CONCEPT APPLICATION LEVEL - II

SECTION-A

- FILL IN THE BLANKS :

Q. 1 Is 64000 a perfect cube? \qquad
Q. 2 The smallest natural number by which 9 must be multiplied to get a perfect cube is \qquad
Q. 3 The cube root of (-8000) is \qquad .
Q. 4 The cube root of $-(8 \times 27)$ is \qquad .
Q. 5 The cube root of (27×64) is \qquad
Q. 6 The value of $\sqrt[3]{4^{3} \times 6^{3}}$ is \qquad
Q. 7 The value of $\sqrt[3]{\frac{-8}{125}}$ is \qquad
Q. $8 \quad \sqrt[3]{\frac{3.43}{10}}=$ \qquad $-$
Q. $9 \sqrt[3]{a^{6} \times b^{9}}=$ \qquad .
Q. $10 \sqrt[3]{0.125}+\sqrt[3]{0.729}=$ \qquad .
Q. $11 \sqrt[3]{-\mathrm{m}^{6}}=$ \qquad .

SECTION - B

- Mark true (T) or false (F) for the following statements.
Q. 1 If n is a multiple of 2, then n^{3} is also a multiple of 2 .
Q. 2 If n is not a multiple of 2, then n^{3} is also not a multiple of 2 .
Q. 3 If n ends in 3 , then n^{3} ends in 7 .
Q. 4 If n ends in 5, then n^{3} ends in 25.
Q. 5 A perfect cube can end with even number of zeroes.

SECTION-C

- Multiple choice question with one correct answers
Q. 1 Cube of an odd natural number is
(A) an even natural number
(B) an odd natural number
(C) a prime number
(D) none of these
Q. 2 Cube of an even natural number is
(A) an even natural number
(B) an odd natural number
(C) a prime number
(D) none of these
Q. 3 Cube root of a negative number is
(A) a negative number
(B) a positive number
(C) sometimes negative, sometimes positive
(D) none of these
Q. 4 Cube root of the product of two negative numbers is
(A) a negative number
(B) a positive number
(C) sometimes negative, sometimes positive
(D) none of these
Q. 5 For a non-zero integer x, x^{3} is
(A) always less than x^{2}
(B) always greater than x^{2}
(C) sometimes less and sometimes greater than x^{2}
(D) none of these
Q. $6 \quad$ What is the value of $\sqrt[3]{0.000064}$?
(A) 0.4
(B) 0.08
(C) 0.04
(D) 0.16
Q. $7 \quad$ What is the value of $\sqrt[3]{\sqrt{441}+\sqrt{16}+\sqrt{4}}$
(A) 3
(B) 5
(C) 7
(D) None
Q. 8 The smallest number by which 3600 must be multiplied to make it a perfect cube
(A) 40
(B) 60
(C) 20
(D) 15
Q. $9 \quad \sqrt[3]{-1}=$?
(A) -1
(B) 1
(C) $-1 / 3$
(D) None of these
Q. $10 \sqrt[3]{\frac{72.9}{0.4096}}$ is equal to
(A) 0.5625
(B) 5.625
(C) 182
(D) 13.6
Q. 11 The digit in the unit's place in the cube root of 21952 is
(A) 8
(B) 6
(C) 4
(D) 2
Q. 12 If the cube root of 175616 is 56 , then the value of $\sqrt[3]{175.616}+\sqrt[3]{0.175616}+\sqrt[3]{0.000175616}$ is equal to
(A) 0.168
(B) $62-16$
(C) 6.216
(D) 6.116
Q. $13 \sqrt{\sqrt[3]{0.004096}}$ is equal to
(A) 4
(B) 0.4
(C) 0.04
(D) 0.004
Q. 14 The value of $\sqrt[3]{(-343) \times(512)}$ is
(A) 56
(B) -56
(C) 65
(D) -65
Q. 15 The volumes of two cubes are in the ratio of $343: 1331$, the ratio of their edges is
(A) $7: 10$
(B) $7: 11$
(C) $7: 12$
(D) None of these
Q. 16 The smallest natural number by which 32 must be multiplied to get a perfect cube is
(A) 16
(B) 4
(C) 2
(D) 8
Q. 17 The smallest natural number by which 32 must be divided to get a perfect cube is
(A) 16
(B) 4
(C) 2
(D) 8
Q. $18 \quad \sqrt[3]{8 \times 64}=$?
(A) 12
(B) 16
(C) 8
(D) 24
Q. 19 If the volume of a cube is $512 \mathrm{~cm}^{3}$, then the length of its side is
(A) 8 cm
(B) 9 cm
(C) 7 cm
(D) 6 cm
Q. 20 The cube root of $\sqrt[3]{-125}$ is
(A) 5
(B) -5
(C) 25
(D) None of these
Q. 21 The value of $\sqrt[3]{-2^{3}}$ is
(A) -2^{3}
(B) -2
(C) 2^{3}
(D) 2
Q. 22 Which of the following statements is true?
(A) Cube of an even number is odd
(B) Cube of a number ending with 3 ends with 9 .
(C) Cube of a number ending with 0 has three 0 's at its extreme right
(D) Cube of a 2-digit number may be a three digit number
Q. 23 The cube of 70 is
(A) 49000
(B) 490000
(C) 343000
(D) 34300
Q. 24 The cube of (-5) is
(A) 25
(B) -125
(C) 125
(D) -25
Q. 25 The cube of $\left(2-\frac{1}{3}\right)$ is
(A) $8-\frac{1}{27}$
(B) $\frac{125}{27}$
(C) $\frac{25}{9}$
(D) $\frac{343}{27}$
Q. 26 The cube root of (-0.000001) is
(A) -0.1
(B) -0.01
(C) -0.001
(D) -0.0001
Q. 27 The value of $\sqrt[3]{343} \times \sqrt[3]{-27}$ is
(A) 21
(B) -19
(C) 19
(D) -21
Q. $28 \sqrt[3]{\frac{-\mathrm{a}^{6} \times \mathrm{b}^{3} \times \mathrm{c}^{21}}{\mathrm{c}^{9} \times \mathrm{a}^{12}}}=$
(A) $\frac{-b c^{3}}{a^{2}}$
(B) $\frac{b c^{4}}{a^{2}}$
(C) $\frac{-a b^{4}}{c^{2}}$
(D) $\frac{-b c^{4}}{a^{2}}$
Q. 29 The cube of the number p is 16 times the number. Then find p where $\mathrm{p} \neq 0$ and $\mathrm{p} \neq-4$.
(A) 4
(B) 3
(C) 8
(D) 2
Q. 30 The cube of a number x is nine times of x, then find $x, x \neq 0$ and $x \neq-3$
(A) 8
(B) 2
(C) 4
(D) 3
Q. 31 The digit in the units place for the cube of the number 1234568 is \qquad .
(A) 8
(B) 2
(C) 4
(D) 6
Q. 32 Which of the following is not a perfect square?
(A) 16384
(B) 23857
(C) 18496
(D) 11025
Q. $33 \sqrt[3]{\frac{3^{6} \times 4^{3} \times 2^{6}}{8^{9} \times 2^{3}}}=$ \qquad .
(A) $\frac{3}{8}$
(B) $\frac{9}{8}$
(C) $\frac{3}{64}$
(D) $\frac{9}{64}$
Q. 34 The cube root of the number 10648 is \qquad .
(A) 42
(B) 38
(C) 28
(D) 22
Q. 35 The cube of a number ending in 3, ends in \qquad .
(A) 3
(B) 7
(C) 9
(D) Cannot say
Q. 36 Find the value of $\sqrt[3]{6075} \times \sqrt[3]{88935} \times \sqrt[3]{9625}$.
(A) 17355
(B) 17255
(C) 17315
(D) 17325

