CONCEPT APPLICATION LEVEL-II

SECTION-A

- FILL IN THE BLANKS
Q. 1 \qquad in any figure bounded by four straight lines.
Q. 2 Solids are \qquad dimensional figures that have \qquad .
Q. 3 An edge forms when two \qquad meet.
Q. 4 The \qquad is the point here three or more edges meet.
Q. 5 A cube is a special type of \qquad .
Q. 6 In an \qquad triangle, the hypotenuse is $\sqrt{2}$ times either of the other two sides.
Q. 7 If a line segment whose end points lie on the circle is called \qquad to the circle.
Q. 8 Each face of the cuboid is \qquad .
Q. 9 Find the surface area of a cube whose side is 5 cm . \qquad .
Q. 10 Cube is a cuboid whose all the edges are equal. It is true? \qquad .
Q. 11 1 litre = \qquad cm^{3}.
Q. 12 An open box(without lid) whose length, breadt and height are $3 \mathrm{~cm}, 2 \mathrm{~cm}$ and 1 cm is formed. Find its surface area. \qquad
Q. 13 Ratio of the surface areas of two cubes is $36: 49$. Find the ratio of their edges. \qquad .

SECTION - B

- TRUE \& FALSE

Q. 1 The face of a solid is two-dimensional in shape.
Q. 2 If a solid has a curved surface then it has no faces.
Q. 3 Area is the length of the boundary of a closed figure.
Q. 4 Area is the total surface covered by a closed figure.
Q. 5 Perimeter of a triangle with side a, b, c is $3 a+3 b+3 c$.
Q. 6 The parallel sides are called bases of the trapezium.
Q. $7 \pi \mathrm{r}$ is the circumference of a circle.
Q. 8 The whole arc of the circle is called the radius of the circle.
Q. 9 An isosceles right angle has area $32 \mathrm{~cm}^{2}$, then hypotenuse is $8 \sqrt{2} \mathrm{~cm}$.

SECTION - C

- MULTIPLE CHOICE QUESTIONS

Q. 1 The area of a square whose perimeter is 16 cm is
(A) $64 \mathrm{~cm}^{2}$
(B) $16 \mathrm{~cm}^{2}$
(C) $32 \mathrm{~cm}^{2}$
(D) $128 \mathrm{~cm}^{2}$
Q. 2 A rectangular field has dimensions of 72 m and 65 m . The area of the field is
(A) $4680 \mathrm{~m}^{2}$
(B) $4400 \mathrm{~m}^{2}$
(C) $4880 \mathrm{~m}^{2}$
(D) $4360 \mathrm{~m}^{2}$
Q. 3 The area of a right angled triangle, whose base is 8 cm and hypotenuse is 10 cm , is :
(A) $40 \mathrm{~cm}^{2}$
(B) $48 \mathrm{~cm}^{2}$
(C) $24 \mathrm{~cm}^{2}$
(D) $80 \mathrm{~cm}^{2}$
Q. 4 Two parallel sides of a trapezium are of lengths 16 cm and 10 cm and the distance between them is 8 cm . Area of the trapezium is
(A) $104 \mathrm{~cm}^{2}$
(B) $208 \mathrm{~cm}^{2}$
(C) $52 \mathrm{~cm}^{2}$
(D) $1280 \mathrm{~cm}^{2}$
Q. 5 Two parallel sides of a trapezium are of lengths a cm and bcm and distance between them is dcm . The area of the trapezium is given by:
(A) $(a+b) \times \mathrm{dcm}^{2}$
(B) $\frac{1}{2}(a+b) \times \mathrm{dcm}^{2}$
(C) $2(a+b) \times \mathrm{dcm}^{2}$
(D) none of these
Q. 6 The area of a trapezium of height 4 cm is $16 \mathrm{~cm}^{2}$. If one of the parallel sides is 4 cm , the other side will be
(A) 8 cm
(B) 2 cm
(C) 3 cm
(D) 4 cm
Q. 7 In a trapezium, sum of two parallel sides is 20 cm and distance between them is 5 cm . Its area is:
(A) $100 \mathrm{~cm}^{2}$
(B) $50 \mathrm{~cm}^{2}$
(C) $25 \mathrm{~cm}^{2}$
(D) $200 \mathrm{~cm}^{2}$
Q. 8 The volume of a cube whose edge is 5 a is :
(A) $25 \mathrm{a}^{3}$
(B) $125 \mathrm{a}^{2}$
(C) $150 \mathrm{a}^{2}$
(D) $125 \mathrm{a}^{3}$
Q. 9 The volume of a cuboid whose length, breadth and height are $2 \mathrm{a}, 3 \mathrm{~b}$ and 4 c is :
(A) 6 abc
(B) 24 abc
(C) 48 abc
(D) none of these
Q. 10 The volume of a cuboid whose length, breadth and height are in the ratio of $3: 1: 2$ is
(A) $8 \times$ breadth 3
(B) $8 \times$ length 3
(C) $6 \times$ breadth 3
(D) length \times breadth
Q. 11 The volume of a water tank is $3 \mathrm{~m}^{3}$. Its capacity in litres is :
(A) 30
(B) 300
(C) 3000
(D) none of these
Q. 12 The capacity of a cubical mug is 1 lit. The length of its edge is :
(A) 1 cm
(B) 10 cm
(C) 1 m
(D) none of these
Q. 13 The surface area of an open box whose length, breadth and height are $l, \mathrm{~b}$ and h respectively, is :
(A) $2(\mathrm{lb}+\mathrm{bh}+\mathrm{h} l)$
(B) $2(\mathrm{lb}+\mathrm{bh})+\mathrm{h} l$
(C) $2(\mathrm{bh}+\mathrm{h} l)+l \mathrm{~b}$
(D) $2(\mathrm{lb}+\mathrm{h} l)+\mathrm{bh}$
Q. 14 Two cubes each of edge 5 cm are joined end to end. The surface area of the resulting cuboid is:
(A) $125 \mathrm{~cm}^{2}$
(B) $240 \mathrm{~cm}^{2}$
(C) $250 \mathrm{~cm}^{2}$
(D) $500 \mathrm{~cm}^{2}$
Q. 15 If the ratio of the surface area of two cubes is $1: 9$, then the ratio of their volumes will be
(A) $1: 9$
(B) $1: 27$
(C) $1: 36$
(D) $1: 18$
Q. 16 Surface area of a cube is $150 \mathrm{~m}^{2}$. The length of its length is
(A) 5 m
(B) 10 m
(C) 15 m
(D) 6 m
Q. 17 The total surface area of a cylinder whose height is twice the radius, 'r' is
(A) $8 \pi^{2}$
(B) $36 \pi^{2} r$
(C) $6 \pi r^{2}$
(D) $81 \mathrm{r}^{2}$
Q. 18 Radius of a cylinder is xcm and its height is 2 x cm . Its volume is :
(A) $\pi x^{3} \mathrm{~cm}^{3}$
(B) $2 \pi x^{3} \mathrm{~cm}^{3}$
(C) $3 \pi \mathrm{x}^{3} \mathrm{~cm}^{3}$
(D) $4 \pi x^{3} \mathrm{~cm}^{3}$
Q. 19 The ratio of radii of two cylinders is $1: 2$. If the ratio of their heights is $2: 1$, then the ratio of their volume will be
(A) $1: 2$
(B) $1: 4$
(C) $2: 1$
(D) $4: 1$
Q. 20 If the height of a cylinder is equal to the radius of its base, then the curved surface area of the cylinder is:
(A) $2 \pi r$
(B) $2 \pi r^{3}$
(C) πr^{2}
(D) $2 \pi \mathrm{r}^{2}$
Q. 21 If the base of a triangle is doubled and height is halved, its area will be
(A) Doubled
(B) Halved
(C) One-fourth
(D) Same
Q. 22 The area of square, whose diagonal is 12 cm , will be
(A) $144 \mathrm{~cm}^{2}$
(B) $72 \mathrm{~cm}^{2}$
(C) $36 \mathrm{~cm}^{2}$
(D) $48 \mathrm{~cm}^{2}$
Q. 23 The ratio of the areas of a square and a rectangle of length 4 cm and width 3 cm is $4: 3$. The side of the square will be
(A) 4 cm
(B) 3 cm
(C) 12 cm
(D) 9 cm
Q. 24 The adjacent sides of a parallelogram are 4 cm and 12 cm . The distance between the longer sides is 6 cm . The distance between the shorter sides will be
(A) 2 cm
(B) 14 cm
(C) 18 cm
(D) 8 cm
Q. 25 The diagonals of a rhombus are 9 cm and 6 cm . Its area will be
(A) $54 \mathrm{~cm}^{2}$
(B) $27 \mathrm{~cm}^{2}$
(C) $108 \mathrm{~cm}^{2}$
(D) $216 \mathrm{~cm}^{2}$
Q. 26 The length of the parallel sides of a trapezium is 12 cm and 8 cm . The distance between them is 4 cm . The area of the trapezium will be
(A) $80 \mathrm{~cm}^{2}$
(B) $40 \mathrm{~cm}^{2}$
(C) $48 \mathrm{~cm}^{2}$
(D) $32 \mathrm{~cm}^{2}$
Q. 27 The area of a trapezium is $28 \mathrm{~cm}^{2}$ and one of its parallel sides is 6 cm . If the distance between the parallel sides is 4 cm , then the other parallel side is
(A) 4 cm
(B) 7 cm
(C) 8 cm
(D) 6 cm
Q. 28 The area of a rhombus is $24 \mathrm{~cm}^{2}$ and one of its diagonals is 8 cm . Its perimeter is
(A) 20 cm
(B) 24 cm
(C) 40 cm
(D) $4 \sqrt{73} \mathrm{~cm}$
Q. 29 If each edge of a cube is doubled, how many times will its volume increase?
(A) 6 times
(B) 8 times
(C) 4 times
(D) 16 times
Q. 30 Three cubes, each measuring 8 cm , are joined end to end. The volume of the resulting cuboid will be
(A) $1536 \mathrm{~cm}^{3}$
(B) $1024 \mathrm{~cm}^{3}$
(C) $912 \mathrm{~cm}^{3}$
(D) $576 \mathrm{~cm}^{3}$
Q. 31 The volume of a cuboid is $1680 \mathrm{~m}^{3}$. If it is 14 m long and 10 m high, then its breadth will be
(A) 1.2 m
(B) 13 m
(C) 12 m
(D) 1.3 m
Q. 32 How many cubes of 4 cm can be made from an iron cuboidal piece 24 cm long, 12 cm wide and 10 cm high?
(A) 40
(B) 45
(C) 36
(D) 50
Q. 33 How does the surface area of a cube change when its edge is halved?
(A) $3: 1$
(B) $4: 1$
(C) $2: 1$
(D) $8: 1$
Q. 34 If an edge of a cube is doubled, how many times its surface area will be increased?
(A) twice
(B) Thrice
(C) Four times
(D) Six times
Q. 35 Surface area of a cuboid measuring $3 \mathrm{~m} \times 2 \mathrm{~m} \times 1.5 \mathrm{~m}$ is
(A) $9 \mathrm{~m}^{2}$
(B) $18 \mathrm{~m}^{2}$
(C) $13.5 \mathrm{~m}^{2}$
(D) $27 \mathrm{~m}^{2}$
Q. 36 The lateral surface of a cuboid whose length is 5 m , breadth is 4 m and height is 2 m is
(A) $76 \mathrm{~m}^{2}$
(B) $38 \mathrm{~m}^{2}$
(C) $36 \mathrm{~m}^{2}$
(D) $40 \mathrm{~m}^{2}$
Q. 37 The volume of a cylinder of base 7 cm and height 25 cm is
(A) $1100 \mathrm{~cm}^{3}$
(B) $3850 \mathrm{~cm}^{2}$
(C) $3850 \mathrm{~cm}^{3}$
(D) $1100 \mathrm{~cm}^{2}$
Q. 38 The volume of a right circular cylinder of base radius 35 cm is $154 \mathrm{dm}^{3}$. Its height will be
(A) 4 cm
(B) 40 cm
(C) 120 cm
(D) 40 dm
Q. 39 Two right circular cylinders of equal volume are such that their radii are in the ratio 2:3. The ratio of their heights will be
(A) $2: 3$
(B) $4: 9$
(C) $3: 2$
(D) $9: 4$
Q. 40 A cylindrical tank has a capacity of 6160 cu . If the diameter is 28 m , then the depth will be
(A) 10 m
(B) 15 m
(C) 5 m
(D) 50 m
Q. 41 The area of the curved surface of a cylinder of base radius 7 cm and height 25 cm is
(A) $1100 \mathrm{~cm}^{3}$
(B) $1100 \mathrm{~cm}^{2}$
(C) $1408 \mathrm{~cm}^{2}$
(D) $1408 \mathrm{~cm}^{3}$
Q. 42 The total surface area of the right circular cylinder whose diameter is 14 cm and height 20 cm is
(A) $1188 \mathrm{~cm}^{2}$
(B) $1178 \mathrm{~cm}^{2}$
(C) $2992 \mathrm{~cm}^{2}$
(D) $2772 \mathrm{~cm}^{2}$
Q. 43 The radius of the cylinder with lateral surface area $704 \mathrm{~cm}^{2}$ and height 16 cm is
(A) 3 cm
(B) 4 cm
(C) 8 cm
(D) 7 cm
Q. 44 The radius of a cylinder is doubled whose lateral surface area is unchanged. The height will be
(A)Halved
(B) Doubled
(C) Tripled
(D) Constant
Q. 45 If V and C stand respectively for volume and curved surface area of a cylinder with base radius r , then
(A) $\mathrm{VC}=\pi$
(B) $2 \mathrm{~V}=\mathrm{Cr}$
(C) $2 \mathrm{C}=\mathrm{Vr}$
(D) $2 r=V C$
Q. 46 The figure shows a rectangular block of wood which is $\frac{2}{5} \mathrm{~m}$ long. It has a square base of area $9 \mathrm{~cm}^{2}$.
(a) What is the greatest number of 2 cm cubes that can be cut from it?
(b) What is the volume of the block of wood left?
[IMO-2016]

(A) (a) 20; (b) $200 \mathrm{~cm}^{3}$
(B) (a) 140 ; (b) $200 \mathrm{~cm}^{3}$
(C) (a) 154 ; (b) $100 \mathrm{~cm}^{3}$
(D) (a) 159 ; (b) $200 \mathrm{~cm}^{3}$
Q. 47 In the figure, ABCD is a square of sides 30 cm . Find the area of the shaded region if the radius of the circle is 18 cm . (Take $\pi=3.14$)
[IMO-2016]

(A) $112.36 \mathrm{~cm}^{2}$
(B) $117.36 \mathrm{~cm}^{2}$
(C) $119.36 \mathrm{~cm}^{2}$
(D) $121.26 \mathrm{~cm}^{2}$
Q. 48 The two adjacent sides of a rectangle are $5 x^{2}-3 y^{2}$ and $x^{2}+2 x y$. Find the perimeter.
[IMO-2016]
(A) $12 x^{2}+5 x y+9 y^{2}$
(B) $12 x^{2}-6 y^{2}+4 x y$
(C) $7 x^{2}-3 y^{2}+4 x y$
(D) $8 x^{2}-8 y^{2}+3 x y$
Q. 49 The outer dimensions of a closed box are 10 cm by 8 cm by 7 cm . Thickness of the wood is 1 cm . Find the total cost of wood required to make box, if $1 \mathrm{~cm}^{3}$ of wood costs ₹ 2.00
[IMO-2016]
(A) ₹ 320
(B) ₹ 1240
(C) ₹ 640
(D) ₹ 240
Q. 50 A rectangular garden 200 m long and 150 m wide has a path all around it , on the inner side, having a width of 3 m . In the centre of this plot, there is a circular pond of radius 7 m . What area of the land is left for the lawn and the flower beds?
[IMO-2016]
(A) 27,936 sq.m
(B) 27,782 sq.m
(C) 27,682 sq.m
(D) $28,582 \mathrm{sq} . \mathrm{m}$
Q. 51 Find $\mathrm{P}+\mathrm{Q}-\mathrm{R}$.
[IMO-2016]
(i) If a rectangle of length 44 cm is rolled along its length to form a cylinder, the radius of cylinder is __ $(\mathrm{P}) \quad \mathrm{cm}$.
(ii) The cost of plastering the walls of a cuboidal room of dimensions $12 \mathrm{~m} \times 10 \mathrm{~m} \times 4 \mathrm{~m}$ at the rate of ₹ 25 per sq.m is ₹ \qquad (Q) \qquad .
(iii) The volume of a cuboid of dimensions $14 \mathrm{~m} \times 7 \mathrm{~m} \times 12 \mathrm{~m}$ is \qquad (R) \qquad m^{3}.
(A) 11776
(B) 7362
(C) 16162
(D) 3231
Q. 52 If the height of a cylinder is 4 times its circumference, the volume of the cylinder in terms of its circumference c, is
[IOM-2016]
(A) $4 \pi c^{3}$
(B) $2 \pi \mathrm{c}^{3}$
(C) $\frac{2 \mathrm{c}^{3}}{\pi}$
(D) $\frac{\mathrm{c}^{3}}{\pi}$
Q. 53 A piece of wire when bent to form a circle will have a radius of 84 cm . If the wire is bent to form a square, the length of the side of the square is
[IOM-2016]
(A) 132 cm
(B) 225 cm
(C) 152 cm
(D) 168 cm
Q. 54 The radii of two solid iron spheres are 1 cm and 6 cm respectively. A hollow sphere is made by melting the two spheres. If the external radius of the hollow sphere is 9 cm , then its thickness (in cm) is
[IOM-2016]
(A) 2
(B) 0.5
(C) 1
(D) 1.5
Q. 55 The area of an isosceles trapezium is $176 \mathrm{~cm}^{2}$ and the height is $\frac{2}{11}$ th of the sum of its parallel sides. If the ratio of the length of the parallel sides is $4: 7$, then the length of the diagonal (in cm) is
[IOM-2016]
(A) 28
(B) $2 \sqrt{137}$
(C) 24
(D) $\sqrt{137}$
Q. 56 The numerical values of the volume and the area of the lateral surface of a right circular cone are equal. If the height of the cone be h and radius be r, the value of $\frac{1}{\mathrm{~h}^{2}}+\frac{1}{\mathrm{r}^{2}}$ will be
[IOM-2016]
(A) $\frac{3}{1}$
(B) $\frac{9}{1}$
(C) $\frac{1}{9}$
(D) $\frac{1}{3}$

SECTION - D

- MATCH THE COLUMN

Q. 1

Column-I

(A) Area of equilateral triangle is
(B) Height of an equilateral triangle is
(C) Area of rhombus is
(D) Area of trapezium is
(E) Area of right angled triangle is
Q. 2

Column-I
(A) Volume of a cylinder is
(B) Volume of a Cone is
(C) Volume of a Sphere is
(D) Slant height of a Cone is
Q. 3

Column-I

(A) Surface area of a Cylinder is
(B) Surface area of a Cone is
(C) Total surface area of Cone is
(D) Total surface area of the Cylinder is
(E) Surface area of a Sphere is

Column-II

(P) $\frac{1}{2}$ (Product of sides containing right angles)
(Q) $\frac{1}{2} \times($ Product of diagonals)
(R) $\quad \frac{1}{2}($ Sum of parallel sides $) \times$ height
(S) $\frac{\sqrt{3}}{4}(\text { side })^{2}$
(T) $\frac{\sqrt{3}}{2}$ (side)

Column-II

(P) $\frac{1}{3} \pi r^{2} h$
(Q) $\frac{4}{3} \pi r^{3}$
(R) $\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$
(S) $\pi r^{2} h$

Column-II

(P) $\pi r \sqrt{\mathrm{~h}^{2}+\mathrm{r}^{2}}+\pi \mathrm{r}^{2}$
(Q) $2 \pi r h+2 \pi r^{2}$
(R) $4 \pi \mathrm{r}^{2}$
(S) $\quad 2 \pi \mathrm{rh}$
(T) $\pi r \sqrt{\mathrm{~h}^{2}+\mathrm{r}^{2}}$
Q. 4 Let R and r be the radii of the outer and the inner hemispheres then

Column-I

(A) Thickness of shell is
(B) Area of base is
(C) External curved surface area is
(D) Internal curved surface area is
(E) Total surface area is
(F) Volume of material is

Column-II
(P) $2 \pi R^{2}$
(Q) $2 \pi \mathrm{r}^{2}$
(R) $\quad \pi\left(3 \mathrm{R}^{2}+\mathrm{r}^{2}\right)$
(S) $\frac{2}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)$
(T) $\quad(\mathrm{R}-\mathrm{r})$
(U) $\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$

