CONCEPT APPLICATION LEVEL - II

SECTION-A

• FILL IN THE BLANKS

- Q.1 _____ in any figure bounded by four straight lines.
- Q.2 Solids are _____ dimensional figures that have _____.
- Q.3 An edge forms when two _____ meet.
- Q.4 The ______ is the point here three or more edges meet.
- Q.5 A cube is a special type of _____.
- Q.6 In an ______ triangle, the hypotenuse is $\sqrt{2}$ times either of the other two sides.
- Q.7 If a line segment whose end points lie on the circle is called ______ to the circle.
- Q.8 Each face of the cuboid is _____.
- Q.9 Find the surface area of a cube whose side is 5 cm. _____.
- Q.10 Cube is a cuboid whose all the edges are equal. It is true?_____.
- Q.11 1 litre = _____ cm^3 .
- Q.12 An open box(without lid) whose length, breadt and height are 3cm, 2cm and 1cm is formed. Find its surface area ._____
- Q.13 Ratio of the surface areas of two cubes is 36 : 49. Find the ratio of their edges.

SECTION - B

• TRUE & FALSE

- Q.1 The face of a solid is two-dimensional in shape.
- Q.2 If a solid has a curved surface then it has no faces.
- Q.3 Area is the length of the boundary of a closed figure.
- Q.4 Area is the total surface covered by a closed figure.
- Q.5 Perimeter of a triangle with side a, b, c is 3a + 3b + 3c.
- Q.6 The parallel sides are called bases of the trapezium.
- Q.7 π r is the circumference of a circle.
- Q.8 The whole arc of the circle is called the radius of the circle.
- Q.9 An isosceles right angle has area 32 cm², then hypotenuse is $8\sqrt{2}$ cm.

SECTION - C

•	MULTIPLE CH	IOICE QUESTIONS		
Q.1	The area of a squ	are whose perimeter is 1	6cm is	
	$(A) 64 \text{ cm}^2$	(B) 16 cm^2	(C) 32 cm^2	(D) 128 cm^2

 $\begin{array}{ccc} Q.2 & A \ rectangular \ field \ has \ dimensions \ of \ 72m \ and \ 65m. \ The \ area \ of \ the \ field \ is \\ (A) \ 4680 \ m^2 & (B) \ 4400 \ m^2 & (C) \ 4880 \ m^2 & (D) \ 4360 \ m^2 \end{array}$

Q.3	The area of a right any $(A) 40 \text{ cm}^2$	gled triangle, whose base (B) 48 cm ²	e is 8cm and hypotenuse (C) 24 cm ²	is 10cm, is : (D) 80 cm ²
Q.4	Two parallel sides of a Area of the trapezium	1 0	16 cm and 10cm and the	e distance between them is 8 cm.
	(A) 104 cm^2	(B) 208 cm^2	(C) 52 cm^2	(D) 1280cm^2
Q.5	-	f a trapezium are of le trapezium is given by :	engths a cm and b cm a	and distance between them is
	(A) $(a+b) \times d cm^2$	(B) $\frac{1}{2}(a+b) \times d \operatorname{cm}^2$	2 (C) 2(a + b) × d cm ²	(D) none of these
Q.6	The area of a trapezium	m of height 4 cm is 16 cm	² . If one of the parallel sid	des is 4 cm, the other side will be
	(A) 8 cm	(B) 2 cm	(C) 3cm	(D) 4 cm
Q.7	In a trapezium, sum o (A) 100 cm ²	f two parallel sides is 20 (B) 50 cm ²	cm and distance betwee (C) 25 cm ²	en them is 5cm. Its area is: (D) 200 cm ²
Q.8	The volume of a cube $(A) 25 a^3$	whose edge is 5a is : (B) 125 a ²	(C) 150 a ²	(D) 125 a ³
Q.9	The volume of a cubc	oid whose length, breadt	h and height are 2a, 3b a	nd 4c is :
	(A) 6 abc	(B) 24 abc	(C) 48 abc	(D) none of these
Q.10	The volume of a cubo $(A) 8 \times breadth^3$	hid whose length, breadth (B) $8 \times \text{length}^3$	h and height are in the ra (C) $6 \times breadth^3$	tio of 3 : 1 : 2 is (D) length × breadth
Q.11		r tank is 3 m ³ . Its capacit	5	
	(A) 30	(B) 300	(C) 3000	(D) none of these
Q.12	The capacity of a cubi (A) 1 cm	ical mug is 1 lit. The leng (B) 10 cm	th of its edge is : (C) 1 m	(D) none of these
Q.13		h open box whose length (B) $2(lb+bh) + hl$	· · · · ·	<i>l</i> , b and h respectively, is : (D) $2(lb + hl) + bh$
Q.14	Two cubes each of ed (A) 125 cm ²	ge 5 cm are joined end to (B) 240 cm ²	o end. The surface area o (C) 250 cm ²	of the resulting cuboid is: (D) 500 cm ²
Q.15	If the ratio of the surfa (A) 1 : 9	ace area of two cubes is 1 (B) 1 : 27	: 9, then the ratio of the (C) 1 : 36	ir volumes will be (D) 1 : 18

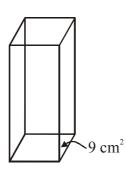
Q.16	Surface area of a cul	be is 150m ² . The lengt	h of its length is	
	(A) 5m	(B) 10m	(C) 15 m	(D) 6m
Q.17	The total surface are	ea of a cylinder whose	height is twice the radius	, 'r' is
	(A) $8\pi^2$	(B) 36π ² r	(C) $6\pi r^2$	(D) $81r^2$
Q.18	Radius of a cylinder	is x cm and its height i	s 2x cm. Its volume is :	
	(A) $\pi x^3 \text{ cm}^3$	(B) $2\pi x^3$ cm ³	(C) $3\pi x^3 \text{ cm}^3$	(D) $4\pi x^3$ cm ³
Q.19	The ratio of radii of t will be	two cylinders is 1 : 2. If	the ratio of their heights is	s 2 : 1, then the ratio of their volume
	(A) 1 : 2	(B) 1 : 4	(C) 2 : 1	(D) 4 : 1
Q.20	If the height of a cyli	inder is equal to the rad	ius of its base, then the cu	rved surface area of the cylinder is:
	(A) 2πr	(B) $2\pi r^{3}$	(C) πr^2	(D) $2\pi r^2$
Q.21	If the base of a triang	gle is doubled and heig	tht is halved, its area will	be
	(A) Doubled	(B) Halved	(C) One-fourth	(D) Same
Q.22	The area of square,	whose diagonal is 12 c	m, will be	
	(A) 144 cm^2	(B) $72 cm^2$	(C) 36 cm^2	(D) 48 cm^2
Q.23	The ratio of the area square will be	s of a square and a rect	angle of length 4 cm and	width 3 cm is 4 : 3. The side of the
	(A) 4 cm	(B) 3 cm	(C) 12 cm	(D) 9 cm
Q.24	-	of a parallelogram are		stance between the longer sides is
	(A) 2 cm	(B) 14 cm	(C) 18 cm	(D) 8 cm
Q.25	The diagonals of a r	hombus are 9 cm and	6 cm. Its area will be	
	(A) 54 cm^2	(B) 27cm^2	(C) 108 cm ²	(D) 216cm^2
Q.26	The length of the pa The area of the trape	-	ium is 12 cm and 8 cm. T	The distance between them is 4cm.
	(A) 80 cm^2	(B) 40 cm^2	(C) 48 cm^2	(D) 32 cm^2
Q.27	-	um is 28 cm ² and one one one of the states	f its parallel sides is 6cm.	If the distance between the parallel
	(A) 4 cm	(B) 7 cm	(C) 8 cm	(D) 6 cm

If each edge of a cube is doubled, how many times will its volume increase? Q.29 (C) 4 times (A) 6 times (B) 8 times (D) 16 times O.30 Three cubes, each measuring 8 cm, are joined end to end. The volume of the resulting cuboid will be (B) 1024 cm^3 (C) 912 cm^3 (D) 576 cm^3 (A) 1536 cm^3 The volume of a cuboid is 1680 m³. If it is 14m long and 10m high, then its breadth will be Q.31 (A) 1.2m (B) 13 m (C) 12 m (D) 1.3 m How many cubes of 4 cm can be made from an iron cuboidal piece 24 cm long, 12 cm wide and 10 cm Q.32 high? (A) 40 (C) 36 (D) 50 (B) 45 Q.33 How does the surface area of a cube change when its edge is halved? (A) 3 : 1 (B) 4:1 (C) 2 : 1 (D) 8:1 If an edge of a cube is doubled, how many times its surface area will be increased? Q.34 (A) twice (B) Thrice (C) Four times (D) Six times Surface area of a cuboid measuring $3m \times 2m \times 1.5m$ is Q.35 (B) 18 m^2 $(A) 9 m^2$ (C) 13.5 m^2 (D) 27 m^2 The lateral surface of a cuboid whose length is 5m, breadth is 4m and height is 2m is Q.36 (A) 76 m^2 (C) 36 m^2 (D) 40 m^2 (B) 38 m^2 The volume of a cylinder of base 7cm and height 25 cm is O.37 (A) 1100 cm^3 (B) $3850 \, \text{cm}^2$ (C) 3850 cm^3 (D) 1100 cm^2 The volume of a right circular cylinder of base radius 35 cm is 154 dm³. Its height will be Q.38 (A)4 cm(B) 40 cm(C) 120 cm (D) 40 dmTwo right circular cylinders of equal volume are such that their radii are in the ratio 2:3. The ratio of their Q.39 heights will be (B) 4 : 9 (D) 9:4 (A) 2 : 3 (C) 3 : 2

The area of a rhombus is 24 cm^2 and one of its diagonals is 8 cm. Its perimeter is

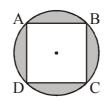
(C) 40 cm

(B) 24 cm


(D) $4\sqrt{73}$ cm

(A) 20 cm

O.28


[IMO-2016]

- Q.41 The area of the curved surface of a cylinder of base radius 7cm and height 25 cm is
 (A) 1100 cm³
 (B) 1100 cm²
 (C) 1408 cm²
 (D) 1408 cm³
 Q.42 The total surface area of the right circular cylinder whose diameter is 14 cm and height 20 cm is
- Q.42 The total surface area of the right circular cylinder whose diameter is 14 cm and height 20 cm is (A) 1188 cm^2 (B) 1178 cm^2 (C) 2992 cm^2 (D) 2772 cm^2
- Q.43 The radius of the cylinder with lateral surface area 704 cm² and height 16 cm is (A) 3 cm (B) 4 cm (C) 8 cm (D) 7 cm
- Q.44 The radius of a cylinder is doubled whose lateral surface area is unchanged. The height will be (A) Halved (B) Doubled (C) Tripled (D) Constant
- Q.45 If V and C stand respectively for volume and curved surface area of a cylinder with base radius r, then (A) $VC = \pi$ (B) 2V = Cr (C) 2C = Vr (D) 2r = VC
- Q.46 The figure shows a rectangular block of wood which is $\frac{2}{5}$ m long. It has a square base of area 9 cm².
 - (a) What is the greatest number of 2 cm cubes that can be cut from it?
 - (b) What is the volume of the block of wood left?

(A) (a) 20; (b) 200 cm³ (C) (a) 154; (b) 100 cm³ (B) (a) 140; (b) 200 cm³ (D) (a) 159; (b) 200 cm³

Q.47 In the figure, ABCD is a square of sides 30 cm. Find the area of the shaded region if the radius of the circle is 18 cm. (Take $\pi = 3.14$) [IMO-2016]

(A) 112.36 cm^2 (B) 117.36 cm^2 (C) 119.36 cm^2 (D) 121.26 cm^2

- Q.48 The two adjacent sides of a rectangle are $5x^2 3y^2$ and $x^2 + 2xy$. Find the perimeter. **[IMO-2016]** (A) $12x^2 + 5xy + 9y^2$ (B) $12x^2 - 6y^2 + 4xy$ (C) $7x^2 - 3y^2 + 4xy$ (D) $8x^2 - 8y^2 + 3xy$
- Q.49The outer dimensions of a closed box are 10 cm by 8 cm by 7 cm. Thickness of the wood is 1 cm. Find
the total cost of wood required to make box, if 1 cm³ of wood costs ₹2.00[IMO-2016](A) ₹320(B) ₹1240(C) ₹640(D) ₹240

CH-16: MENSURATION

O.50 A rectangular garden 200 m long and 150 m wide has a path all around it, on the inner side, having a width of 3 m. In the centre of this plot, there is a circular pond of radius 7 m. What area of the land is left for the lawn and the flower beds? [IMO-2016] (A) 27,936 sq.m (B) 27,782 sq.m (C) 27,682 sq.m (D) 28,582 sq.m Find P + Q - R. [IMO-2016] If a rectangle of length 44 cm is rolled along its length to form a cylinder, the radius of cylinder is (i) (P) cm. The cost of plastering the walls of a cuboidal room of dimensions $12 \text{ m} \times 10 \text{ m} \times 4 \text{ m}$ at the rate (ii) of $\gtrless 25$ per sq.m is \gtrless (Q) The volume of a cuboid of dimensions $14 \text{ m} \times 7 \text{ m} \times 12 \text{m}$ is _____(R)____m³. (iii) (D) 3231 (A) 11776 (B) 7362 (C) 16162 If the height of a cylinder is 4 times its circumference, the volume of the cylinder in terms of its circumference [IOM-2016] c, is (C) $\frac{2c^3}{\pi}$ (D) $\frac{c^3}{\pi}$ (B) $2\pi c^3$ (A) $4\pi c^3$ A piece of wire when bent to form a circle will have a radius of 84 cm. If the wire is bent to form a square, the length of the side of the square is **[IOM-2016]** (A) 132 cm (B) 225 cm (C) 152 cm (D) 168 cm the two spheres. If the external radius of the hollow sphere is 9 cm, then its thickness (in cm) is **[IOM-2016]** (A) 2 (B) 0.5 (C) 1 (D) 1.5 The area of an isosceles trapezium is 176 cm² and the height is $\frac{2}{11}$ th of the sum of its parallel sides. If the ratio of the length of the parallel sides is 4 : 7, then the length of the diagonal (in cm) is **[IOM-2016]** (D) $\sqrt{137}$ (B) $2\sqrt{137}$ (A) 28 (C) 24 The numerical values of the volume and the area of the lateral surface of a right circular cone are equal. Q.56 If the height of the cone be h and radius be r, the value of $\frac{1}{h^2} + \frac{1}{r^2}$ will be **[IOM-2016]** (A) $\frac{3}{1}$ (B) $\frac{9}{1}$ (C) $\frac{1}{9}$ (D) $\frac{1}{3}$

MATHEMATICS / CLASS-VIII

- Q.51

Q.52

Q.53

The radii of two solid iron spheres are 1 cm and 6 cm respectively. A hollow sphere is made by melting O.54

Q.55

SECTION - D

• MATCH THE COLUMN

Q.1 Column-I

Column-II

	(A)	Area of equilateral triangle is	(P)	$\frac{1}{2}$ (Product of sides containing right angles)
	(B)	Height of an equilateral triangle is	(Q)	$\frac{1}{2}$ × (Product of diagonals)
	(C)	Area of rhombus is	(R)	$\frac{1}{2}$ (Sum of parallel sides) × height
	(D)	Area of trapezium is	(S)	$\frac{\sqrt{3}}{4}$ (side) ²
	(E)	Area of right angled triangle is	(T)	$\frac{\sqrt{3}}{2}$ (side)
Q.2		Column-I		Column-II
	(A)	Volume of a cylinder is	(P)	$\frac{1}{3}\pi r^2h$
	(B)	Volume of a Cone is	(Q)	$\frac{4}{3}\pi r^3$
	(C)	Volume of a Sphere is	(R)	$\sqrt{h^2 + r^2}$
	(\mathbf{C})	volume of a ophere is	(IL)	$\sqrt{n^{-} + r^{-}}$
	(C) (D)	Slant height of a Cone is	(IX) (S)	$\sqrt{h^2 + r^2}$ $\pi r^2 h$
Q.3				•
Q.3		Slant height of a Cone is		$\pi r^2 h$ Column-II $\pi r \sqrt{h^2 + r^2} + \pi r^2$
Q.3	(D) (A) (B)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is	(S) (P) (Q)	$\pi r^2 h$ Column-II $\pi r \sqrt{h^2 + r^2} + \pi r^2$ $2\pi r h + 2\pi r^2$
Q.3	(D) (A) (B) (C)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is	(S) (P) (Q) (R)	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$
Q.3	(D) (A) (B)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is	(S) (P) (Q)	$\pi r^2 h$ Column-II $\pi r \sqrt{h^2 + r^2} + \pi r^2$ $2\pi r h + 2\pi r^2$
Q.3	(D) (A) (B) (C)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is	(S) (P) (Q) (R)	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$
Q.3 Q.4	(D) (A) (B) (C) (D) (E)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is Total surface area of the Cylinder is	(S) (P) (Q) (R) (S) (T)	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$ $2\pi rh$ $\pi r \sqrt{h^{2} + r^{2}}$
	(D) (A) (B) (C) (D) (E)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is Total surface area of the Cylinder is Surface area of a Sphere is	(S) (P) (Q) (R) (S) (T)	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$ $2\pi rh$ $\pi r \sqrt{h^{2} + r^{2}}$ pheres then Column-II
	(D) (A) (B) (C) (D) (E)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is Total surface area of the Cylinder is Surface area of a Sphere is nd r be the radii of the outer and the inner	(S) (P) (Q) (R) (S) (T)	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$ $2\pi rh$ $\pi r \sqrt{h^{2} + r^{2}}$ pheres then Column-II $2\pi R^{2}$
	(D) (A) (B) (C) (D) (E) Let R a	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is Total surface area of the Cylinder is Surface area of a Sphere is nd r be the radii of the outer and the inne Column-I Thickness of shell is Area of base is	(S) (P) (Q) (R) (S) (T) er hemis	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$ $2\pi rh$ $\pi r \sqrt{h^{2} + r^{2}}$ pheres then Column-II $2\pi R^{2}$ $2\pi r^{2}$
	(D) (A) (B) (C) (D) (E) Let R a (A)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is Total surface area of the Cylinder is Surface area of a Sphere is nd r be the radii of the outer and the inne Column-I Thickness of shell is	(S) (P) (Q) (R) (S) (T) er hemis (P)	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$ $2\pi rh$ $\pi r \sqrt{h^{2} + r^{2}}$ pheres then Column-II $2\pi R^{2}$
	(D) (A) (B) (C) (D) (E) Let R a (A) (B)	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is Total surface area of the Cylinder is Surface area of a Sphere is nd r be the radii of the outer and the inne Column-I Thickness of shell is Area of base is	 (S) (P) (Q) (R) (S) (T) er hemis (P) (Q) 	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$ $2\pi rh$ $\pi r \sqrt{h^{2} + r^{2}}$ pheres then Column-II $2\pi R^{2}$ $2\pi r^{2}$
	 (D) (A) (B) (C) (D) (E) Let R a (A) (B) (C) 	Slant height of a Cone is Column-I Surface area of a Cylinder is Surface area of a Cone is Total surface area of Cone is Total surface area of the Cylinder is Surface area of a Sphere is nd r be the radii of the outer and the inner Column-I Thickness of shell is Area of base is External curved surface area is	(S) (P) (Q) (R) (S) (T) er hemis (P) (Q) (R)	$\pi r^{2}h$ Column-II $\pi r \sqrt{h^{2} + r^{2}} + \pi r^{2}$ $2\pi rh + 2\pi r^{2}$ $4\pi r^{2}$ $2\pi rh$ $\pi r \sqrt{h^{2} + r^{2}}$ pheres then Column-II $2\pi R^{2}$ $2\pi r^{2}$ $\pi (3R^{2} + r^{2})$