called the **Quotient**.

5.6.1 Rules of Signs in Divison

When the dividend and the divisor have the same signs, the quotient has the plus sign. (a)

When the dividend and the divisor has opposite signs, the quotient has the negative sign. (b)

- The process of division may be divided in three cases :
- **(I)** Division of a monomial by another monomial
- (II) Division of a polynomial by a monomial
- Division of a polynomial by another polynomial. (III)

We shall discuss these cases one by one.

CASE I : DIVISION OF A MONOMIAL BY ANOTHER MONOMIAL.

Illustration 18

Divide : (a) $15a^5$ by $5a^2$ (b) $36a^3b^5$ by $-12a^2b$ (c) $2x^3$ by $\sqrt{2}x$

Solution

(a) Quotient =
$$\frac{15a^5}{5a^2} = \left(\frac{15}{5}\right) \left(\frac{a^5}{a^2}\right) = 3a^3$$

- Quotient = $\frac{36a^3b^5}{-12a^2b} = \left(\frac{36}{-12}\right)\left(\frac{a^3}{a^2}\right)\left(\frac{b^5}{b}\right) = -3ab^4$ (b)
- Quotient = $\frac{2x^3}{\sqrt{2}x} = \left(\frac{2}{\sqrt{2}}\right)\left(\frac{x^3}{x}\right) = \sqrt{2}x^2$. (c)

CASE II : DIVISION OF A POLYNOMIAL BY A MONOMIAL

Divide each term of the polynomial by the monomial and then write the resulting quotients with their proper signs.

Illustration 19

Divide : (a) $-4x^3 - 6x^2 + 8x$ by 2x (b) $3x^4y - 4x^3y^2 + 5x^2y^3$ by $-6x^2y$

Solution

Dividing each term of the dividend by the divisor, we get

(a) Quotient =
$$\frac{-4x^3 - 6x^2 + 8x}{2x} = \frac{-4x^3}{2x} - \frac{6x^2}{2x} + \frac{8x}{2x} = -2x^2 - 3x + 4$$

(b) Quotient = $\frac{3x^4y - 4x^3y^2 + 5x^2y^3}{-6x^2y} = \frac{3x^4y}{-6x^2y} - \frac{4x^3y^2}{-6x^2y} + \frac{5x^2y^3}{-6x^2y}$
 $= -\frac{x^2}{2} + \frac{2xy}{3} - \frac{5y^2}{6} = \frac{1}{2}x^2 + \frac{2}{3}xy - \frac{5}{6}y^2$

CASE III : DIVISION OF A POLYNOMIAL BY ANOTHER POLYNOMIAL

It is advisable in this case to rearrange the dividend and the divisor in descending order.

Illustration 20

Divide $x^2 + 5x + 6$ by x + 3

Solution

Explanation:
$$x + 3\overline{)x^2 + 5x + 6}$$
 (x + 2
 $x^2 + 3x$
 $- -$
 $2x + 6$
 $2x + 6$
 $- -$
Quotient = x + 2
Remainder = 0
Divide the first term (x²) of the dividend by the

- (a) Divide the first term (x^2) of the dividend by the first term (x) of the divisor. The result $x^2 \div x = x$ is the first term of the quotient.
- (b) Multiply the divisor x + 3 by x, the first term of the quotient.
- (c) Subtract the product $(x + 3) x = x^2 + 3x$ from the dividend $x^2 + 5x + 6$, i.e., $(x^2 + 5x + 6) (x^2 + 3x) = 2x + 6$
- (d) Proceed with this remainder 2x + 6 as with the original dividend, i.e., divide 2x by x. The result $2x \div x = 2$ is the second term of the quotient.
- (e) Multiply the divisor (x + 3) by 2, the second term of thhe quotient. Now subtract 2(x + 3) from 2x + 6, i.e., 2x + 6 2(x + 3) = 2x + 6 2x 6 = 0. The remainder is 0. Hence the required quotient = x + 2.

Illustration 21

Divide $3x^4 + 5x^3 - x^2 + 13x + 9$ by 3x + 2 and verify that : Dividend = Divisor × Quotient + Remainder Solution : First divide $3x^4 + 5x^3 - x^2 + 13x + 9$ by 3x + 2

$$3x + 2) 3x^{4} + 5x^{3} - x^{2} + 13x + 9 \qquad (x^{3} + x^{2} - x + 5)$$

$$3x^{4} + 2x^{3} - x^{2}$$

$$3x^{3} - x^{2}$$

$$3x^{3} + 2x^{2} - \frac{x^{2}}{-x^{2}} - \frac{x^{2}}{-x^{$$

Quotient = $x^3 + x^2 - x + 5$; Remainder = -1

Now, Divisor \times Quotient + Remainder

 $= (3x + 2) (x^{3} + x^{2} - x + 5) - 1 = 3x (x^{3} + x^{2} - x + 5) + 2 (x^{3} + x^{2} - x + 5) - 1$ = $3x^{4} + 3x^{3} - 3x^{2} + 15x + 2x^{3} + 2x^{2} - 2x + 10 - 1$ = $3x^{4} + 5x^{3} - x^{2} + 13x + 9$ = Dividend

AN IMPORTANT RESULT

When the remainder is zero, the divisor is a factor of the dividend. Illustration 22

Find the value of a if 2x - 3 is a factor of $2x^4 - x^3 - 3x^2 - 2x + a$. Solution :

First we divide $2x^4 - x^3 - 3x^2 - 2x + a$ by 2x - 3.

$$\begin{array}{r} x^{3} + x^{2} - 1 \\ 2x - 3 \overline{\smash{\big)}} 2x^{4} - x^{3} - 3x^{2} - 2x + a \\ 2x^{4} - 3x^{3} \\ - + \\ 2x^{3} - 3x^{2} \\ 2x^{3} - 3x^{2} \\ - + \\ -2x + a \\ -2x + 3 \\ + \\ -2x + 3 \\ + \\ -3 \end{array}$$

:. 2x - 3 is a factor of $2x^4 - x^3 - 3x^2 - 2x + a$ if, a - 3 = 0Hence a = 3.

5.7 STANDARD IDENTITIES

Let us learn some useful identities which involve the product of two binomials.

Identity 1

$$(a + b) \times (a + b)$$

(a + b) (a + b) = a (a + b) + b (a + b)
= a × a + a × b + b × a + b × b
= a² + ab + ba + b²
= a² + 2ab + b²
(a + b)² = a² + 2ab + b²

Identity 2

$$(a - b) \times (a - b)$$

(a - b) (a - b) = a × (a - b) -b× (a - b)
= a × a + a × (-b) + (-b) × a + (-b) × (-b)
= a² - ab - ba + b²
= a² - 2ab + b²
(a - b)² = a² - 2ab + b²

Identity 3

$$(a - b) \times (a + b)$$

(a - b) (a + b) = a × (a + b) - b × (a + b)
= a × a + a × b + (-b) × a + (-b) × b
= a² + ab - ba - b²
= a² - b²
(a + b) (a - b) = a² - b²

Identity 4

$$(x + a) (x + b) = x \times (x + b) + a \times (a + b)$$

= x × x + x × b + a × x + a × b
= x² + xb + ax + ab
= x² + (b + a) x + ab
= x² + (a + b)x + ab
(x + a) (x + b) = x² + (a + b)x + ab

Let us now take up an example to find the importance to these identities.

.

Illustration 23 Expand

$$\begin{aligned} \left(\frac{1}{2}x + \frac{3}{7}y\right)^2 \\ \left(\frac{1}{2}x + \frac{3}{7}y\right) \left(\frac{1}{2}x + \frac{3}{7}y\right) &= \frac{1}{2} \times x \left(\frac{1}{2}x + \frac{3}{7}y\right) + \frac{3}{7}y \left(\frac{1}{2}x + \frac{3}{7}y\right) \\ &= \frac{1}{2}x \times \frac{1}{2}x + \frac{1}{2}x \times \frac{3}{7}y + \frac{3}{7}y \times \frac{1}{2}x + \frac{3}{7}y \times \frac{3}{7}y \\ &= \frac{1}{4}x^2 + \frac{3}{14}xy + \frac{3}{14}xy + \frac{9}{49}y^2 \\ &= \frac{1}{4}x^2 + \left(\frac{3}{14} + \frac{3}{14}\right)xy + \frac{9}{49}y^2 \\ &= \frac{1}{4}x^2 + \frac{6}{14}xy + \frac{9}{49}y^2 = \frac{1}{4}x^2 + \frac{3}{7}xy + \frac{9}{49}y^2 \end{aligned}$$

Let us solve this by using identity,

$$\left(\frac{1}{2}x + \frac{3}{7}y\right)^2 = \left(\frac{1}{2}x\right)^2 + 2 \times \frac{1}{2}x \times \frac{3}{7}y + \left(\frac{3}{7}y\right)^2$$
$$= \frac{1}{4}x^2 + \frac{3}{7}xy + \frac{9}{49}y^2$$

Thus, we see it is much simpler to use the identity rather than multiplying the binomial by itself. If we do direct multiplication, it involves more steps and more tedious calculations. It is easier to use identities.

SOLVED EXAMPLE

Example : 1

Using Identity, find. (a) $(7a + 3b)^2$ (b) $(206)^2$

Solution :

(a) (7a + 3b)² = (7a)² + 2 (7a) (3b) + (3b)² = 49a² + 42ab + 9b²
(b) First split it as (200 + 6)² Now, (200 + 6)² can be compared to (a + b)² where a = 200, b = 6 We know that, (a + b)² = a² + 2ab + b²
∴ (200 + 6)² = (200)² + 2 × 200 × 6 + (6)² = 40000 + 2400 + 36 = 42436

Example : 2

Using Identity, find. (a)
$$\left(\frac{5p}{7} - \frac{2q}{3}\right)^2$$
 (b) $(2p - 3q)^2$ (c) $(298)^2$

Solution :

(a) Comparing with identity, $(a - b)^2 = a^2 - 2ab + b^2$

Here,
$$a = \frac{5p}{7}$$
 and $b = \frac{2q}{3}$

$$\therefore \qquad \left(\frac{5p}{7} - \frac{2q}{3}\right)^2 = \left(\frac{5p}{7}\right)^2 - 2 \times \frac{5p}{7} \times \frac{2q}{3} + \left(\frac{2q}{3}\right)^2 = \frac{25p^2}{49} - \frac{20pq}{21} + \frac{4q^2}{9}$$

(b) $(2p-3q)^2$ Again comparing with identity

$$\therefore \qquad (2p - 3q)^2 = (2p)^2 - 2 \times 2p \times 3q + (3q)^2 = 4p^2 - 12pq + 9q^2$$

(c) $(298)^2$ This can be written as $(300 - 2)^2$. Comparing with identity, $(300 - 2)^2 = (300)^2 - 2 \times 300 \times 2 + (2)^2 = 90000 - 1200 + 4 = 88804$

Example : 3

Using identity, find (a) (4x + 7y) (4x - 7y) (b) $\left(\frac{3a}{4} + \frac{b}{7}\right) \left(\frac{3a}{4} - \frac{b}{7}\right)$ (c) 56×64 (d) $96^2 - 4^2$ Solution : (a) Comparing with identity, $(a + b) (a - b) = a^2 - b^2$ Here a = 4x and b = 7y \therefore $(4x + 7y) (4x - 7y) = (4x)^2 - (7y)^2 = 16x^2 - 49y^2$

(b) Comparing with identity,

$$\therefore \qquad \left(\frac{3a}{4} + \frac{b}{7}\right)\left(\frac{3a}{4} - \frac{b}{7}\right) = \left(\frac{3a}{4}\right)^2 - \left(\frac{b}{7}\right)^2 = \frac{9a^2}{16} - \frac{b^2}{49}$$

(c) This can be written as
$$(60 - 4) (60 + 4)$$
.
Now, comparing with $(a - b) (a + b) = a^2 - b^2$
Here $a = 60, b = 4$
 $56 \times 64 = (60 - 4) (60 + 4) = (60)^2 - (4)^2 = 3600 - 16 = 3584$

	(d)	Comparing with $(a + b) (a - b) = a^2 - b^2$
	<i>.</i>	Heat, $a = 90, b = 4$ $96^2 - 4^2 = (a + b) (a - b) = (96 + 4) (96 - 4) = 100 \times 92 = 9200.$
Examj	ple:4	
	Using (i) (104	the identities evaluate : $4)^2$ (ii) $(90)^2$ (iii) 103×97 (iv) 9.2×8.8 (v) 103×98
Solutio)n :	
	(i)	$(104)^2 = (100 + 4)^2 = (100)^2 + 2 \times (100 \times 4) + 4^2 \qquad [\because (a + b)^2 = a^2 + 2ab + b^2] = 10000 + 800 + 16 = 10816$
	(ii)	$\begin{array}{rcl} (90)^2 &= (100 - 10)^2 = (100)^2 - 2 \times (100 \times 10) + (10)^2 & [\because (a - b)^2 = a^2 - 2ab + b^2] \\ &= 10000 - 2000 + 100 = 8100 \end{array}$
	(iii)	$103 \times 97 = (100 + 3) (100 - 3) = (100)^2 - 3^2 \qquad [\because (a + b) (a - b) = a^2 - b^2] = 10000 - 9 = 9991$
	(iv)	$9.2 \times 8.8 = (9 + 0.2) \times (9 - 0.2) = 9^2 - (0.2)^2 = 81 - 0.04 = 80.96$
	(v)	$103 \times 98 = (100 + 3) (100 - 2) = (100)^2 + (3 - 2) \times 100 + 3 \times (-2)$ [:: (x + a) (x + b) = x ² + (a + b) x + ab]
		= 10000 + 100 - 6 = 10100 - 6 = 10094
Examj	ole : 5	
	If $x + \frac{1}{2}$	$\frac{1}{x} = 7$, find the value of : (i) $\left(x^2 + \frac{1}{x^2}\right)^2$ (ii) $\left(x^4 + \frac{1}{x^4}\right)$
Solutio	on :	
	(i)	We have, $x + \frac{1}{x} = 7$
		Squaring both sides, we get
		$\left(x+\frac{1}{x}\right)^2 = 7^2 \qquad \qquad \Rightarrow \qquad x^2+2 \times x \times \frac{1}{x} + \frac{1}{x^2} = 49$
	\Rightarrow	$x^{2} + 2 + \frac{1}{2} = 49 \implies x^{2} + \frac{1}{2} = 49 - 2$

 $\Rightarrow x^{2} + 2 + \frac{1}{x^{2}} = 49 \Rightarrow x^{2} + \frac{1}{x^{2}} = 49 - 2$ $\Rightarrow x^{2} + \frac{1}{x^{2}} = 47 \qquad \dots \dots (1)$ (i) Again squaring both sides of (1) we get :

$$\left(x^{2} + \frac{1}{x^{2}}\right)^{2} = (47)^{2} \implies x^{4} + 2 \times x^{2} \times \frac{1}{x^{2}} + \frac{1}{x^{4}} = 2209$$

$$\Rightarrow x^{4} + 2 + \frac{1}{x^{4}} = 2209 \implies x^{4} + \frac{1}{x^{4}} = 2209 - 2$$

$$\Rightarrow x^{4} + \frac{1}{x^{4}} = 2007$$

Thus, $x^{2} + \frac{1}{x^{2}} = 47$ and $x^{4} + \frac{1}{x^{4}} = 2207$.

Example : 6

Find the square of 10.5 with the help of an identity. Solution :

$$(10.5)^{2} = (10 + 0.5)^{2} = 10^{2} + 2 \times 10 \times 0.5 + (0.5)^{2} = 100 + 10.0 + 0.25 = 110.25$$

OR
$$(10.5)^{2} = (11 - 0.5)^{2} = 11^{2} - 2 \times 11 \times 0.5 + (0.5)^{2} = 121 - 11.0 + 0.25 = 110.25$$

Example: 7

Find the continued product using identities $(5a - 2b) (5a + 2b) (25a^2 - 4b^2)$ Solution :

$$(5a - 2b) (5a + 2b) (25a2 - 4b2) = [(5a - 2b) (5a + 2b)] (25a2 - 4b2)= [(5a)2 - (2b)2] (25a2 - 4b2)= (25a2 - 4b2) (25a2 - 4b2)= (25a2 - 4b2)2= (25a2)2 - 2 × 25a2 × 4b2 + (4b2)2[Using (x - y)2 = x2 - 2xy + y2]= 625a4 - 200a2b2 + 16b4$$

Example:8

Simplify using the identities :

(i)
$$\frac{102 \times 102 - 2 \times 2}{102 + 2}$$
 (ii) $\frac{3.5 \times 3.5 - 2(3.5)(0.5) + 0.5 \times 0.5}{3.5 \times 3.5 + 2(3.5)(0.5) + 0.5 \times 0.5}$

Solution :

(i)
$$\frac{102 \times 102 - 2 \times 2}{102 + 2} = \frac{(102)^2 - (2)^2}{104} = \frac{(102 + 2)(102 - 2)}{104} \qquad [(a^2 - b^2) = (a + b) (a - b)]$$
$$= \frac{104 \times 100}{104} = 100$$

(ii)
$$\frac{3.5 \times 3.5 - 2(3.5)(0.5) + 0.5 \times 0.5}{3.5 \times 3.5 + 2(3.5)(0.5) + 0.5 \times 0.5} = \frac{(3.5)^2 - 2(3.5)(0.5) + (0.5)^2}{(3.5)^2 2(3.5)(0.5) + (0.5)^2}$$
$$= \frac{(3.5 - 0.5)^2}{(3.5 + 0.5)^2}$$
$$[a^2 - 2ab + b^2 = (a - b)^2, a^2 + 2ab + b^2 = (a + b)^2]$$
$$= \frac{3^2}{4^2} = \frac{9}{16}$$

Example : 9

Find the value of a if $pqa = (3p + q)^2 - (3p - q)^2$ Solution : We have $pqa = (3p + q)^2 - (3p - q)^2$ = (3p + q + 3p - q) (3p + q - 3p + q) [Using $x^2 - y^2 = (x + y) (x - y)$] $= 6p \times 2q$ $\Rightarrow pqa = 12 pq \Rightarrow a = \frac{12pq}{pq} = 12$

Example 10

Write the degree of the following algebraic expressions.

(a) $-7x^3 +$	$4x^2 - 3x + 9$	(b) $2x^4 - 4$	4x + 11 (c) $7x^5 - 4x^4 - 3x^3$	3 + 13x - 2
(d) $\frac{4}{3}x^{3}$		(e) 7			
Solution					
(a) 3	(b) 4	(c) 5	(d) 3	(e) 0	

Example 11

Classify the foll	owing algebraic expre	ssions as monomials, bino	mials or trinomials.
(a) $2x^5 + 7$	(b) $4x - 10$	(c) $-3x^4 + 2x^3 + 9x$	(d) $-2x^2 - 3x + 4$
(e) $7x^2$	(f) $4x^{3}$	(g) $3x^2 + 4x$	(h) $2x + 9y$
Solution			

(a) Binomial (b) Binomial (c) Trinomial (d) Trinomial (e) Monomial (f) Monomial (g) Binomial (h) Binomial

Example 12

Find thhe area of the rectangle whose length and breadth (in units) are :

(a)
$$3a^2b^3$$
 and $\frac{1}{3}ab$ (b) $3x^2y^5$ and $2x^3y$

Solution

(a) $a^{3}b^{4}$ sq units(b) $6x^{5}y^{6}$ sq units

Example 13

Find the volume of the rectangular tank whose length, breadth and depth (in units) are :

(a)
$$\frac{1}{3}xy^2$$
, $\frac{3}{5}x^2y$ and $\frac{2}{9}xy$ (b) $\frac{7}{12}xy$, $\frac{2}{21}xy^3$, $\frac{3}{5}x^3z$

Solution

(a)
$$\frac{2}{45}x^4y^4$$
 cubic units(b) $\frac{1}{30}x^5y^4z$ cubic units

Example 14

Add: 2x (z - x - y) and 2y (z - y - x).

Solution

 $-4xy + 2yz + 2zx - 2x^2 - 2y^2$

CC	NCI	EPT APPLIC	ATION LEV	EL - I	[NCERT Questions]
Q.1	Identi (i)	ify the terms, their coe 5xyz ² – 3zy	EXERCISE - 1 fficients for each of th (ii) $1 + x + x^2$	<u>l</u> 1e following ex (iii)	$x pressions: 4x^2y^2 - 4x^2y^2z^2 + z^2$
	(iv)	3-pq+qr-rp	$(\mathbf{v}) \qquad \frac{\mathbf{x}}{2} + \frac{\mathbf{y}}{2} - \mathbf{x}\mathbf{y}$	(vi)	0.3a – 0.6ab + 0.5 b
Sol.	(i)	$5xyz^2 - 3zy$:	Terms : Their coefficients :	5xyz ² , 5,	-3zy -3
	(ii)	$1 + x + x^2$:	Terms : Their coefficients :	1, x, 1, 1,	x ² 1
	(iii)	$4x^2y^2 - 4x^2y^2z^2 + z^2$	Terms : Their coefficients :	$\begin{array}{ll} 4x^2y^2, & -4x^2y \\ 4, & -4, \end{array}$	$y^2 z^2, z^2$ 1
	(iv)	3 – pq + qr – rp	Terms : Their coefficients :	3, - pq, 3, -1,	qr, – rp 1 – 1
	(v)	$\frac{x}{2} + \frac{y}{2} - xy$	Terms :	$\frac{x}{2}, \frac{y}{2},$	xy
			Their coefficients :	$\frac{1}{2}$, $\frac{1}{2}$,	-1
	(vi)	0.3a – 0.6ab + 0.5 b	Terms : Their coefficients :	0.3a, -0.6a 0.3, -0.6,	ub, 0.5b 0.5

Q.2 Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?

x + y, 1000, $x + x^2 + x^3 + x^4$, 7 + y + 5x, $2y - 3y^2$, $2y - 3y^2 + 4y^3$, 5x - 4y + 3xy, $4z - 15z^2$, ab + bc + cd + da, pqr, $p^2q + pq^2$, 2p + 2q.

Sol.	Monomials	Binomials	Trinomials	Polynomials that do not fit in these categories
	1000 pqr	$x + y$ $2y - 3y^{2}$ $4z - 15z^{2}$ $p^{2}q + pq^{2}$ $2p + 2q$	7+y+5x $2y^2-3y^2+4y^3$ 5x-4y+3xy	x + x2 + x3 + x4 ab + bc + cd + da

Q.3 Add the following.
(i)
$$ab-bc, bc-ca, ca-ab$$

(ii) $a-b+ab, b-c+bc, c-a+ac$
(iii) $2p^2q^2-3pt+4,5+7pt-3p^2q^2$
(iv) $l^2+m^2, m^2+n^2, n^2+l^2, 2lm+2mn+2nl$
Sol.
(i) $ab-bc, bc-ca, ca-ab$
 $ab-bc$
 $+ +bc-ca$
 $+ -ab$ ca
 $\boxed{0}$
(ii) $a-b+ab, b-c+bc, c-a+ac$
 $a-b+ab$
 $+ +b -cb+ac$
 $\boxed{10}$
(iii) $2p^2q^2-3pt+4, 5+7pt-3p^2q^2$
 $2p^2q^2-3pt+4$
 $+ -3p^2q^2+7pt+5$
 $\boxed{-p^2q^2+4pt+9}$
(iv) $l^2+m^2, m^2+n^2, n^2+l^2, 2lm+2mn+2nl$
 l^2+m^2
 $+ m^2+n^2$
 $+ l^2+m^2$
 $+ l^2+m^2 + l^2 + lm + mn + nl)$
 $\boxed{2l^2+2m^2+2n^2+2lm+2mt+2nl}$
 $= 2(l^2+m^2+n^2+l^2+lm+mn + nl)$
 $\boxed{2l^2+2m^2+2n^2+2lm+2mt+2nl}$
(i) Subtract $4a-7ab+3b+12$ from $12a-9ab+5b-3$.
(i) Subtract $4p^2q-3pt+5pq^2-8p+7q-10$ from $18-3p-11q+5pt-2ptq^2+5p^2q$.
Sol. (a) $12a-9ab+5b-3$
 $- 4a-7ab+3b+12$
 $- + - -$

8a - 2ab + 2b - 15

5xy - 2yz - 2zx + 10xyz(b) 3xy + 5yz - 7zx_ _ _ + 2xy - 7yz + 5zx + 10xyz(c) $18 - 3p - 11q + 5pq - 2pq^2 + 5p^2q$ $-10 - 8p + 7q - 3pq + 5pq^2 + 4p^2q$ + + _ + $28 + 5p - 18q + 8pq - 7pq^2 + p^2q$ **EXERCISE-2 Q.1** Find the product of the following pairs of monomials : (iii) -4p, 7pq (iv) $4p^3$, -3p (v) 4p, 0. (i) 4, 7p (ii) **-4**p, 7p Sol. (i) 4,7p $4 \times 7p = (4 \times 7) \times p$ $= 28 \times p = 28p$ (ii) -4p, 7p $(-4p) \times (7p) = \{(-4) \times 7\} \times (p \times p)$ = $(-28) \times p^2 = -28p^2$ (iii) -4p, 7pq $(-4p) \times (7pq) = \{(-4) \times 7\} \times \{p \times (pq)\}$ $= (-28) \times (p \times p \times p)$ $=(-28) \times (p^2q) = -28 p^2q$ $4p^{3}, -3p$ (iv) $(4p^3) \times (-3p) = \{4 \times (-3)\} \times (p^3 \times p)$ = $(-12) \times p^4 = -12p^4$ **(v)** 4p,0 $(4p) \times 0 = (4 \times 0) \times p$ $= 0 \times p = 0$ Q.2 Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively : (iii) $(20x^2, 5y^2)$ (iv) $(4x, 3x^2)$ (ii) (10m, 5n) (i) (p, q)(v) (3mn, 4np) Area of the rectangle = Length \times Breadth Sol. (i) (p,q): $= \mathbf{p} \times \mathbf{q} = \mathbf{pq}$

(ii) (10m, 5n) Area of the rectangle = Length × Breadth
=
$$(10m) \times (5n)$$

= $(10 \times 5) \times (m \times n)$
= $50 \times (mn) = 50 \text{ mm}$

(iii)	$(20x^2, 5y^2)$	Area of the rectangle	= Length × Breadth = $(20x^2) \times (5y^2)$ = $(20 \times 5) \times (x^2 \times y^2)$ = $100 \times (x^2y^2) = 100x^2y^2$
(iv)	$(4x, 3x^2)$	Area of the rectangle	= Length × Breadth = $(4x) \times (3x^2)$ = $(4 \times 3) \times (x \times x^2)$ = $12 \times x^3 = 12x^3$
(v)	(3mn, 4np)	Area of the rectangle	= Length × Breadth = $(3mn) \times (4np)$ = $(3 \times 4) \times (mn) \times (np)$ = $12 \times m \times (n \times n) \times p$ = $12 \times mn^2p$

Q.3 Complete the table of products

First monomial \rightarrow	2x	- 5v	$3x^2$	-4xv	$7x^2y$	$-9x^2y^2$
Second monomial \downarrow			•••	ТАЈ	/A J	7 X J
2x	$4x^2$					
- 5y			$-15x^2y$			
$3x^2$						
- 4xy						
$7x^2y$						
$-9x^2y^2$						

Sol.

$\frac{\text{First monomial}}{\text{Second monomial}}$	2x	- 5y	$3x^2$	-4xy	$7x^2y$	$-9x^2y^2$
2x	$4x^2$	-10xy	6x ³	$-8x^2y$	$14x^3y$	$-18x^3y^2$
- 5y	-10xy	25y ²	$-15x^2y$	$20xy^2$	$-35x^2y^2$	$45x^2y^3$
$3x^2$	$6x^3$	$-15x^2y$	9x ⁴	$-12x^3y$	21x ⁴ y	$-27x^4y^2$
- 4xy	$-8x^2y$	$20xy^2$	$-12x^3y$	$16x^2y^2$	$-28x^3y^2$	$36x^3y^3$
$7x^2y$	$14x^3y$	$-35x^2y^2$	21x ⁴ y	$-28x^3y^2$	$49x^4y^2$	$-63x^4y^3$
$-9x^2y^2$	$-18x^3y^2$	$45x^2y^3$	$-27x^4y^2$	$36x^3y^3$	$-63x^4y^3$	81x ⁴ y ⁴

Obtain the value of rectangular boxes with the following length, breadth and height respectively: 0.4 (i) 5a, $3a^2$, $7a^4$ (ii) 2p, 4q, 8r (iii) $xy, 2x^2y, 2xy^2$ (iv) a, 2b, 3c 5a, $3a^2$, $7a^4$ Volume of the rectangular box = Length \times Breadth \times Height (i) Sol. $= (5a) \times (3a^2) \times (7a^4)$ $= (5 \times 3 \times 7) \times (a \times a^2 \times a^4)$ $= 105a^{7}$ Volume of the rectangular box = Length \times Breadth \times Height (ii) 2p, 4q, 8r $= (2p) \times (4q) \times (8r)$ $= (2 \times 4 \times 8) \times (p \times q \times r)$ = 64 par $xy, 2x^2y, 2xy^2$ Volume of the rectangular box = Length \times Breadth \times Height (iii) $=(xy) \times (2x^2y) \times (2xy^2)$ $= (2 \times 2) \times (x \times x^2 \times x) \times (y \times y \times y^2)$ $=4x^4v^4$ Volume of the rectangular box = Length \times Breadth \times Height a, 2b, 3c (iv) = (a) \times (2b) \times (3c) $= (2 \times 3) \times (a \times b \times c)$ = 6abcQ.5 Obtain the product of (ii) $a, -a^2, a^3$ (iii) 2, 4v, $8v^2$, $16v^3$ (iv) a, 2b, 3c, 6abc (i) xy, yz, zx (v) m, -mn, mnp Sol. xy, yz, zx Required product = $(xy) \times (yz) \times (zx)$ (i) $= (\mathbf{x} \times \mathbf{x}) \times (\mathbf{y} \times \mathbf{y}) \times (\mathbf{z} \times \mathbf{z})$ $= \mathbf{x}^2 \times \mathbf{v}^2 \times \mathbf{z}^2 = \mathbf{x}^2 \mathbf{v}^2 \mathbf{z}^2$ Required product = (a) × $(-a^2)$ × (a^3) a. $-a^2$. a^3 (ii) $= -(a \times a^2 \times a^3) = -a^6$ $2, 4y, 8y^2, 16y^3$ Required product = $(2) \times (4y) \times (8y^2) \times (16y^3)$ (iii) $= (2 \times 4 \times 8 \times 16) \times (v \times v^2 \times v^3) = 1024v^6$ a, 2b, 3c, 6abc Required product = (a) \times (2b) \times (3c) \times (6abc) (iv) $= (2 \times 3 \times 6) \times (a \times a) \times (b \times b) \times (c \times c)$ $= 36a^2b^2c^2$ Required product = $(m) \times (-mn) \times (mnp)$ **(v)** m, –mn, mnp $= (-1) \times (m \times m \times m) \times (n \times n) \times p$ $= -m^3 n^2 p$

			EX	<u>ERCISE - 3</u>	
Q.1	Carr	y out the multip	olication of the exp	ression in each of the fo	llowing pairs :
	(i) 4p	,q+r	(ii) ab, a – b	(iii) $a + b$, $7a^2b^2$	(iv) $a^2 - 9$, 4a
	(v) po	q + qr + 2p, 0			
Sol.	(i)	4p, q + r			
	.,	$(4p) \times (q+r)$	$= (4p) \times (q) + (4p)$ $= 4pq + 4pr$	$(r) \times (r)$	
	(ii)	$\mathbf{ab, a-b}$ $(\mathbf{ab}) \times (\mathbf{a-b})$	$= (ab) \times (a) - (ab)^{2}$ $= a^{2}b - ab^{2}$) × (b)	
	(iii)	$a + b, 7a^{2}b^{2}$ (a + b) × (7a ²)	$b^{2}) = (7a^{2}b^{2}) \times (a - (7a^{2}b^{2})) \times (a)$ $= (7a^{2}b^{2}) \times (a)$ $= 7a^{3}b^{2} + 7a^{2}b^{2}$	(+ b) + (7 $a^{2}b^{2}$) × (b)	(by commutative law)
	(iv)	$a^2 - 9, 4a$ $(a^2 - 9) \times (4a)$	$ = (4a) \times (a^2 - 9) = (4a) \times (a^2) - (4a) = 4a^3 - 36a $	a) × (9)	(by commutative law)

(v)
$$pq + qr + 2p, 0$$

 $(pq + qr + 2p) \times (0) = (0) \times (pq + pr + 2p)$ (by commutative law)
 $= (0) \times (pq) + (0) \times (qr) + (0) \times (2p)$
 $= 0 + 0 + 0 = 0$

Q.2 Complete the table :

	First expression	Second expression	Product
(i)	a	$\mathbf{b} + \mathbf{c} + \mathbf{d}$	_
(ii)	x + y - 5	5xy	—
(iii)	р	$6p^2 - 7p + 5$	_
(iv)	$4p^2q^2$	$p^2 - q^2$	_
(v)	a + b + c	abc	—
	First expression	Second expression	Product

S	0	
S	0	l,

	First expression	Second expression	Product
(i)	a	b+c+d	ab + ac + ad
(ii)	x + y - 5	5xy	$5x^2y + 5xy^2 - 25xy$
(iii)	р	$6p^2 - 7p + 5$	$6p^3 - 7p^2 + 5p$
(iv)	$4p^2q^2$	$p^2 - q^2$	$4p^4q^2 - 4p^2q^4$
(v)	a + b + c	abc	$a^{2}bc + ab^{2}c + abc^{2}$

Q.3 Find the product :

(i)
$$(a^2) \times (2a^{22}) \times (4a^{26})$$
 (ii) $(\frac{2}{3}xy) \times (\frac{-9}{10}x^2y^2)$

(iii)
$$\left(-\frac{10}{3}pq^3\right) \times \left(\frac{6}{5}p^3q\right)$$
 (iv) $\mathbf{x} \times \mathbf{x}^2 \times \mathbf{x}^3 \times \mathbf{x}^4$
(i) $(\mathbf{a}^2) \times (2\mathbf{a}^{22}) \times (4\mathbf{a}^{26}) = (2 \times 4) \times (\mathbf{a}^2 \times \mathbf{a}^{22} \times \mathbf{a}^{26}) = 8 \times \mathbf{a}^{50} = 8$

Sol.

Sol.

$$= (2 \times 4) \times (a^2 \times a^{22} \times a^{26}) = 8 \times a^{50} = 8a^{50}.$$

(ii)
$$\left(\frac{2}{3}\mathbf{x}\mathbf{y}\right) \times \left(\frac{-9}{10}\mathbf{x}^2\mathbf{y}^2\right) = \left\{\frac{2}{3} \times \left(-\frac{9}{10}\right)\right\} \times (\mathbf{x} \times \mathbf{x}^2) \times (\mathbf{y} \times \mathbf{y}^2) = -\frac{3}{5}\mathbf{x}^3\mathbf{y}^3.$$

(iii)
$$\left(-\frac{10}{3}\mathbf{pq^3}\right) \times \left(\frac{6}{5}\mathbf{p^3q}\right) = \left\{\left(-\frac{10}{3}\right) \times \frac{6}{5}\right\} \times (\mathbf{p} \times \mathbf{p^3}) \times (\mathbf{q^3} \times \mathbf{q}) = -4\mathbf{p^4q^4}$$

(iv)
$$\mathbf{x} \times \mathbf{x}^2 \times \mathbf{x}^3 \times \mathbf{x}^4 = \mathbf{x} \times \mathbf{x}^2 \times \mathbf{x}^3 \times \mathbf{x}^4 = \mathbf{x} \times \mathbf{x}^2 \times \mathbf{x}^3 \times \mathbf{x}^4 = \mathbf{x}^{1+2+3+4} = \mathbf{x}^{10}$$

Simplify: 3x(4x-5) + 3 and find its values for (i) x = 3, (ii) $x = \frac{1}{2}$. Q.4 **(a)**

Simplify : $a(a^2 + a + 1) + 5$ and find its value for (i) a = 0, (ii) a = 1 and (iii) a = -1. **(b)**

(a)
$$3x (4x-5) + 3 = (3x) (4x) - (3x) (5) + 3$$

= $(3 \times 4) \times (x \times x) - 15x + 3$
= $12x^2 - 15x + 3$

(i) When
$$x = 3$$
,
 $12x^2 - 15x + 3 = 12(3)^2 - 15(3) + 3 = 108 - 45 + 3 = 66$

(ii) When
$$x = \frac{1}{2}$$
,

$$12x^{2} - 15x + 3 = 12\left(\frac{1}{2}\right)^{2} - 15\left(\frac{1}{2}\right) + 3 = 3 - \frac{15}{2} + 3 = -\frac{3}{2}$$

(b)
$$a(a^2 + a + 1) + 5 = a \times a^2 + a \times a + a \times 1 + 5 = a^3 + a^2 + a + 5$$

(i) When
$$a = 0$$

 $a^3 + a^2 + a + 5 = 0 = (0)^3 + (0)^2 + (0) + 5$

When a = 1 (ii) $a^{3} + a^{2} + a + 5 = (1)^{3} + (1)^{2} + (1) + 5 = 1 + 1 + 1 + 5 = 8$

(iii) When
$$a = -1$$

 $a^3 + a^2 + a + 5 = (-1)^3 + (-1)^2 + (-1) + 5 = -1 + 1 - 1 + 5 = 4$

Q.5 (a) Add : p(p-q), q(q-r) and r(r-p)(b) Add : 2x(z - x - y) and 2y(z - y - x)(c) Subtract : 3l(l-4m+5n) from 4l(10n-3m+2l)(d) Subtract: 3a(a + b + c) - 2b(a - b + c) from 4c(-a + b + c)First expression = $p(p-q) = p \times p - p \times q = p^2 - pq$ Sol. **(a)** Second expression = $q(q - r) = q \times q - q \times r = q^2 - qr$ Third expression = $r(r-p) = r \times r - r \times p = r^2 - rp$ Adding the three expressions, $p^{2} - pq$ $+ q^{2} - qr$ $+ r^{2} - rp$ $p^{2} - pq + q^{2} - qr + r^{2} - rp$ ++First expression = $2x(z - x - y) = (2x) \times (z) - (2x) \times (x) - (2x) \times (y) = 2xz - 2x^2 - 2xy$ **(b)** Second expression = $2y(z - y - x) = (2y) \times (z) - (2y) \times (y) - (2y) \times (x) = 2yz - 2y^2 - 2yx$ Adding the two expressions, $2xz-2x^2-2xy$ $-2yx+2yz-2y^2$ + $2xz - 2x^2 - 4xy + 2yz - 2y^2$ First expression = $3l(l-4m+5n) = (3l) \times (l) - (3l) \times (4m) + (3l) \times (5n) = 3l^2 - 12lm + 15ln$ (c) Second expression = $4l(10n - 3m + 2l) = (4l) \times (10n) - (4l) \times (3m) + (4l) \times (2l)$ $=40ln-12lm+8l^{2}$ Subtraction, $40ln - 12lm + 8l^2$ $15ln - 12lm + 3l^2$ _ + $+5l^{2}$ 25*l*n

(d) First expression =
$$3a (a + b + c) - 2b (a - b + c)$$

= $(3a) \times (a) + (3a) \times (b) + (3a) \times (c) - (2b) \times (a) + (2b) \times (b) - (2b) \times (c)$
= $3a^2 + 3ab + 3ac - 2ab + 2b^2 - 2bc$
= $3a^2 + 2b^2 + 3ab - 2ab - 2bc + 3ac$
= $3a^2 + 2b^2 + ab - 2bc + 3ac$
Second expression
= $4c (-a + b + c) = 4c \times (-a) + 4c \times b + 4c \times c$
= $-4ac + 4bc + 4c^2$
Subtraction,
 $-4ac + 4bc + 4c^2$
 $3a^2 + 2b^2 + ab + 3ac - 2bc$
 $- - - - + \frac{-3a^2 - 2b^2 - ab - 7ac + 6bc + 4c^2}{-ab - 7ac + 6bc + 4c^2}$

MATHEMATICS / CLASS-VIII

EXERCISE - 4

Q.1 Multiply the binomials :

(v)

- (i) (2x+5) and (4x-3) (ii)
- (iii) (2.5l 0.5 m) and (2.5l + 0.5 m) (iv) (a + 3b) and (x + 5)

(2pq + 3q²) and (3pq - 2q²) (vi)
$$\left(\frac{3}{4}a^2 + 3b^2\right)$$
 and $4\left(a^2 - \frac{2}{3}b^2\right)$

(y-8) and (3y-4)

Sol. (i)
$$(2x + 5)$$
 and $(3y - 4)$
 $(2x + 5) \times (4x - 3) = (2x) \times (4x - 3) + 5 \times (4x - 3)$
 $= (2x) \times (4x) - (2x) \times (3) + (5) \times (4x) - (5) \times (3)$
 $= 8x^2 - 6x + 20x - 15$
 $= 8x^2 + (20x - 6x) - 15$ (Combining like terms)
 $= 8x^2 + 14x - 15$

(ii)
$$(y-8)$$
 and $(4x-3)$
 $(y-8) \times (3y-4) = y \times (3y-4) - 8 \times (3y-4)$
 $= (y) \times (3y) - (y) \times (4) - (8) \times (3y) + 8 \times 4$
 $= 3y^2 - 4y - 24y + 32$
 $= 3y^2 - 28y + 32$ (Combining like terms)

(iv)
$$(a+3b) \text{ and } (x+5)$$

 $(a+3b) \times (x+5) = a \times (x+5) + (3b) \times (x+5)$
 $= (a) \times (x) + (a) \times (5) + (3b) \times (x) + (3b) \times (5)$
 $= ax + 5a + 3bx + 15b$

(v)
$$(2pq+3q^2)$$
 and $(3pq-2q^2)$
 $(2pq+3q^2) \times (3pq-2q^2)$
 $= (2pq) \times (3pq-2q^2) + (3q^2) \times (3pq-2q^2)$
 $= (2pq) \times (3pq) - (2pq) \times (2q^2) + (3q^2) \times (3pq) - (3q^2) \times (2q^2)$
 $= 6p^2q^2 - 4pq^3 + 9pq^3 - 6q^4$
 $= 6p^2q^2 - (9pq^3 - 4pq^3) - 6q^4$ (Combining like terms)
 $= 6p^2q^2 + 5pq^3 - 6q^4$

(vi)
$$\left(\frac{3}{4}a^2 + 3b^2\right)$$
 and $4\left(a^2 - \frac{2}{3}b^2\right)$
 $\left(\frac{3}{4}a^2 + 3b^2\right) \times 4\left(a^2 - \frac{2}{3}b^2\right)$
 $= \left(\frac{3}{4}a^2 + 3b^2\right) \times \left(4a^2 - \frac{8}{3}b^2\right)$
 $= \frac{3}{4}a^2 \times \left(4a^2 - \frac{8}{3}b^2\right) + 3b^2 \times \left(4a^2 - \frac{8}{3}b^2\right)$
 $= \left(\frac{3}{4}a^2\right) \times (4a^2) - \left(\frac{3}{4}a^2\right) \times \left(\frac{8}{3}b^2\right) + 3b^2 \times (4a^2) - (3b^2) \times \left(\frac{8}{3}b^2\right)$
 $= 3a^4 - 2a^2b^2 + 12b^2a^2 - 8b^4$
 $= 3a^4 + (12a^2b^2 - 2a^2b^2) - 8b^4$ (Combining like terms)
 $= 3a^4 + 10a^2b^2 - 8b^4$

Q.2 Find the product :
(i)
$$(5-2x)(3+x)$$
 (ii) $(x+7y)(7x-y)$ (iii) $(a^2+b)(a+b^2)$
(iv) $(p^2-q^2)(2p+q)$
Sol. (i) $(5-2x)(3+x)$
 $(5-2x) \times (3+x) = (5) \times (3+x) - (2x) \times (3+x)$
 $= (5) \times (3) + (5) \times (x) - (2x) \times (3) - (2x) \times (x)$
 $= 15 + 5x - 6x - 2x^2$
 $= 15 - x - 2x^2$ (Combining like terms)

(ii)
$$(x + 7y) (7x - y)$$

 $(x + 7y) \times (7x - y) = (x) \times (7x - y) + (7y) \times (7x - y)$
 $= (x) \times (7x) - (x) \times (y) + (7y) \times (7x) - (7y) \times (y)$
 $= 7x^2 - xy + 49yx - 7y^2$
 $= 7x^2 + 48xy - 7y^2$ (Combining like terms)

(iii)
$$(a^2 + b) (a + b^2)$$

 $(a^2 + b) \times (a + b^2) = a^2 \times (a + b^2) + b \times (a + b^2)$
 $= (a^2) \times (a) + (a^2) \times (b^2) + (b) \times (a) + (b) \times (b^2)$
 $= a^3 + a^2b^2 + ba + b^3$

(iv)
$$(\mathbf{p}^2 - \mathbf{q}^2) (2\mathbf{p} + \mathbf{q})$$

 $(\mathbf{p}^2 - \mathbf{q}^2) \times (2\mathbf{p} + \mathbf{q}) = \mathbf{p}^2 \times (2\mathbf{p} + \mathbf{q}) - \mathbf{q}^2 \times (2\mathbf{p} + \mathbf{q})$
 $= (\mathbf{p}^2) \times (2\mathbf{p}) + (\mathbf{p}^2) \times (\mathbf{q}) - (\mathbf{q}^2) \times (2\mathbf{p}) - (\mathbf{q}^2) \times (\mathbf{q})$
 $= 2\mathbf{p}^3 + \mathbf{p}^2\mathbf{q} - 2\mathbf{q}^2\mathbf{p} - \mathbf{q}^3$

Q.3 Simplify:
(i)
$$(x^2 - 5) (x + 5) + 25$$

(ii) $(a^2 + 5) (b^3 + 3) + 5$
(iii) $(t + s^2) (t^2 - s)$
(iv) $(a + b) (c - d) + (a - b) (c + d) + 2(ac + bd)$
(v) $(x + y) (2x + y) + (x + 2y) (x - y)$
(vi) $(x + y) (x^2 - xy + y^2)$
(vii) $(1.5x - 4y) (1.5x + 4y + 3) - 4.5x + 12y$
(viii) $(a + b + c) (a + b - c)$
Sol. (i) $(x^2 - 5) (x + 5) + 25 = x^2(x + 5) - 5(x + 5) + 25$
 $= x^3 + 5x^2 - 5x - 25 + 25$
 $= x^3 + 5x^2 - 5x$
(ii) $(a^2 + 5) (b^3 + 3) + 5 = a^2(b^3 + 3) + 5(b^3 + 3) + 5$
 $= a^2b^3 + 3a^2 + 5b^3 + 15 + 5$
 $= a^2b^3 + 3a^2 + 5b^3 + 20$
(iii) $(t + s^2) (t^2 - s) = t(t^2 - s) + s^2(t^2 - s)$
 $= t^3 - ts + s^2t^2 - s^3$
(iv) $(a + b) (c - d) + (a - b) (c + d) + 2(ac + bd)$
 $= a(c - d) + b(c - d) + a(c + d) - b(c + d) + 2(ac + bd)$
 $= ac - ad + bc - bd + ac + ad - bc - bd + 2ac + 2bd$
 $= (ac + ac + 2ac) + (ad - ad) + (bc - bc) + (2bd - bd - bd)$
(Combining like terms)

(v)
$$(x + y) (2x + y) + (x + 2y) (x - y)$$

 $= x(2x + y) + y(2x + y) + x(x - y) + 2y(x - y)$
 $= 2x^{2} + xy + 2xy + y^{2} + x^{2} - xy + 2xy - 2y^{2}$
 $= (2x^{2} + x^{2}) + (xy + 2xy - xy + 2xy) + (y^{2} - 2y^{2})$
(Combining like terms)
 $= 3x^{2} + 4xy - y^{2}$

(vi)
$$(x + y) (x^2 - xy + y^2) = x(x^2 - xy + y^2) + y(x^2 - xy + y^2)$$

= $x^3 - x^2y + xy^2 + x^2y - xy^2 + y^3$
= $x^3 + (x^2y - x^2y) + (xy^2 - xy^2) + y^3$ (Combining like terms)
= $x^3 + y^3$

(vii)
$$(1.5x - 4y) (1.5x + 4y + 3) - 4.5x + 12y$$

= $1.5x (1.5x + 4y + 3) - 4y (1.5x + 4y + 3) - 4.5x + 12y$
= $2.25x^2 + 6xy + 4.5x - 6xy - 16y^2 - 12y - 4.5x + 12y$
= $2.25x^2 + (6xy - 6xy) - 16y^2 + (4.5x - 4.5x) + (12y - 12y)$
(Combining like terms)
= $2.25x^2 - 16y^2$

(viii)
$$(a + b + c) (a + b - c) = a(a + b - c) + b(a + b - c) + c(a + b - c)$$

= $a^2 + ab - ac + ab + b^2 - bc + ac + bc - c^2$
= $a^2 + (ab + ab) + (ac - ac) + b^2 + (bc - bc) - c^2$
(Combining like terms)
= $a^2 + 2ab + b^2 - c^2$

		EXERCISE - 5					
Q.1	Use a suitable identity to get each of the following products : (i) $(x \pm 3) (x \pm 3)$ (ii) $(2x \pm 5) (2x \pm 5)$ (iii) $(2x - 7) (2x - 7)$						
	(i) (\mathbf{X} \neg	$3a - \frac{1}{2} = 3a - \frac{1}{2}$	(ii) $(2y + 3) (2y + 3)$ (v) $(1.1m - 0.4) (1.1m + 0.4)$	(iii) $(2a - 7)(2a - 7)$ (vi) $(a^2 + b^2)(-a^2 + b^2)$			
		2人 2)		$(\mathbf{x} 3\mathbf{y})(\mathbf{x} 3\mathbf{y})$			
	(vii) (6	(6x - 7)(6x + 7)	(viii) (-a + c) (-a + c)	$(ix)\left(\frac{\pi}{2}+\frac{\sigma_{j}}{4}\right)\left(\frac{\pi}{2}+\frac{\sigma_{j}}{4}\right)$			
Sol.	(x) (7a (i)	(x - 9b) (7a - 9b) (x + 3) (x + 3) = =	$= (x + 3)^{2}$ = (x) ² + 2(x) (3) + (3) ² = x ² + 6x + 9	(using Identity I)			
	(ii)	(2y+5)(2y+5)	$ = (2y + 5)^{2} = (2y)^{2} + 2(2y) (5) + (5)^{2} = 4y^{2} + 20y + 25 $	(using Identity I)			
	(iii)	(2a - 7) (2a - 7)	$ = (2a - 7)^{2} = (2a)^{2} - 2(2a) (7) + (7)^{2} = 4a^{2} - 28a + 49 $				
	(iv)	$\left(3a-\frac{1}{2}\right)\left(3a-\frac{1}{2}\right)$	$\left(\frac{1}{2}\right) = \left(3a - \frac{1}{2}\right)^2$				
			$=(3a)^2 - 2(3a)\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2$	(Using Identity II)			
			$=9a^2-3a+\frac{1}{4}$				
	(v)	(1.1m – 0.4) (1.	$1m + 0.4) = (1.1m)^2 - (0.4)^2$ $= 1.21m^2 - 0.16$	(Using Identity III)			
	(vi)	$(a^2 + b^2) (-a^2 +$	$b^{2}) = (b^{2} + a^{2}) (b^{2} - a^{2})$ = $(b^{2})^{2} - (a^{2})^{2}$ = $b^{4} - a^{4}$	(Using Identity III)			
	(vii)	(6x - 7) (6x + 7)	$ = (6x)^2 - (7)^2 = 36x^2 - 49 $	(Using Identity III)			
	(viii)	(-a + c)(-a + c)	$ = (-a + c)^{2} = (c - a)^{2} = c^{2} - 2ca + a^{2} $	(Using Identity II)			

(ix)
$$\left(\frac{\mathbf{x}}{2} + \frac{3\mathbf{y}}{4}\right) \left(\frac{\mathbf{x}}{2} + \frac{3\mathbf{y}}{4}\right) = \left(\frac{\mathbf{x}}{2}\right)^2 + 2\left(\frac{\mathbf{x}}{2}\right) \left(\frac{3\mathbf{y}}{4}\right) + \left(\frac{3\mathbf{y}}{4}\right)^2$$
 (Using Identity I)
$$= \frac{\mathbf{x}^2}{4} + \frac{3\mathbf{x}\mathbf{y}}{4} + \frac{9\mathbf{y}^2}{16}$$

(x)
$$(7a - 9b) (7a - 9b) = (7a - 9b)^2$$

= $(7a)^2 - 2(7a) (9b) + (9b)^2$ (Using Identity II)
= $49a^2 - 126ab + 81ab^2$

Q.2 Use the identity
$$(x + a) (x + b) = x^2 + (a + b)x + ab$$
 to find the following products :
(i) $(x + 3) (x + 7)$ (ii) $(4x + 5) (4x + 1)$ (iii) $(4x - 5) (4x - 1)$
(iv) $(4x + 5) (4x - 1)$ (v) $(2x + 5y) (2x + 3y)$ (vi) $(2a^2 + 9) (2a^2 + 5)$
(viii) $(xyz - 4) (xyz - 2)$
Sol. (i) $(x + 3) (x + 7) = x^2 + (3 + 7)x + (3) (7)$

$$= x^2 + 10x + 21$$

(ii)
$$(4x+5)(4x+1) = (4x)^2 + (5+1)(4x) + (5)(1)$$

= $16x^2 + 24x + 5$

(iii)
$$(4x-5)(4x-1) = \{4x + (-5)\}\{4x + (-1)\}\$$

= $(4x)^2 + \{(-5) + (-1)\}(4x) + (-5)(-1)\$
= $16x^2 - 24x + 5$
(iv) $(4x+5)(4x-1) = (4x+5)\{4x + (-1)\}\$
= $(4x)^2 + \{5 + (-1)\}(4x) + (5)(-1)\$
= $16x^2 + 16x - 5$

(v)
$$(2x + 5y) (2x + 3y) = (2x)^2 + (5y + 3y) (2x) + (5y) (3y)$$

= $4x^2 + (8y) (2x) + 15y^2$
= $4x^2 + 16xy + 15y^2$

(vi)
$$(2a^2+9)(2a^2+5) = (2a^2)^2 + (5+9)(2a)^2 + (5)(9)$$

= $4a^4 + 28a^2 + 45$

(vii)
$$(xyz-4)(xyz-2) = \{xyz+(-4)\} \{xyz+(-2)\}$$

= $(xyz)^2 + \{(-4)+(-2)\} (xyz) + (-4) (-2)$
= $x^2y^2z^2 - 6xyz + 8$.

Q.3 Find the following squares by using the identities.

(i)
$$(b-7)^2$$
 (ii) $(xy+3z)^2$ (iii) $(6x^2-5y)^2$ (iv) $\left(\frac{2}{3}m+\frac{3}{2}n\right)^2$
(v) $(0.4p-0.5q)^2$ (vi) $(2xy+5y)^2$.
Sol. (i) $(b-7)^2 = (b-7) (b-7)$
 $= b(b-7)-7(b-7)$
 $= b^2-7b-7b+49$
 $= b^2-14b+49$
(ii) $(xy+3z)^2 = (xy+3z) (xy+3z)$
 $= xy(xy+3z)+3z (xy+3z)$
 $= x^2y^2+3xyz+3xyz+9z^2$
 $= x^2y^2+6xyz+9z^2$
(iii) $(6x^2-5y)^2 = (6x^2-5y) (6x^2-5y)$
 $= 6a^2(6x^2-5y)-5y(6x^2-5y)$
 $= 36x^4 - 30x^2y - 30x^2y + 25y^2$
(iv) $\left(\frac{2}{3}m+\frac{3}{2}n\right)^2 = \left(\frac{2}{3}m+\frac{3}{2}n\right)\left(\frac{2}{3}m+\frac{3}{2}n\right)$
 $= \frac{2}{3}m\left(\frac{2}{3}m+\frac{3}{2}n\right) + \frac{3}{2}n\left(\frac{2}{3}m+\frac{3}{2}n\right)$
 $= \frac{4}{9}m^4+mn+mn+\frac{9}{4}n^2$
 $= \frac{4}{9}m^2+2mn+\frac{9}{4}n^2$
(v) $(0.4p-0.5q)^2 = (0.4p-0.5q) (0.4p-0.5q)$
 $= 0.4p(0.4p-0.5q)^{-0.5q(0.4p-0.5q)}$
 $= 0.16p^2-0.2pq-0.2pq+0.25q^2$

(vi)
$$(2xy + 5y)^2 = (2xy + 5y)(2xy + 5y)$$

= $2xy(2xy + 5y) + 5y(2xy + 5y)$
= $4x^2y^2 + 10xy^2 + 10xy^2 + 25y^2$
= $4x^2y^2 + 20xy^2 + 25y^2$

Q.5 Show that:
(i)
$$(3x + 7)^2 - 84x = (3x - 7)^2$$
(ii) $(9p - 5q)^2 + 180pq = (9p + 5q)^2$
(iii) $\left(\frac{4}{3}m - \frac{3}{4}n\right)^2 + 2mn = \frac{16}{9}m^2 + \frac{9}{16}n^2$
(iv) $(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$
(v) $(a - b)(a + b) + (b - c)(b + c) + (c - a)(c + a) = 0$

 $(3x + 7)^2 - 84x = (3x - 7)^2$ Sol. (i) L.H.S. = $(3x+7)^2 - 84x$ $= \{(3x)^2 + 2(3x)(7) + (7)^2\} - 84x$ $=9x^{2}+(42x-84x)+49$ (Combining the like terms) $=9x^2-42x+49$(1) R.H.S. = $(3x - 7)^2$ $= (3x)^2 - 2(3x)(7) + (7)^2$ = 9x² - 42x + 49(2) From equation (1) and (2), $(3x+7)^2 - 84x = (3x-7)^2$ $(9p-5q)^2 + 180pq = (9p+5q)^2$ (ii) L.H.S. = $(9p - 5p)^2 + 180$ pq $= \{(9p)^2 - 2(9p) (5q) + (5q)^2\} + 180 pq$ = $(81p^2 - 90pq + 25q^2) + 180 pq$ = $81p^2 + (180pq - 90pq) + 25q^2$ (C = $81p^2 + 90pq + 25q^2$ (Combining the like terms)(1) R.H.S. = $(9p + 5q)^2$ $= (9p)^{2} + 2(9p)(5q) + (5q)^{2}$ $= 81p^2 + 90pq + 25q^2$(2) From equation (1) and (2) $(9p-5q)^2 + 180pq = (9p+5q)^2$ $\left(\frac{4}{3}m-\frac{3}{4}n\right)^2+2mn=\frac{16}{9}m^2+\frac{9}{16}n^2$ (iii) L.H.S. = $\left(\frac{4}{3}m - \frac{3}{4}n\right)^2 + 2mn$ $= \left(\frac{4}{3}m\right)^2 - 2\left(\frac{4}{3}m\right)\left(\frac{4}{3}n\right) + \left(\frac{3}{4}n\right)^2 + 2mn$ $=\frac{16}{9}m^2-2mn+\frac{9}{16}n^2+2mn$ $=\frac{16}{9}m^2-(2mn-2mn)+\frac{9}{16}n^2$ (Combining the like terms) $=\frac{16}{9}m^2+\frac{9}{16}n^2=R.H.S.$ $(4pq+3q)^2 - (4pq-3q)^2 = 48pq^2$ (iv) L.H.S. = $(4pq + 3q)^2 - (4pq - 3q)^2$ $= \{(4pq)^2 + 2(4pq)(3q) + (3q)^2\} - \{(4pq)^2 - 2(4pq)(3q) + (3q)^2\}$ $= (16p^2q^2 + 24pq^2 + 9q^2) - (16p^2q^2 - 24pq^2 + 9q^2)$

$$= 16p^{2}q^{2} + 24pq^{2} + 9q^{2} - 16p^{2}q^{2} + 24pq^{2} - 9q^{2}$$

= (16p^{2}q^{2} - 16p^{2}q^{2}) + (24pq^{2} + 24pq^{2}) + (9q^{2} - 9q^{2}) (Combining the like terms)
= 48pq^{2} = R.H.S.

(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0**(v)** L.H.S. = (a - b)(a + b) + (b - c)(b + c) + (c - a)(c + a) $=a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}$ (Using identity III) $= (a^2 - a^2) + (b^2 - b^2) + (c^2 - c^2)$ (Combining the like terms) = 0 = R.H.S.Q.6 Using identities, evaluate: (i) 71^2 (ii) 99² (iii) 102^2 (iv) 998² $(v) 5.2^2$ (vii) 78×82 (viii) 8.9^2 (vi) 297 × 303 (ix) 1.05 × 9.5 Sol. (i) $71^2 = (70+1)^2$ $=(70)^{2}+2(70)(1)+(1)^{2}$ (Using Identity I) =4900 + 140 + 1 = 5041(ii) 99² $=(100-1)^2$ $=(100)^2 - 2(100)(1) + (1)^2$ (Using Identity II) = 10000 - 200 + 1 = 9801 $102^2 = (100 + 2)^2$ (iii) $=(100)^{2}+2(100)(2)+(2)^{2}$ (Using Identity I) = 10000 + 400 + 4 = 10404**998**² = $(1000 - 2)^2$ (iv) $=(1000)^2 - 2(1000)(2) + (2)^2$ (Using Identity II) = 1000000 - 4000 + 4 = 996004 $5.2^2 = (5+0.2)^2$ **(v)** $=(5)^{2}+2(5)(0.2)+(0.2)^{2}$ (Using Identity I) = 25 + 2 + 0.04 = 27.04(vi) $297 \times 303 = (300 - 3) \times (300 + 3)$ $=(300)^2-(3)^2$ (Using Identity III) =90000 - 9 = 89991 $78 \times 82 = (80 - 2)(80 + 2)$ (vii) $=(80)^2-(2)^2$ (Using Identity III) = 6400 - 4 = 6396 $8.9^2 = (9 - 0.1)^2$ (viii) $=(9)^2 - 2(9)(0.1) + (0.1)^2$ (Using Identity II) = 81 - 1.8 + 0.01 = 79.21

(ix)
$$1.05 \times 9.5 = \frac{1}{10} \times 10.5 \times 9.5$$

 $= \frac{1}{10} (10 + 0.5) \times (10 - 0.5)$
 $= \frac{1}{10} \times \{(10^2 - (0.5)^2\}$ (Using Identity III)
 $= \frac{1}{10} \times (100 - 0.25) = \frac{1}{10} \times 99.75 = 9.975$
Q.7 Using $a^2 - b^2 = (a + b)(a - b)$, find
(i) $51^2 - 49^2$ (ii) $(1.02)^2 - (0.98)^2$ (iii) $153^2 - 147^2$ (iv) $12.1^2 - 7.9^2$
Sol. (i) $51^2 - 49^2 = (51 + 49) (51 - 49)$
 $= (100) (2) = 200$
(ii) $(1.02)^2 - (0.98)^2 = (1.02 + 0.98) (1.02 - 0.98)$
 $= (2) (0.04) = 0.08$
(iii) $153^2 - 147^2$ $= (153 + 147) (153 - 147)$
 $= (300) (6) = 1800$
(iv) $12.1^2 - 7.9^2$ $= (12.1 + 7.9) (12.1 - 7.9)$
 $= (20) (4.2) = 84$
Q.8 Using (x + a) (x + b) $= x^2 + (a + b) x + ab$, find
(i) 103×104 (ii) 5.1×5.2 (iii) 103×98 (iv) 9.7×9.8
Sol. (i) 103×104 (iii) 5.1×5.2 (iii) 103×98 (iv) 9.7×9.8
Sol. (i) 103×104 $= (100 + 3) \times (100 + 4)$
 $= (100)^2 + (3 + 4) (100) + (3) (4)$
 $= 10000 + 700 + 12 = 10712$
(ii) $5.1 \times 5.2 = (5 + 0.1) \times (5 + 0.2)$
 $= (5)^2 + (0.1 + 0.2) (5) + (0.1) (0.2)$
 $= 25 + 1.5 + 0.02 = 26.52$
(iii) $103 \times 98 = (100 + 3) \times (100 - 2)$
 $= (100 + 3) \times (100 - 2)$
 $= (100^2 + (3 + (-2)) (100) + (3) (-2)$
 $= (100^2 + (3 + (-2)) (100) + (3) (-2)$
 $= 10000 + 100 - 6 = 10094$

(iv)
$$9.7 \times 9.8 = (10 - 0.3) (10 - 0.2)$$

= $(10)^2 - (0.3 + 0.2) (10) + (0.3) (0.2)$
= $100 - 5 + 0.06 = 95.06$

TRY THESE

- Q.1 Find the value of the expression 2y 5 for the other given values of y.
- Sol. When y = 5, 2y - 5 = 2(5) - 5 = 10 - 5 = 5When y = -3 2y - 5 = 2(-3) - 5 = -6 - 5 = -11When $y = \frac{5}{2}$

$$2y - 5 = 2\left(\frac{5}{2}\right) - 5 = 5 - 5 = 0$$

When $y = \frac{-7}{3}$,

$$2y-5=2\left(\frac{-7}{3}\right)-5=\frac{-14}{3}-5=\frac{-29}{3}$$
, etc.

- Q.2 Give five examples of expressions containing one variable and five examples of expressions containing two variables.
- Sol. Five example of expressions containing one variable

$$x + 1$$
, $2x + 4$, $3y^2$, $\frac{3}{2}z - 7$, $t^3 + 9$

Five examples of expressions containing two variables

$$xy+3$$
, x^2y-5 , x^3y^3+9 , x^2y^2+xy+1 , x^2+y^2+2xy

Q.3 Show on the number line.

$$x, x - 4, 2x + 1, 3x - 2$$
Sol. (i)
$$x$$
(ii)
$$x - 4$$
(iii)
$$x - 4$$
(iii)
$$2x + 1$$
(iv)
$$3x - 2$$

$$0 \xrightarrow{P}{} X$$

Q.4	Iden	tify the coeffi	cient of each te	rm in the expre	ssion $x^2y^2 - 10x^2$	$^{2}y + 5xy^{2} - 20.$
Sol.		- Term Num	ber	Term	Coeffic	ient of term
		First		x^2v^2		1
		Second		$-10x^{2}y$		_10
		Third		$5 x y^2$		5
		Fourth		20		20
		rourui		-20		-20
Q.5	Class	sify the follow $-z + 5$, $x + 3$	ing polynomials $y + z, y + z + 10$	s as monomials, 0, ab – ac, 17	binomials, trino	mials :
Sol.	Mon	omial	Binomial	Trino	mial	
	1	7	-z + 5	$\mathbf{x} + \mathbf{y}$	+ z	
			ab – ac	y + z -	+ 100	
				2		
Q.6	Cons	truct				
	(a)	3 binomial	s with only x as	a variable		
	(b)	3 binomial	s with x and y as	s variables;		
	(c)	3 monomia	l with x and y a	s variables;		
	(d)	2 polynomi	ials with 4 or mo	ore terms.		
Sol.	(a)	$x^2 - 4$				
		$x^{3}-8$				
		$x^4 - 1$				
	(b)	x + y				
		x – y				
		$x^2 + y^2$				
	(c)	xy				
		$x^{2}_{2}y^{2}_{2}$				
		x ³ y ³				
			10			
	(d)	x + y + z +	10			
		x + y + z +	t - 6			
07	Writ	e two terms w	hich are like			
~ ••	(i)	7xv	(ii) 4mn	² (iii)	21	
Sol.	(i)	7xy:	2 like terms	are - 4xy and xy		
	(i)	$4mn^2$:	2 like terms	are mn^2 and $-9mr$	n^2	
	(iii)	21 :	2 like terms	are l and 5l		
	()					
Q.8	Can	you think of tv	vo more such sitt	ations, where w	e may need to mu	ltiply algebraic expressions?
-	[Hin	t : Think of sp	beed and time;	,	U	
	Thin	k of interest t	o be paid, the p	rincipal and the	rate of simple in	nterest; etc.]
Sol.	(i)	Distance =	Speed × Time	-		· .
			Principle	x Rate of simple	Interest ner annu	m x Time in years
	(ii)	Simple Inter	$rest = \frac{111101 pres}{2}$	i tute or shiple	100	in a mite m yours
					100	

Q.9 Find $4x \times 5y \times 7z$. First find $4x \times 5y$ and multiply it by 7z; or first find $5y \times 7z$ and multiply it by 4x. Is the result the same ? What do you observe ? Does the order in which you carry out the multiplication matter ? Sol. $4x \times 5y \times 7z$ $4x \times 5y = (4 \times 5) \times (x \times y)$ $=20 \times (xy) = 20xy$ $(4x \times 5y) \times 7z = 20xy \times 7z$ $= (20 \times 7) \times (xy \times z)$ $= 140 \times (xyz) = 140xyz$(1) $5y \times 7z = (5 \times 7) \times (y \times z)$ $=35 \times (yz)$ =35yz $4x \times (5y \times 7z) = 4x \times 35yz$ $= (4 \times 35) \times (x \times yz)$ $= 140 \times (xyz) = 140 xyz$(2)

We observe from eqns. (1) and (2) that the result is the same. It shows that the order in which we carry out the multiplity does not matter.

Q.10 Find the product : (i) 2x(3x + 5xy) (ii) $a^2(2ab - 5c)$ Sol. (i) $2x(3x + 5xy) = (2x) \times (3x) + (2x) \times (5xy)$ $= 6x^2 + 10x^2y$

(ii)
$$a^2 (2ab - 5c) = (a^2) \times (2ab) - (a^2) \times (5c)$$

= $2a^3b - 5a^2c$

Q.11 Find the product :
$$(4p^2 + 5p + 7) \times 3p$$
.
Sol. $(4p^2 + 5p + 7) \times 3p = (4p^2 \times 3p) + (5p \times 3p) + (7 \times 3p) = 12p^3 + 15p^2 + 21p$

Q.12 Show that $a^2 + 3a + 2 = 132$ is not true for a = -5 and for a = 0. For a = -5Sol. L.H.S. $= a^2 + 3a + 2 = (-5)^2 + 3(-5) + 2$ = 25 - 15 + 2 = 12R.H.S. = 132L.H.S. \neq R.H.S. ·.· It is not true for a = -5... For a = 0L.H.S. $= a^2 + 3a + 2 = (0)^2 + 3(0) + 2$ = 0 + 0 + 2 = 2R.H.S. = 132L.H.S. \neq R.H.S. ... It is not true for a = 0....

Q.13	Put –	b in place of b in identity (I). Do you get identity (II)?					
Sol.	Identi	Identity (I) is $(a + b)^2 = a^2 + 2ab + b^2$ (I)					
	Put –	b in place of b in (I), we get					
		$(a + (-b))^2 = a^2 + 2a(-b) + (-b)^2$					
	\Rightarrow	$(a-b)^2 = a^2 - 2ab + b^2$ which is identity (II). So yes! we get iden	tity (II).				
Q.14	1.	Verify identity (IV), for $a = 2, b = 3, x = 5$.					
	2.	Consider, the special case of identity (IV) with a = b, what o	do you get? Is it related to				
		identity (I)?					
	3.	Consider, the special case of identity (IV) with a = – c and b	=-c. What do you get? Is				
		it related to identity (II)?					
	4.	Consider the special case of identity (IV) with $b = -a$. What	do you get? Is it related to				
		identity (III)?					
Sol.	1.	Identity (IV) is $(x+a)(x+b) = x^2 + (a+b)x + ab$					
		For $a = 2, b = 3, x = 5$					
		L.H.S. = $(x + a) (x + b)$					
		= (5+2)(5+3) = (7)(9) = 56					
		-(7)(8) - 30 PHS $-x^2 + (a + b)x + ab$					
		$ = (5)^2 + (2+3)(5) + (2)(3) $					
		= 25 + 25 + 6 = 56					
		L H S = R H S					
		The identity is verified.					
	2.	Identity (IV) is $(x+a)(x+b) = x^2 + (a+b)x + ab$	(1)				
		Put a = b in (1),					
		Then (1) becomes					
		$\Rightarrow (x+a)(x+a) = x^2 + (a+a)x + (a)(a)$					
		$(x+a)^2 = x^2 + 2ax + a^2$					
		It is actually identity I with $a = x$ and $b = a$.					
	2	Identity (IV) is $(x + a)(x + b) = x^2 + (a + b)x + ab$	(1)				
	5.	Put $a = c$ and $b = c$	(1)				
		Then (1) becomes					
		$(x - c)(x - c) = x^{2} + (-c - c)x + (-c)(-c)$					
		$(x - c)(x - c) = (x - c)^2$					
		$= x^2 - 2cx + c^2$					
		It is actually identity II with $a = x$ and $b = c$.					
	4.	Identity (IV) is $(x+a)(x+b) = x^2 + (a+b)x + ab$	(1)				
		Put $b = -a$					
		Then (1) becomes					
		$(x + a) (x + a) = x^{2} + (a - a)x + a(-a)$					
		=(x+a)(x-a)					
		$= x^2 - a^2$					
		It is actually identity III with $a = x$ and $b = a$.					

CONCEPT APPLICATION LEVEL - II

SECTION-A

FILL IN THE BLANKS :

Q.1	Find the product of $\frac{1}{4}ab$ and $-8a^2b^2$
Q.2	The length and breadth of a rectangular paper are x cm and $(10-x)$ cm respectively. Find the area of the paper
Q.3	Find the value of $x^2 + 6x + 9$ for $x = 4$
Q.4	Find the value of $(2x + 5)(2x - 5)$
Q.5	Find the value of $(x + 5)^2 - 20x$ for $x = 6$
Q.6	Write the coefficient of y^2 in $3xy^3$
Q.7	Find the product $(1 + x) (1 - x) (1 + x^2)$
Q.8	Are 3x ² yz and –3zyx ² like terms ?
Q.9	Find the product of the coefficients of x in $-5x^2yz$ and $2xy$
Q.10	(-x + a)(-x + b) is equal to
Q.11	are a combination of terms connected by the operations of addition, subtraction,
	multiplication or division.
Q.12	A may be negative or positive depending upon the sign of the
Q.13	The numerical factor of the term is called
Q.14	In expression $2x^2 + 4x$, the coefficient of x^2 is and coefficient of x is
Q.15	5x + 4y is an expression having terms.
Q.16	An algebraic expression is called aif there is only one term in it.
Q.17	Trinomial is an algebraic expression with terms.
Q.18	$(-5 \text{ ab}^2\text{c}) \times (3a^3bc^2d) = \dots$
Q.19	Each term in an algebraic expression is a product of one or more numbers, numerical. These numbers
	are called the of that term.
Q.20	$x^2 + x - 56 = (x + 8) (\dots)$
Q.21	Every polynomial has one and only one zero.
Q.22	$-3x^2yz \times \frac{1}{xyz} = \underline{\qquad}$
Q.23	$4a^{2}bc \times ___ = 0$
Q.24	$4pqr (p^2 - q^2 + r^2) = 4p^3qr - ___ + 4pqr^3$
Q.25	$3mn(m-n)+2mn(n-m)=m^2n-$
Q.26	The value of $3x^2(x^2-2x+1)$ for $x = -1$ is
Q.27	$34^2 - 6^2 = $ ×
Q.28	$(20+8)(20-8) = ___________________________________$
Q.29	$(3a+7)(3a+8) = (3a)^2 + (7+8)(3a) + \$
Q.30	$(6x - 7y)^2 = \2 \times 6x \times 7y + _$
Q.31	$(4p^2q + 6qr)^2 = 16p^4q^2 + ___ + 36q^2r^2$

SECTION - B

$\succ \qquad \mathsf{TRUE}/\mathsf{FALSE}$

- Q.1 Zero may be a zero of a polynomial.
- Q.2 If p(x) is a polynomial of degree ≥ 1 and 'a' is any real number then (x + a) is a factor of polynomial p(x), if p(-a) = 0.
- Q.3 In the term 5ab, 5, a and b are the factors of this term.
- Q.4 $(3y^2 + 3xyz) (2x^2 3y^2 + 4z^2 xyz)$ is $-2x^2 + y^2 z^2 + xyz$.
- Q.5 A constant term contains only variables.
- Q.6 Only like terms can be added or subtracted.
- Q.7 If the polynomial is $a_0 + a_1 x + a_2 x + \dots + a_n x^n$, $a_n \neq 0$, then its degree is n.
- Q.8 Degree of a polynomial is a rational number.
- Q.9 If the polynomial is $a_0 (a_0 \neq 0)$, then it is called a zero polynomial of 0 degree.
- Q.10 There are 5 terms in the algebraic expression $4x^3 3x^2 + 2x 9$.
- Q.11 The coefficient of x in $2x^3 + 7x^2 x$ is 1.
- Q.12 The coefficient of y^2 in $4y^4 3y^3 + 3y^2 2$ is 3.
- Q.13 The value of $-2a^2 + 3a 6$ at a = -1 is 11.
- Q.14 The degree of the polynomial $9x^7 \frac{3}{4}x^4 + 11x$ is 7.
- Q.15 The product of a monomial and another monomial is always a monomial.
- Q.16 The product of two binomials is always a binomial.
- Q.17 The product of $4p^2q$ and pq^2 is $4p^2q^3$.
- Q.18 The product of xyz and $-\frac{1}{xyz}$ is -1.
- Q.19 Distributive law and commutative law holds good for multiplication of polynomials.

SECTION - C

MULTIPLE CHOICE QUESTIONS

- Q.1 The coefficient of x^0 in $3x^3 4x^2 + 7x 2$ is: (A) 7 (B) 2 (C) -2 (D) 0
- Q.2 The number of like terms in $4x^2y 6xy^2 + 3x^2y 2yx + 7xyz$ is: (A) 2 (B) 3 (C) 4 (D) None
- Q.3 The vlaue of expression $4a^{2}b 2ab^{2} + 7ab 3$ at a = -1, b = 2 is (A) - 27 (B) 1 (C) 27 (D) - 1

Q.4	The sum of $-2a - b +$ (A) Monomial	3c - d and $2a + 4b + 6c(B) Binomial$	c is (C)Trinomial	(D) Polynomial with 4 terms
Q.5	The product of $-7x^2yz$ (A) 91 xy^4z^2	z_{2} , $-13y^{2}$ and yz is : (B) 91 xy^{2}	$(C) 91x^2y^4z^2$	$(D)-91x^2yz^2$
Q.6	The product of $-7xy$ a (A) $7x^2y^2 - 28xy^3$	and $x^2 - 4y^2$ is (B) $-7x^3y + 28xy^3$	(C) $-7x^2y + 28x^2y^2$	$(D) - 7x^3 - 28xy^3$
Q.7	The value of the expression (A) 4	ession $4xy(x^2 - y^2)$ at x (B)-1	=-1 and y $=-1$ is (C) -4	(D) 0
Q.8	On simplifying 3ab (a (A)–12ab ²	$a^{2}-b^{2})-3b(a^{3}-ab^{2}+4)$ (B) 0	ab), we get (C) 12a ² b	(D) $3a^2b^2$
Q.9	The value of the expression $(A)-3$	ession $3xy(x^2 - xy + y^2)$ (B) - 9	at x = 1, y = -1 is (C) 3	(D) 1
Q.10	On simplifying 4pq (p (A) 0	$(p^2 + q^2) - 4pq (p^2 - q^2), w$ (B) $8p^3q$	ve get (C) 8pq ³	(D) –8pq ³
Q.11	The number of terms (A) 4	in the product of $(x-4)$ (B) 6	and $(x^2 - 7x + 12)$ is (C) 5	(D) 2
Q.12	The area of a rectangle	e is length × breadth. If t	he length is $(x+3)$ units	s and breadth is $(y-3)$ units the
	area is : (A) $xy - 3y + 3x - 9$	(B) $xy + 3y - 3x - 9$	(C) $xy + 3y + 3x - 9$	(D) xy - 3y - 3x - 9
Q.13	The volume of a box is	given by the formula ler	rgth imes breadth imes height.	If the length is 4x units, breath is
	$3y^2$ units and height is 2 (A) $12x^2y^2$	2x ² y units the volume is : (B) 24xy ³	(C) $24x^3y^2$	(D) $24x^3y^3$
Q.14	The middle term in the (A) 12yz	e expression $(2y - 3z)^2$ is (B)-6yz	(C)-12yz	(D) 6yz
Q.15	The vlaue of $13.1^2 - 6$ (A) 124	6.9 ² is (B) 12.4	(C) 1.24	(D) 1124
Q.16	The degree of $4x^2y + x^2$ (A) 2	$x^2 - 2y^2$ is (B) 3	(C) 4	(D) – 2
Q.17	What must be added to $(A) x^2 + 4x + 14$	to $2x^2 - 3x - 8$ to get $3x$ (B) $-x^2 - 4x - 14$	$x^{2} + x + 6?$ (C) $5x^{2} - 2x - 2$	(D) $x^2 - x - 2$
Q.18	What must be subtract (A) $4x^3 + 4x^2 - 6$ (C) $-2x^3 - x^2 + 3x - 1$	eted from $x^3 + 3x - 9$ to	get $3x^3 + x^2 + 3$? (B) $4x^3 + x^2 + 3x - 6$ (D) $2x^3 - x^2 - 3x + 12$	2

Q.19	If $a = b = 2$, then the v (A) 2	alue of $(a-b)(a^2+ab-(B) 0)$	- b ²) will be (C) 1	(D) 48
Q.20	$\frac{2}{3}xy \times \frac{3}{4}xz$ is			
	$(A) \frac{1}{12} x^2 y$	(B) $\frac{1}{2}xyz$	(C) $\frac{1}{2}x^2yz$	$(D) \frac{1}{4} x^2 y$
Q.21	$(-3ab) \times (-2a^{2}b)$ is (A) $-6ab^{2}$	(B) $6a^{3}b^{2}$	(C) 6a ³ b ³	(D) $-6a^{2}b^{2}$
Q.22	$25x^8y^9z^5 \times (-2xyz)^2$ is (A) $50x^9y^{10}z^6$	(B) $100 x^{10} y^{11} z^7$	$(C) - 100x^{10}y^{11}z^7$	(D) $-50x^9y^{10}z^6$
Q.23	The true statement is (A) $3x = 3 + x$ (C) $4(x^2 - 3) = 4x^2 - 3x^2 - $	12	(B) 2 (x + 5) = 2x + 5 (D) x × (-5) = x - 5	
Q.24	The product of $\left(\frac{3}{2}xyz\right)$	$-\frac{9}{4}xy^2z^3$ and $\left(\frac{-8}{27}x\right)$	yz) is :	
	(A) $\frac{4}{9}x^2y^2z^2 + \frac{2}{3}x^3y$	$^{3}Z^{3}$	(B) $-\frac{4}{9}x^2y^2z^2 + \frac{2}{3}x^2$	$^{2}y^{3}z^{4}$
	(C) $\frac{4}{9}xy^2z^3 + \frac{2}{3}x^2y^3z^3$	z^2	(D) $-\frac{4}{9}x^2y^3z^4-\frac{8}{3}x^2$	$^{2}y^{2}z^{2}$
Q.25	(3x-4)(2x+7) is (A) $6x^2 + 3x - 28$	(B) $6x^2 + 13x - 28$	(C) $6x^2 + 29x - 28$	(D) $6x^2 - 29x - 28$
Q.26	$\left(\frac{1}{2}x^2+y^2\right)\left(x^2-\frac{1}{2}\right)$	y^2) is		
	(A) $\frac{1}{2}x^4 - \frac{1}{2}y^4$		(B) $\frac{1}{2}x^4 - \frac{3}{4}x^2y^2 + \frac{1}{2}$	y ⁴
	(C) $\frac{1}{2}x^4 + \frac{3}{4}x^2y^2 - \frac{1}{2}$	y ⁴	(D) $\frac{1}{2}x^2 + \frac{3}{4}x^2y^2 - \frac{1}{2}$	$\frac{1}{2}y^2$
Q.27	When $a = 3, b = 2$, the (A) 4	$(a - b) (2a^2 - 3ab + b) (B) - 4$	b ²) is (C) 20	(D)-20
Q.28	(y+5) (y-3) is (A) $y^2 - 8y - 15$	(B) $y^2 + 8y - 15$	(C) $y^2 + 2y - 15$	(D) $y^2 - 2y - 15$

Q.29	Square of $2x^2 - 3y^2$ is (A) $4x^2 - 9y^4$	(B) $4x^4 + 9y^4 - 12x^2y^2$	2 (C) $4x^{4} + 9y^{4} + 12x^{2}y^{4}$	2 (D) $4x^{4} + 9y^{4}$
Q.30	$\left(\frac{2}{3}x^2 - \frac{1}{2}y^2\right)\left(\frac{2}{3}x^2\right)$	$+\frac{1}{2}y^2$ is		
	(A) $\frac{4}{9}x^4 + \frac{1}{4}y^4$	(B) $\frac{4}{9}x^2 - \frac{1}{4}y^2$	(C) $\frac{4}{9}x^4 - \frac{1}{4}y^4$	(D) $\frac{4}{9}x^4 - \frac{1}{4}y^4 - \frac{2}{3}x^2y^2$
Q.31	The value of $\frac{7.87 \times 7}{}$.	$\frac{87-1.72\times1.72}{6.15}$ is		
	(A) 9.59	(B) 10	(C) 6.15	(D) 6.45
Q.32	$6y^4 \div (-2y^3)$ is (A) 3y	(B)-3y	(C) 3y ³	$(D) - 3y^3$
Q.33	(−72x²y³)÷(−8xy) is (A)−9xy	$(B)-9xy^2$	$(C) 9xy^2$	(D) 9xy
Q.34	$(8x^2y^2 + 6xy^2 - 10x^2y^2)$ (A) $4xy + 3y - 5xy^2$	³) \div (2xy) is (B) $4xy^2 - 3y - 5xy^2$	(C) $4xy - 3y + 5y^2$	(D) $4xy^2 + 3x - 5x^2y$
Q.35	The remainder obtain $(A) - 4$	ed when $t^4 - 3t^3 + t + 5i$ (B) 4	s divided by t – 1 is : (C) 1	(D) 5
Q.36	The product of two ex (A) $x^3 - x^2 + x$	expressions is $x^5 + x^3 + x$. (B) $x^3 + x^2 + x$	If one of them is $x^2 + x^2$ (C) $x^3 + x^2$	+ 1, find the other. (D) $x^3 - x^2$
Q.37	Find the value of k, so (A) 6	that $x - 3$ is a factor of (B) 3	$3x^2 - 11x + k.$ (C) 9	(D) 27
Q.38	In the expression $-7x^2$ (A) 7	xy+3xy+3, the coeffici (B) 7y	ent of x^2 is (C) $-7y$	(D)-7xy
Q.39	The sum of $a^2 + b^2$ and (A) $a^3 + b^3$	d $a + b$ is : (B) $2a^2 + 2b^2$	(C) $a^2 + b^2 + a + b$	(D) none of these
Q.40	Which of the following (A) 4ab, -3ba	g is a pair of unlike terms (B) 6a ³ b ³ c, -3cb ³ a ³	s? (C) 7ab, –ab	(D) $3a^2b$, $-5ab^2$
Q.41	When the expressions (A) $2x^2 - 6xy$	$55x^2 - 8xy \text{ and } -3x^2 + 2$ (B) $8x^2 - 10xy$	xy are added, we get : (C) $-2x^2 + 6xy$	(D) $2x^2 + 6xy$
Q.42	When $12x + 10y$ is su (A) $25x + 3y$	btracted from $-13x + 7y$ (B) $-25x - 3y$	y, we get : (C) $-25x + 3y$	(D) $25x - 3y$

Q.43	Subtract $1 + x^2 + y^2$ from (A) $-x^2 - 3y^2$	from the sum of $x^2 - y^2$ ar (B) $x^2 + y^2$	$\begin{array}{l} \text{nd } 1 - x^2 - y^2. \\ \text{(C) } 3x^2 - 3y^2 \end{array}$	(D) 2
Q.44	Subtract the sum of $3x$ (A) $4y + 8$	x - 4y + z and $1 - 2x + y(B) 0$	from the sum of $3y + z$ (C) $2x + 2y + 2z + 10$	x + 6 and $x - 2y + 3$. (D) $2x + 2y + 2z$
Q.45	The value of $\left(\frac{1}{2}xyz\right)$	$(-4xy^2)$ is :		
	$(A) 2x^2y^2z^2$	$(B)-2x^2y^3z$	$(C) 2x^2y^3z^2$	(D)–2xyz
Q.46	The value of $x^{52} \times x^{-13}$ (A) 0	× 0 is: (B) x^{39}	(C) x ⁶⁵	$(D) - x^{39}$
Q.47	The value of $25x^3y^2z$ f (A) 600	For $x = 1$, $y = 2$ and $z = 3$ (B) 500	is : (C) 300	(D) none of these
Q.48	When the product of x (A) x^{60}	$5 \times x^2 \times x^6$ is expressed (B) x^{13}	as a monomial, we get : (C) 3x ¹³	(D) 3x ⁶⁰
Q.49	The product of $-3x^2y$, 4 (A) $-9x^4y^4z$	$4xy^2$ and $2xyz$ is : (B) $24x^4y^4z$	$(C)-24x^4y^4z$	$(D) 3x^4y^4z$
Q.50	In its simplest form $2x$ (A) $7x - 5xy$	(1-3y) - x (y-3) is: (B) $5x - 7xy$	(C) $5x + 7xy$	(D) none of these
Q.51	Which of the following (A) $2x^2 + x + 15$	g is the same as $(x + 3)$ ((B) $-2x^2 + x + 15$	2x-5)? (C) $2x^2 + x - 15$	(D) $2x^2 - x + 15$
Q.52	The product $(y^4 - x^4)$ ((A) $y^6 + x^2y^4 - x^4y^2 - x^4y^2$ (C) $y^6 - x^2y^4 + x^4y^2 + x^4y^2$	$y^2 + x^2$) is : x^6	(B) $x^6 - x^2y^4 + x^4y^2 - y^4$ (D) $y^6 + x^2y^4 - x^4y^2 + y^4$	76 X ⁶
Q.53	When $(7x^2 + 9x - x^{\circ})$ is (A) $105x^4 + 135x^3$ (C) $105x^4 + 135x^3 - 1$	s multiplied by 15x ² , we	get (B) $105x^4 + 135x^3 - 1$ (D) $105x^4 + 135x^3 + 1$	5x ² 5x ²
Q.54	$(2x+5y)^2$ is equal to : (A) $4x^2+25y^2+10xy$	(B) $4x^2 - 25y^2 + 20xy$	(C) $4x^2 + 25y^2 + 20xy$	(D) none of these
Q.55	$(1-2x)^2$ is equal to : (A) $1 + 4x^2 + 4x$	(B) $1 - 4x^2 - 4x$	$(C) - 1 + 4x^2 - 4x$	(D) $1 + 4x^2 - 4x$
Q.56	On simplification $(2x - (A) 4x^2 - 7y^2)$	$(+3y)^2 - (2x - 3y)^2$, we get (B) $4x^2 - 6y^2$	et : (C) 24xy	(D) 4xy

Q.57	If $x - \frac{1}{x} = 8$, then the	value of $x^2 + \frac{1}{x^2}$ is :		
	(A) 66	(B) 64	(C) 62	(D) 68
Q.58	Using the identities, even $\frac{5.27 \times 5.27 - 0.27 \times 0}{5.54}$	aluuate : .27		
	(A) 5	(B) $\frac{5}{5.54}$	(C) 25	(D) $\frac{25}{5.54}$
Q.59	Find the value of x, if: $12x = 50 \times 50 - 38 \times$ (A) 88	38 (B) 1	(C) 1900	(D) 44
Q.60	$If\left(x+\frac{1}{x}\right) = 16, \text{ find}$ (A) 254	the value of $x^2 + \frac{1}{x^2}$. (B) 258	(C) 256	(D) $256 - 2x$
Q.61	$If\left(x - \frac{1}{x}\right)^2 = 81, \text{ find}$	the value of $x^2 + \frac{1}{x^2}$.	(C) 230	(D) 230 2X
	(A) 9	(B) 81	(C) 83	(D) 72
Q.62	If $x + \frac{1}{x} = 4$, find the (A) 194	value of $x^4 + \frac{1}{x^4}$. (B) 196	(C) 190	(D) 184
Q.63	The product of $\left(\frac{9}{2}x\right)$	$z - \frac{3}{4}xy^2z^3$ and $\left(\frac{-8}{27}z^2\right)$	xyz) is :	
	(A) $\frac{4}{9}x^2y^2z^2 + \frac{2}{3}x^3y$	³ z ³	(B) $-\frac{4}{3}x^2y^2z^2 + \frac{2}{9}x^2$	$^{2}y^{3}z^{4}$
	(C) $\frac{4}{9}xy^2z^3 + \frac{2}{3}x^2y^3$	z^2	(D) $-\frac{4}{9}x^2y^3z^4-\frac{8}{3}x^2$	y^2z^2
Q.64	(y-5) (y+3) is : (A) $y^2 - 8y - 15$	(B) $y^2 + 8y - 15$	(C) $y^2 - 2y - 15$	(D) $y^2 - 2y + 15$
Q.65	Square of $(2x^2 + 3y^2)$ (A) $4x^2 - 9y^2$	is : (B) $4x^4 + 9y^4 - 12x^2y^2$	c^{2} (C) $4x^{4} + 9y^{4} + 12x^{2}y^{2}$	(D) $4x^4 + 9y^4$

Q.66	$\left(\frac{2}{3}x - \frac{1}{2}y\right)\left(\frac{2}{3}x + \frac{1}{2}y\right)$	$\left(\frac{1}{2}y\right)$ is :		
	(A) $\frac{4}{9}x^4 + \frac{1}{4}y^4$	(B) $\frac{4}{9}x^2 - \frac{1}{4}y^2$	(C) $\frac{4}{9}x^4 - \frac{1}{4}y^4$	(D) $\frac{4}{9}x^4 - \frac{1}{4}y^4 - \frac{2}{3}x^2y^2$
Q.67	(3x+4)(2x-7) is: (A) $6x^2-13x-28$	(B) $6x^2 + 13x - 28$	(C) $6x^2 + 29x - 28$	(D) $6x^2 - 29x - 28$
Q.68	$\left(\frac{1}{2}x^2 - y^2\right)\left(x^2 + \frac{1}{2}x^2\right)$	(y^2) is:		
	(A) $\frac{1}{2}x^4 - \frac{1}{2}y^4$		(B) $\frac{1}{2}x^4 - \frac{3}{4}x^2y^2 + \frac{3}{4}x^2 + \frac{3}{4}x$	$\frac{1}{2}y^4$
	(C) $\frac{1}{2}x^4 + \frac{3}{4}x^2y^2 - \frac{3}{4}x^2y$	$\frac{1}{2}y^4$	(D) $\frac{1}{2}x^2 + \frac{3}{4}x^2y^2 - \frac{3}{4}x^2y$	$\frac{1}{2}y^2$
Q.69	When $a = 3, b = 2, th$ (A) 4	ten $(a + b) (2a^2 - 3ab - (B) - 4$	b ²) is : (C) 20	(D) – 20
Q.70	If the polynomials (px case is the same. The	$x^{3} + 4x^{2} + 8x - 4$) and ($x^{3} - 4$) and ($x^{3} - 4$) and ($x^{3} - 4$)	-4x + p) are divided by ((x-3) then the remainder in each
	(A)-1	(B)-2	(C) 1	(D) 2
Q.71	If $x^2 + \frac{1}{x^2} = 27$, then	value of $x + \frac{1}{x}$ is		
	(A) 9	(B) 29	(C) $\sqrt{29}$	(D) 3
Q.72	The quotient of divisio $(A)(x+3)$	on of $x^3 - 3x^2 + 5x - 3b$ (B) (x - 3)	yx^2-2 is (C) (x + 2)	(D)(x-2)
Q.73	Value of $\frac{991 \times 991 \times 991}{991 \times 991 - 991}$	$\frac{991+9\times9\times9}{991\times9+9\times9}$ is:		
	(A) 991	(B) 9	(C) 1000	(D) 991 × 9
Q.74	What should be adde	the d to $\frac{1}{x^2 - 7x + 12}$ to get	$t \frac{2}{x^2-6x+8} ?$	
	(A) $\frac{1}{x^2 + 5x - 16}$	(B) $\frac{1}{(x+3)(x+2)}$	$(C) \ \frac{4}{(x-3)(x+2)}$	(D) $\frac{1}{x^2 - 5x + 6}$

SECTION - D

MORE THAN ONE CORRECT

Q.1 Which of the following expressions are polynomials?

(A)
$$3x^2 - 4x + 5$$
 (B) $\frac{1}{2}x^2 - \frac{2}{3}x + \frac{5}{7}$ (C) $9x + 2$ (D) 2

Q.2 Which of the following expressions are not polynomials?

(A)
$$\frac{2}{x} + x^3 + 2$$
 (B) $\frac{3x^2 - x + 1}{x^2 + 1}$ (C) $\frac{3x + 2}{x^2}$ (D) $4x^3 + 5x^{10} - 9x^8 + 1$

Q.3 Which of the following expressions are binomials and trinomials?

(A)
$$\frac{3}{x^2}$$
, 5x
(B) $x + \frac{2}{x}$, $x^2 + 2x - 5$
(C) $x^2 + 2x - 5$, $9x^3 + 5x$
(D) $\frac{7x}{5} - \frac{9}{8}$, $3x^2 - 4x + 5$

Q.4 Which of the following terms are like terms?

(A) 8ab, $-9ab^2$ (B) $3x^2y$, $-4yx^2$ (C) $8xy^2$, $-11x^3y$ (D) $\frac{7}{4}xy$, $-\frac{5}{3}xy$

Q.5 Which of the following terms are unlike terms?

(A)
$$\frac{3}{4}a^{2}bx$$
, $\frac{3}{4}ab^{2}x$, $\frac{3}{4}abx^{2}$ (B) -9xy, 5
(C) -9x², -10x², 5x² (D) None of these

Q.6 If the given expression is a complete square, then which of the following formulae we use to factorise it? (A) $a^2 + 2ab + b^2 = (a + b)^2$ (B) $a^2 - 2ab + b^2 = (a - b)^2$ (C) $(a - b) (a + b) = (a^2 - b^2)$ (D) $(x + a) (x + b) = x^2 + (a + b) x + ab$

- Q.7 Which of the following polynomials are of degree 1 and 3?
 - (A) $-4 + 5x, -5 + 7t + 6t^3$ (B) $2a + \frac{9}{4}, 9x^2 + 6x - 5$ (C) $\frac{7}{2} + 4x^2 - 3x^3, \frac{-15}{4}$ (D) $5 + 4x, \frac{7}{2} + 4x^2 - 3x^3$

Q.8 In the term $\frac{25}{3}a^2bc^3$, which of the following is/are correct?

(A) Coefficient of $a^2 = \frac{25}{3}bc^3$ (B) Numerical coefficient $= \frac{25}{3}$ (C) Coefficient of $c^3 = \frac{25}{3}a^2b$ (D) Coefficient of $a^2bc^3 = \frac{25}{3}$

SECTION - E

\succ **MATCH THE COLUMN**

Q.1 Match the Column

	Column-I		Column-II
(A)	$a^{3} + b^{3}$	(p)	$a^2 + b^2 + 2ab$
(B)	$a^{3} - b^{3}$	(q)	$a^{3} - b^{3} - 3ab(a - b)$
(C)	$(a + b)^3$	(r)	$(a + b) (a^2 - ab + b^2)$
(D)	$(a - b)^3$	(s)	$a^{3} + b^{3} + 3ab(a + b)$
(E)	$(a + b)^2$	(t)	$(a-b)(a^2+ab+b^2)$
(F)	$(a - b)^2$	(u)	$a^2 + b^2 - 2ab$

Q.2 Match the Column

Column-I

Column-II

0.225 a4b4c

(A)	$\left(\frac{2}{3}a^2b\right)\left(\frac{-9}{4}ab^2\right)$	(p)	$\frac{-4}{9}p^5q^5$
-----	---	-----	----------------------

- $(-pq)(-2.3 p^2q^2)(-0.1 p^2q)$ **(B)**
- (r) $\frac{-3}{2}a^{3}b^{3}c^{2}$ (C) $(-1.5a^{2}b)(0.3ab^{2})(-0.5abc)$

(D)
$$\left(\frac{-3}{7}p^{3}q^{2}\right)\left(\frac{-14}{9}pq^{2}\right)\left(\frac{-2}{3}pq\right)$$
 (s) $-0.23 p^{5}q^{4}$

SECTION-F

(q)

\succ **Multiple Matching Questions**

Direction : Each question has statements (A, B, C, D) given in Column I and statements (p, q, r, s) in Column II. Any given statement in Column I can have correct matching with one or more statement(s) given in Column II. Match the entries in column I with entries in column II.

Q.1		Column-I	Column-II				
	(A)	Monomials	(p)	$\sqrt{6ab} - \frac{a^2b}{5}$			
	(B)	Binomials	(q)	$a^2 + 2ab + b^2$			
	(C)	Trinomials	(r)	p^2q^3y			
	(D)	Polynomials	(s)	$3xy + 4x^2y$			
			(t) (u)	$\frac{3}{4}xy x^{2} + 3xy + y^{2} + 5x^{2}y + 4xy^{2}$			

SECTION - G

Assertion & Reason

Direction : Each of these questions contains as Assertion followed by Reason. Read them carefully and answer the question on the basis of following options. Your have to select the one that best describes the two statements

- (A) If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (B) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
- (C) If both Assertion is correct but Reason is incorrect.
- (D) If both Assertion is incorrect but Reason is correct.
- Q.1 Assertion: Degree of the polynomial $5x^2 + 3x + 4$ is 2. Reason: The degree of a polynomial of one variable is the highest value of the exponent of the variable.
- Q.2Assertion :Binomials and Trinomials are multinomials.Reason :An algebraic expression having two or more terms is called a multinomial.
- Q.3 Assertion: In the expression $3x^2 + 7y^2 2xy + 4x^2 + 8xy + 9y^2$, $3x^2$, $4x^2$ are like terms, -2xy, 8xy are like terms and $7y^2$, $9y^2$ are like terms.
 - **Reason :** When the terms have same literal factors they are called unlike terms.
- Q.4 Assertion : We should multiplyy $(-7)^{-1}$ to $\frac{-7}{4}$ to get the product as 4^{-1} .

Reason : If $\frac{x}{y} = \left(\frac{5}{2}\right)^{-1} \times \left(\frac{8}{9}\right)^{0}$ then value of $\left(\frac{x}{y}\right)^{-2}$ is $\left(\frac{2}{5}\right)^{2}$.

ANSWER KEY

CONCEPT APPLICATION LEVEL - II

SECTION - A

Q.1	$-2a^{3}b^{3}$		Q.2	$(10x - x^2)$ cm ²		Q.3	49 Q		Q.4	$4x^2 - 25$			
Q.5	1		Q.6	3xy		Q.7	$1 - x^4$ Q.8		Q.8	yes			
Q.9	$-10x^2y^2z$ 0.10		$x^{2} - (a + b) x + ab$		Q.11	Algebraic expressions		-					
Q.12	term, t	erm	Q.13	13 coefficient			Q.14	2,4		Q.15	two		
0.16	monomial		0.17	three	three		0.18	$-15 a^4 b^3 c^3 d$ 0.19		0.19	factors		
0.20	(x - 7)		0.21	linear		0.22	-3x 0.23		0				
0.24	4na ³ r		0.25	mn ²		0.26	12 0.27		40×28				
0.28	400 - 64		0.29	7×8		0.30	$36x^2$, $49y^2$ 0.31		$48p^2q^2r$				
			ι.				•	,	5		1 1		
SECTION - B													
Q.1	True	Q.2	True	Q.3	True	Q.4	False	Q.5	False	Q.6	True	Q.7	True
Q.8	False	Q.9	False	Q.10	False	Q.11	False	Q.12	True	Q.13	False	Q.14	True
Q.15	True	Q.16	False	Q.17	False	Q.18	True	Q.19	True	-		-	
						SECT	ION - C						
Q.1	С	Q.2	А	Q.3	D	Q.4	С	Q.5	С	Q.6	В	Q.7	D
Q.8	А	Q.9	В	Q.10	С	Q.11	А	Q.12	В	Q.13	D	Q.14	С
Q.15	А	Q.16	В	Q.17	А	Q.18	С	Q.19	В	Q.20	С	Q.21	В
Q.22	В	Q.23	С	Q.24	В	Q.25	В	Q.26	С	Q.27	А	Q.28	С
Q.29	В	Q.30	С	Q.31	А	Q.32	В	Q.33	С	Q.34	А	Q.35	В
Q.36	А	Q.37	А	Q.38	С	Q.39	С	Q.40	D	Q.41	А	Q.42	В
Q.43	А	Q.44	А	Q.45	В	Q.46	А	Q.47	С	Q.48	В	Q.49	С
Q.50	В	Q.51	С	Q.52	А	Q.53	В	Q.54	С	Q.55	D	Q.56	С
0.57	А	0.58	А	0.59	А	0.60	А	0.61	С	0.62	А	0.63	В
0.64	С	0.65	С	0.66	В	0.67	Α	0.68	В	0.69	D	0.70	А
O .71	C	0.72	В	0.73	С	O.74	D						
		•		~									
						SECT	ION - D	<u>)</u>					
Q.1	ABCE)	Q.2	ABC		Q.3	CD	-	Q.4	BD		Q.5	AB
Q.6	AB		Q.7	AD		Q.8	ABCD)	-			-	
-			-			-							
						SECT	ION - E						
Q.1	$(A) \rightarrow$	• r (B) –	→ t (C) -	\rightarrow s (D)	$\rightarrow p(E)$	$E) \rightarrow p($	$F) \rightarrow u$						
Q.2	$(A) \rightarrow$	• r (B) –	\rightarrow s (C)	$\rightarrow q (D)$	$) \rightarrow p$								
~					, 1								
						SECT	ION - F						
Q.1	$(A) \rightarrow$	• r,t (B)	\rightarrow p,s ($C) \rightarrow q$	$(D) \rightarrow $	u							
-			- · `	, 1									
						SECT	<u>ION - G</u>	r T					
Q.1	А	Q.2	А	Q.3	С	Q.4	С	-					
-		-		-		-							