CONCEPT APPLICATION LEVEL - II

SECTION-A

FILL IN THE BLANKS :

Q.1	Find the product of $\frac{1}{4}ab$ and $-8a^2b^2$
Q.2	The length and breadth of a rectangular paper are x cm and $(10-x)$ cm respectively. Find the area of the paper
Q.3	Find the value of $x^2 + 6x + 9$ for $x = 4$
Q.4	Find the value of $(2x + 5)(2x - 5)$
Q.5	Find the value of $(x + 5)^2 - 20x$ for $x = 6$
Q.6	Write the coefficient of y^2 in $3xy^3$
Q.7	Find the product $(1 + x) (1 - x) (1 + x^2)$
Q.8	Are 3x ² yz and –3zyx ² like terms ?
Q.9	Find the product of the coefficients of x in $-5x^2yz$ and $2xy$
Q.10	(-x + a) (-x + b) is equal to
Q.11	are a combination of terms connected by the operations of addition, subtraction,
	multiplication or division.
Q.12	A may be negative or positive depending upon the sign of the
Q.13	The numerical factor of the term is called
Q.14	In expression $2x^2 + 4x$, the coefficient of x^2 is and coefficient of x is
Q.15	5x + 4y is an expression having terms.
Q.16	An algebraic expression is called aif there is only one term in it.
Q.17	Trinomial is an algebraic expression with terms.
Q.18	$(-5 \text{ ab}^2\text{c}) \times (3a^3bc^2d) = \dots$
Q.19	Each term in an algebraic expression is a product of one or more numbers, numerical. These numbers
	are called the of that term.
Q.20	$x^2 + x - 56 = (x + 8) (\dots)$
Q.21	Every polynomial has one and only one zero.
Q.22	$-3x^2yz \times \frac{1}{xyz} = \underline{\qquad}$
Q.23	$4a^{2}bc \times ___ = 0$
Q.24	$4pqr (p^2 - q^2 + r^2) = 4p^3qr - ___ + 4pqr^3$
Q.25	$3mn(m-n)+2mn(n-m)=m^2n-$
Q.26	The value of $3x^2(x^2-2x+1)$ for $x = -1$ is
Q.27	$34^2 - 6^2 = $ ×
Q.28	$(20+8)(20-8) = ___________________________________$
Q.29	$(3a+7)(3a+8) = (3a)^2 + (7+8)(3a) + \$
Q.30	$(6x - 7y)^2 = \2 \times 6x \times 7y + _$
Q.31	$(4p^2q + 6qr)^2 = 16p^4q^2 + ___ + 36q^2r^2$

SECTION - B

$\succ \qquad \mathsf{TRUE}/\mathsf{FALSE}$

- Q.1 Zero may be a zero of a polynomial.
- Q.2 If p(x) is a polynomial of degree ≥ 1 and 'a' is any real number then (x + a) is a factor of polynomial p(x), if p(-a) = 0.
- Q.3 In the term 5ab, 5, a and b are the factors of this term.
- Q.4 $(3y^2 + 3xyz) (2x^2 3y^2 + 4z^2 xyz)$ is $-2x^2 + y^2 z^2 + xyz$.
- Q.5 A constant term contains only variables.
- Q.6 Only like terms can be added or subtracted.
- Q.7 If the polynomial is $a_0 + a_1 x + a_2 x + \dots + a_n x^n$, $a_n \neq 0$, then its degree is n.
- Q.8 Degree of a polynomial is a rational number.
- Q.9 If the polynomial is $a_0 (a_0 \neq 0)$, then it is called a zero polynomial of 0 degree.
- Q.10 There are 5 terms in the algebraic expression $4x^3 3x^2 + 2x 9$.
- Q.11 The coefficient of x in $2x^3 + 7x^2 x$ is 1.
- Q.12 The coefficient of y^2 in $4y^4 3y^3 + 3y^2 2$ is 3.
- Q.13 The value of $-2a^2 + 3a 6$ at a = -1 is 11.
- Q.14 The degree of the polynomial $9x^7 \frac{3}{4}x^4 + 11x$ is 7.
- Q.15 The product of a monomial and another monomial is always a monomial.
- Q.16 The product of two binomials is always a binomial.
- Q.17 The product of $4p^2q$ and pq^2 is $4p^2q^3$.
- Q.18 The product of xyz and $-\frac{1}{xyz}$ is -1.
- Q.19 Distributive law and commutative law holds good for multiplication of polynomials.

SECTION - C

MULTIPLE CHOICE QUESTIONS

- Q.1 The coefficient of x^0 in $3x^3 4x^2 + 7x 2$ is: (A) 7 (B) 2 (C) -2 (D) 0
- Q.2 The number of like terms in $4x^2y 6xy^2 + 3x^2y 2yx + 7xyz$ is: (A) 2 (B) 3 (C) 4 (D) None
- Q.3 The vlaue of expression $4a^{2}b 2ab^{2} + 7ab 3$ at a = -1, b = 2 is (A) - 27 (B) 1 (C) 27 (D) - 1

CH-5: ALGEBRAIC EXPRESSIONS AND IDENTITIES

Q.4	The sum of $-2a - b +$ (A) Monomial	3c - d and $2a + 4b + 6c(B) Binomial$	c is (C)Trinomial	(D) Polynomial with 4 terms
Q.5	The product of $-7x^2yz$ (A) 91 xy^4z^2	z, -13y ² and yz is : (B) 91 xy ²	$(C) 91x^2y^4z^2$	$(D)-91x^2yz^2$
Q.6	The product of $-7xy$ a (A) $7x^2y^2 - 28xy^3$	and $x^2 - 4y^2$ is (B) $-7x^3y + 28xy^3$	(C) $-7x^2y + 28x^2y^2$	$(D) - 7x^3 - 28xy^3$
Q.7	The value of the expression (A) 4	ession $4xy(x^2 - y^2)$ at x (B)-1	=-1 and y $=-1$ is (C) -4	(D) 0
Q.8	On simplifying 3ab (a (A)-12ab ²	$a^{2}-b^{2})-3b(a^{3}-ab^{2}+4)$ (B) 0	ab), we get (C) 12a ² b	(D) $3a^2b^2$
Q.9	The value of the expression $(A)-3$	ession $3xy(x^2 - xy + y^2)$ (B) - 9	at x = 1, y = -1 is (C) 3	(D) 1
Q.10	On simplifying 4pq (p (A) 0	$(p^2 + q^2) - 4pq (p^2 - q^2), w$ (B) $8p^3q$	ve get (C) 8pq ³	$(D) - 8pq^3$
Q.11	The number of terms (A) 4	in the product of $(x-4)$ (B) 6	and $(x^2 - 7x + 12)$ is (C) 5	(D) 2
Q.12	The area of a rectangle	e is length × breadth. If t	he length is $(x+3)$ units	s and breadth is $(y-3)$ units the
	area is : (A) $xy - 3y + 3x - 9$	(B) $xy + 3y - 3x - 9$	(C) $xy + 3y + 3x - 9$	(D) xy - 3y - 3x - 9
Q.13	The volume of a box is	given by the formula ler	hgth imes breadth imes height.	If the length is 4x units, breath is
	$3y^2$ units and height is 2 (A) $12x^2y^2$	$2x^2y$ units the volume is : (B) $24xy^3$	(C) $24x^3y^2$	(D) $24x^3y^3$
Q.14	The middle term in the (A) 12yz	e expression $(2y-3z)^2$ is (B)-6yz	(C)-12yz	(D) 6yz
Q.15	The vlaue of 13.1 ² – 6 (A) 124	6.9 ² is (B) 12.4	(C) 1.24	(D) 1124
Q.16	The degree of $4x^2y + 2$ (A) 2	$x^2 - 2y^2$ is (B) 3	(C) 4	(D) – 2
Q.17	What must be added to $(A) x^2 + 4x + 14$	to $2x^2 - 3x - 8$ to get $3x$ (B) $-x^2 - 4x - 14$	$x^{2} + x + 6?$ (C) $5x^{2} - 2x - 2$	(D) $x^2 - x - 2$
Q.18	What must be subtract (A) $4x^3 + 4x^2 - 6$ (C) $-2x^3 - x^2 + 3x - 1$	eted from $x^3 + 3x - 9$ to 2	get $3x^3 + x^2 + 3$? (B) $4x^3 + x^2 + 3x - 6$ (D) $2x^3 - x^2 - 3x + 12$	2

CH-5: ALGEBRAIC EXPRESSIONS AND IDENTITIES

Q.19	If $a = b = 2$, then the v (A) 2	alue of $(a - b) (a^2 + ab - (B) 0)$	- b ²) will be (C) 1	(D) 48
Q.20	$\frac{2}{3}xy \times \frac{3}{4}xz$ is			
	$(A) \frac{1}{12} x^2 y$	(B) $\frac{1}{2}xyz$	(C) $\frac{1}{2}x^2yz$	$(D) \frac{1}{4} x^2 y$
Q.21	$(-3ab) \times (-2a^{2}b)$ is (A) $-6ab^{2}$	(B) $6a^{3}b^{2}$	(C) 6a ³ b ³	(D) $-6a^{2}b^{2}$
Q.22	$25x^8y^9z^5 \times (-2xyz)^2$ is (A) $50x^9y^{10}z^6$	(B) $100 x^{10} y^{11} z^7$	$(C) - 100x^{10}y^{11}z^7$	(D) $-50x^9y^{10}z^6$
Q.23	The true statement is (A) $3x = 3 + x$ (C) $4(x^2 - 3) = 4x^2 - 3x^2 - $	12	(B) 2 (x + 5) = 2x + 5 (D) x × (-5) = x - 5	
Q.24	The product of $\left(\frac{3}{2}xyz\right)$	$-\frac{9}{4}xy^2z^3$ and $\left(\frac{-8}{27}x\right)$	yz) is :	
	(A) $\frac{4}{9}x^2y^2z^2 + \frac{2}{3}x^3y$	$^{3}Z^{3}$	(B) $-\frac{4}{9}x^2y^2z^2 + \frac{2}{3}x^2$	$^{2}y^{3}z^{4}$
	(C) $\frac{4}{9}xy^2z^3 + \frac{2}{3}x^2y^3z^3$	z^2	(D) $-\frac{4}{9}x^2y^3z^4-\frac{8}{3}x^2$	$^{2}y^{2}z^{2}$
Q.25	(3x-4)(2x+7) is (A) $6x^2 + 3x - 28$	(B) $6x^2 + 13x - 28$	(C) $6x^2 + 29x - 28$	(D) $6x^2 - 29x - 28$
Q.26	$\left(\frac{1}{2}x^2+y^2\right)\left(x^2-\frac{1}{2}\right)$	y^2) is		
	(A) $\frac{1}{2}x^4 - \frac{1}{2}y^4$		(B) $\frac{1}{2}x^4 - \frac{3}{4}x^2y^2 + \frac{1}{2}$	y ⁴
	(C) $\frac{1}{2}x^4 + \frac{3}{4}x^2y^2 - \frac{1}{2}$	$\frac{1}{2}y^4$	(D) $\frac{1}{2}x^2 + \frac{3}{4}x^2y^2 - \frac{1}{2}$	$\frac{1}{2}y^2$
Q.27	When $a = 3, b = 2$, the (A) 4	en $(a - b) (2a^2 - 3ab + b)$ (B)-4	b ²) is (C) 20	(D)-20
Q.28	(y+5)(y-3) is (A) $y^2 - 8y - 15$	(B) $y^2 + 8y - 15$	(C) $y^2 + 2y - 15$	(D) $y^2 - 2y - 15$

Q.29	Square of $2x^2 - 3y^2$ is (A) $4x^2 - 9y^4$	(B) $4x^4 + 9y^4 - 12x^2y^4$	² (C) $4x^4 + 9y^4 + 12x^2y$	2 (D) $4x^{4} + 9y^{4}$
Q.30	$\left(\frac{2}{3}x^2 - \frac{1}{2}y^2\right)\left(\frac{2}{3}x^2\right)$	$+\frac{1}{2}y^2$ is		
	(A) $\frac{4}{9}x^4 + \frac{1}{4}y^4$	(B) $\frac{4}{9}x^2 - \frac{1}{4}y^2$	(C) $\frac{4}{9}x^4 - \frac{1}{4}y^4$	(D) $\frac{4}{9}x^4 - \frac{1}{4}y^4 - \frac{2}{3}x^2y^2$
Q.31	The value of $\frac{7.87 \times 7.1}{1000}$	$\frac{.87 - 1.72 \times 1.72}{6.15}$ is		
	(A) 9.59	(B) 10	(C) 6.15	(D) 6.45
Q.32	$6y^4 \div (-2y^3)$ is (A) 3y	(B)-3y	(C) 3y ³	(D)-3y ³
Q.33	$(-72x^2y^3) \div (-8xy)$ is (A) -9xy	(B)-9xy ²	(C) $9xy^2$	(D) 9xy
Q.34	$(8x^2y^2 + 6xy^2 - 10x^2y^2)$ (A) $4xy + 3y - 5xy^2$	³) \div (2xy) is (B) $4xy^2 - 3y - 5xy^2$	(C) $4xy - 3y + 5y^2$	(D) $4xy^2 + 3x - 5x^2y$
Q.35	The remainder obtain $(A) - 4$	ted when $t^4 - 3t^3 + t + 5$ i (B) 4	s divided by t – 1 is : (C) 1	(D) 5
Q.36	The product of two ex (A) $x^3 - x^2 + x$	expressions is $x^5 + x^3 + x$. (B) $x^3 + x^2 + x$	If one of them is $x^2 + x$ (C) $x^3 + x^2$	+ 1, find the other. (D) $x^3 - x^2$
Q.37	Find the value of k, so (A) 6	that $x - 3$ is a factor of (B) 3	$3x^2 - 11x + k.$ (C) 9	(D) 27
Q.38	In the expression $-7x^2$ (A) 7	$x^{2}y + 3xy + 3$, the coeffici (B) 7y	ent of x^2 is (C) $-7y$	(D)-7xy
Q.39	The sum of $a^2 + b^2$ and (A) $a^3 + b^3$	d $a + b$ is : (B) $2a^2 + 2b^2$	(C) $a^2 + b^2 + a + b$	(D) none of these
Q.40	Which of the following (A) 4ab, -3ba	g is a pair of unlike terms (B) 6a ³ b ³ c, -3cb ³ a ³	s? (C) 7ab, –ab	(D) $3a^2b$, $-5ab^2$
Q.41	When the expressions (A) $2x^2 - 6xy$	s $5x^2 - 8xy$ and $-3x^2 + 2$ (B) $8x^2 - 10xy$	xy are added, we get : (C) $-2x^2 + 6xy$	(D) $2x^2 + 6xy$
Q.42	When $12x + 10y$ is su (A) $25x + 3y$	btracted from $-13x + 7y$ (B) $-25x - 3y$	y, we get : (C) $-25x + 3y$	(D) $25x - 3y$

CH-5: ALGEBRAIC EXPRESSIONS AND IDENTITIES

Q.43	Subtract $1 + x^2 + y^2$ from (A) $-x^2 - 3y^2$	from the sum of $x^2 - y^2$ ar (B) $x^2 + y^2$	$\begin{array}{l} \text{id } 1 - x^2 - y^2. \\ \text{(C) } 3x^2 - 3y^2 \end{array}$	(D) 2
Q.44	Subtract the sum of $3x$ (A) $4y + 8$	x - 4y + z and $1 - 2x + y(B) 0$	from the sum of $3y + z$ (C) $2x + 2y + 2z + 10$	x + 6 and $x - 2y + 3$. (D) $2x + 2y + 2z$
Q.45	The value of $\left(\frac{1}{2}xyz\right)$	$(-4xy^2)$ is :		
	$(A) 2x^2y^2z^2$	$(B)-2x^2y^3z$	$(C) 2x^2y^3z^2$	(D)–2xyz
Q.46	The value of $x^{52} \times x^{-13}$ (A) 0	× 0 is: (B) x^{39}	(C) x ⁶⁵	$(D) - x^{39}$
Q.47	The value of $25x^3y^2z$ f (A) 600	For $x = 1$, $y = 2$ and $z = 3$ (B) 500	is : (C) 300	(D) none of these
Q.48	When the product of x (A) x^{60}	$5 \times x^2 \times x^6$ is expressed (B) x^{13}	as a monomial, we get : (C) $3x^{13}$	(D) 3x ⁶⁰
Q.49	The product of $-3x^2y$, 4 (A) $-9x^4y^4z$	$4xy^2$ and $2xyz$ is : (B) $24x^4y^4z$	$(C)-24x^4y^4z$	$(D) 3x^4y^4z$
Q.50	In its simplest form $2x$ (A) $7x - 5xy$	(1-3y) - x(y-3) is: (B) $5x - 7xy$	(C) $5x + 7xy$	(D) none of these
Q.51	Which of the following (A) $2x^2 + x + 15$	g is the same as $(x+3)$ (B) $-2x^2 + x + 15$	2x-5)? (C) $2x^2 + x - 15$	(D) $2x^2 - x + 15$
Q.52	The product $(y^4 - x^4)$ ((A) $y^6 + x^2y^4 - x^4y^2 - x^4y^2 - x^4y^2 - x^4y^2 - x^4y^2 + x^4y^2 +$	$y^2 + x^2$) is : x^6	(B) $x^6 - x^2y^4 + x^4y^2 - y^4$ (D) $y^6 + x^2y^4 - x^4y^2 + y^4$	76 X ⁶
Q.53	When $(7x^2 + 9x - x^{\circ})$ is (A) $105x^4 + 135x^3$ (C) $105x^4 + 135x^3 - 1$	s multiplied by 15x ² , we	get (B) $105x^4 + 135x^3 - 1$ (D) $105x^4 + 135x^3 + 1$	5x ² 5x ²
Q.54	$(2x+5y)^2$ is equal to : (A) $4x^2+25y^2+10xy$	(B) $4x^2 - 25y^2 + 20xy$	(C) $4x^2 + 25y^2 + 20xy$	(D) none of these
Q.55	$(1-2x)^2$ is equal to : (A) $1 + 4x^2 + 4x$	(B) $1 - 4x^2 - 4x$	$(C) -1 + 4x^2 - 4x$	(D) $1 + 4x^2 - 4x$
Q.56	On simplification $(2x - (A) 4x^2 - 7y^2)$	$(+3y)^2 - (2x - 3y)^2$, we get (B) $4x^2 - 6y^2$	et : (C) 24xy	(D) 4xy

Q.57	If $x - \frac{1}{x} = 8$, then the	value of $x^2 + \frac{1}{x^2}$ is :		
	(A) 66	(B) 64	(C) 62	(D) 68
Q.58	Using the identities, ev $\frac{5.27 \times 5.27 - 0.27 \times 0}{5.54}$	aluuate : .27		
	(A) 5	(B) $\frac{5}{5.54}$	(C) 25	(D) $\frac{25}{5.54}$
Q.59	Find the value of x, if: $12x = 50 \times 50 - 38 \times$ (A) 88	38 (B) 1	(C) 1900	(D) 44
Q.60	$If\left(x+\frac{1}{x}\right) = 16, \text{ find}$ (A) 254	the value of $x^2 + \frac{1}{x^2}$. (B) 258	(C) 256	(D) $256 - 2x$
Q.61	$If\left(x - \frac{1}{x}\right)^2 = 81, \text{ find}$	the value of $x^2 + \frac{1}{x^2}$.	(C) 250	(D) 230 2X
	(A) 9	(B) 81	(C) 83	(D) 72
Q.62	If $x + \frac{1}{x} = 4$, find the (A) 194	value of $x^4 + \frac{1}{x^4}$. (B) 196	(C) 190	(D) 184
Q.63	The product of $\left(\frac{9}{2}xy\right)$	$z - \frac{3}{4}xy^2z^3$ and $\left(\frac{-8}{27}\right)$	xyz) is :	
	(A) $\frac{4}{9}x^2y^2z^2 + \frac{2}{3}x^3y$	³ z ³	(B) $-\frac{4}{3}x^2y^2z^2 + \frac{2}{9}x^2$	$^{2}y^{3}z^{4}$
	(C) $\frac{4}{9}xy^2z^3 + \frac{2}{3}x^2y^3$	z^2	(D) $-\frac{4}{9}x^2y^3z^4 - \frac{8}{3}x^2$	y^2z^2
Q.64	(y-5)(y+3) is : (A) $y^2 - 8y - 15$	(B) $y^2 + 8y - 15$	(C) $y^2 - 2y - 15$	(D) $y^2 - 2y + 15$
Q.65	Square of $(2x^2 + 3y^2)$ (A) $4x^2 - 9y^2$	is: (B) $4x^4 + 9y^4 - 12x^2y^2$	2 (C) $4x^{4} + 9y^{4} + 12x^{2}y^{2}$	(D) $4x^4 + 9y^4$

Q.66	$\left(\frac{2}{3}x - \frac{1}{2}y\right)\left(\frac{2}{3}x + \frac{1}{2}y\right)$	$\left(\frac{1}{2}y\right)$ is :		
	(A) $\frac{4}{9}x^4 + \frac{1}{4}y^4$	(B) $\frac{4}{9}x^2 - \frac{1}{4}y^2$	(C) $\frac{4}{9}x^4 - \frac{1}{4}y^4$	(D) $\frac{4}{9}x^4 - \frac{1}{4}y^4 - \frac{2}{3}x^2y^2$
Q.67	(3x+4)(2x-7) is: (A) $6x^2-13x-28$	(B) $6x^2 + 13x - 28$	(C) $6x^2 + 29x - 28$	(D) $6x^2 - 29x - 28$
Q.68	$\left(\frac{1}{2}x^2 - y^2\right)\left(x^2 + \frac{1}{2}x^2\right)$	(y^2) is:		
	(A) $\frac{1}{2}x^4 - \frac{1}{2}y^4$		(B) $\frac{1}{2}x^4 - \frac{3}{4}x^2y^2 + \frac{3}{4}x^2 + \frac{3}{$	$\frac{1}{2}y^4$
	(C) $\frac{1}{2}x^4 + \frac{3}{4}x^2y^2 - \frac{3}{4}x^2y$	$\frac{1}{2}y^4$	(D) $\frac{1}{2}x^2 + \frac{3}{4}x^2y^2 - \frac{3}{4}x^2y$	$\frac{1}{2}y^2$
Q.69	When $a = 3, b = 2, th$ (A) 4	then $(a + b) (2a^2 - 3ab - b)$ (B) - 4	b ²) is : (C) 20	(D) – 20
Q.70	If the polynomials (px case is the same. The	$x^{3} + 4x^{2} + 8x - 4$) and ($x^{3} - 4$) and ($x^{3} - 4$) and ($x^{3} - 4$)	-4x + p) are divided by ((x-3) then the remainder in each
	(A)-1	(B)-2	(C) 1	(D) 2
Q.71	If $x^2 + \frac{1}{x^2} = 27$, then	value of $x + \frac{1}{x}$ is		
	(A) 9	(B) 29	(C) $\sqrt{29}$	(D) 3
Q.72	The quotient of divisio $(A)(x+3)$	on of $x^3 - 3x^2 + 5x - 3b^2$ (B) (x - 3)	$yx^2 - 2$ is (C) (x + 2)	(D) $(x-2)$
Q.73	Value of $\frac{991 \times 991 \times 991}{991 \times 991 - 991}$	$\frac{991+9\times9\times9}{991\times9+9\times9}$ is:		
	(A) 991	(B) 9	(C) 1000	(D) 991 × 9
Q.74	What should be adde	the d to $\frac{1}{x^2 - 7x + 12}$ to get	$t \frac{2}{x^2-6x+8} ?$	
	(A) $\frac{1}{x^2 + 5x - 16}$	(B) $\frac{1}{(x+3)(x+2)}$	(C) $\frac{4}{(x-3)(x+2)}$	(D) $\frac{1}{x^2 - 5x + 6}$

SECTION - D

MORE THAN ONE CORRECT

Q.1 Which of the following expressions are polynomials?

(A)
$$3x^2 - 4x + 5$$
 (B) $\frac{1}{2}x^2 - \frac{2}{3}x + \frac{5}{7}$ (C) $9x + 2$ (D) 2

Q.2 Which of the following expressions are not polynomials?

(A)
$$\frac{2}{x} + x^3 + 2$$
 (B) $\frac{3x^2 - x + 1}{x^2 + 1}$ (C) $\frac{3x + 2}{x^2}$ (D) $4x^3 + 5x^{10} - 9x^8 + 1$

Q.3 Which of the following expressions are binomials and trinomials?

(A)
$$\frac{3}{x^2}$$
, 5x
(B) $x + \frac{2}{x}$, $x^2 + 2x - 5$
(C) $x^2 + 2x - 5$, $9x^3 + 5x$
(D) $\frac{7x}{5} - \frac{9}{8}$, $3x^2 - 4x + 5$

Q.4 Which of the following terms are like terms?

(A) 8ab, $-9ab^2$ (B) $3x^2y$, $-4yx^2$ (C) $8xy^2$, $-11x^3y$ (D) $\frac{7}{4}xy$, $-\frac{5}{3}xy$

Q.5 Which of the following terms are unlike terms?

(A)
$$\frac{3}{4}a^{2}bx$$
, $\frac{3}{4}ab^{2}x$, $\frac{3}{4}abx^{2}$ (B) -9xy, 5
(C) -9x², -10x², 5x² (D) None of these

Q.6 If the given expression is a complete square, then which of the following formulae we use to factorise it? (A) $a^2 + 2ab + b^2 = (a + b)^2$ (B) $a^2 - 2ab + b^2 = (a - b)^2$ (C) $(a - b) (a + b) = (a^2 - b^2)$ (D) $(x + a) (x + b) = x^2 + (a + b) x + ab$

- Q.7 Which of the following polynomials are of degree 1 and 3?
 - (A) $-4 + 5x, -5 + 7t + 6t^3$ (B) $2a + \frac{9}{4}, 9x^2 + 6x - 5$ (C) $\frac{7}{2} + 4x^2 - 3x^3, \frac{-15}{4}$ (D) $5 + 4x, \frac{7}{2} + 4x^2 - 3x^3$

Q.8 In the term $\frac{25}{3}a^2bc^3$, which of the following is/are correct?

(A) Coefficient of $a^2 = \frac{25}{3}bc^3$ (B) Numerical coefficient $= \frac{25}{3}$ (C) Coefficient of $c^3 = \frac{25}{3}a^2b$ (D) Coefficient of $a^2bc^3 = \frac{25}{3}$

SECTION - E

\succ **MATCH THE COLUMN**

Q.1 Match the Column

	Column-I		Column-II
(A)	$a^{3} + b^{3}$	(p)	$a^2 + b^2 + 2ab$
(B)	$a^{3} - b^{3}$	(q)	$a^{3} - b^{3} - 3ab(a - b)$
(C)	$(a + b)^3$	(r)	$(a + b) (a^2 - ab + b^2)$
(D)	$(a - b)^3$	(s)	$a^{3} + b^{3} + 3ab(a + b)$
(E)	$(a + b)^2$	(t)	$(a-b)(a^2+ab+b^2)$
(F)	$(a - b)^2$	(u)	$a^2 + b^2 - 2ab$

Q.2 Match the Column

Column-I

Column-II

0.225 a4b4c

(A)	$\left(\frac{2}{3}a^2b\right)\left(\frac{-9}{4}ab^2\right)$	(p)	$\frac{-4}{9}p^5q^5$
-----	---	-----	----------------------

- $(-pq)(-2.3 p^2q^2)(-0.1 p^2q)$ **(B)**
- (r) $\frac{-3}{2}a^{3}b^{3}c^{2}$ (C) $(-1.5a^{2}b)(0.3ab^{2})(-0.5abc)$

(D)
$$\left(\frac{-3}{7}p^{3}q^{2}\right)\left(\frac{-14}{9}pq^{2}\right)\left(\frac{-2}{3}pq\right)$$
 (s) $-0.23 p^{5}q^{4}$

SECTION-F

(q)

\succ **Multiple Matching Questions**

Direction : Each question has statements (A, B, C, D) given in Column I and statements (p, q, r, s) in Column II. Any given statement in Column I can have correct matching with one or more statement(s) given in Column II. Match the entries in column I with entries in column II.

Q.1		Column-I		Column-II
	(A)	Monomials	(p)	$\sqrt{6ab} - \frac{a^2b}{5}$
	(B)	Binomials	(q)	$a^2 + 2ab + b^2$
	(C)	Trinomials	(r)	p^2q^3y
	(D)	Polynomials	(s)	$3xy + 4x^2y$
			(t) (u)	$\frac{3}{4}xy x^{2} + 3xy + y^{2} + 5x^{2}y + 4xy^{2}$

SECTION - G

Assertion & Reason

Direction : Each of these questions contains as Assertion followed by Reason. Read them carefully and answer the question on the basis of following options. Your have to select the one that best describes the two statements

- (A) If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (B) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
- (C) If both Assertion is correct but Reason is incorrect.
- (D) If both Assertion is incorrect but Reason is correct.
- Q.1 Assertion: Degree of the polynomial $5x^2 + 3x + 4$ is 2. Reason: The degree of a polynomial of one variable is the highest value of the exponent of the variable.
- Q.2Assertion :Binomials and Trinomials are multinomials.Reason :An algebraic expression having two or more terms is called a multinomial.
- Q.3 Assertion: In the expression $3x^2 + 7y^2 2xy + 4x^2 + 8xy + 9y^2$, $3x^2$, $4x^2$ are like terms, -2xy, 8xy are like terms and $7y^2$, $9y^2$ are like terms.
 - **Reason :** When the terms have same literal factors they are called unlike terms.
- Q.4 Assertion : We should multiplyy $(-7)^{-1}$ to $\frac{-7}{4}$ to get the product as 4^{-1} .

Reason : If $\frac{x}{y} = \left(\frac{5}{2}\right)^{-1} \times \left(\frac{8}{9}\right)^{0}$ then value of $\left(\frac{x}{y}\right)^{-2}$ is $\left(\frac{2}{5}\right)^{2}$.