CONCEPT APPLICATION LEVEL - II

SECTION-A

$>\quad$ Fill in the blanks

Q. $1 \quad$ Divide $\left(x^{2}+\frac{1}{x^{2}}+2\right)$ by $\left(x+\frac{1}{x}\right)$
Q. 2 Express $10 \mathrm{xy}(\mathrm{x}+3)$ as irreducible factor form \qquad
Q. 3 Divide $-15 m^{2} n$ by -5 mn \qquad
Q. 4 Divide $\mathrm{a}^{2} \mathrm{x}^{2}-25$ by $(\mathrm{ax}+5)$ \qquad
Q. 5 Factorise: $\mathrm{x}^{4}-1$.
Q. 6 The process of writing a given expression as the product of two or more factors is called
\qquad Factorization.
Q. 7 If ' a ' is any rational number, then $\mathrm{a} \times \mathrm{a} \times \mathrm{a} \times$ \qquad m times.
Q. $8 \frac{9 x^{2}-16}{6 x+8}$ is written in its lowest terms as $=$ \qquad .
Q. $9 \quad 4 x^{2}+6 x y=$
Q. $10 x^{2}+11 x+24=$ \qquad
Q. $11 x^{2}-11 x+28=$ \qquad .
Q. $12 \quad 4 x^{2}-169 y^{2}=$ \qquad
Q. $134 x^{2}+28 x+49=$ \qquad .

SECTION - B

> Multiple Choice Questions

Q. 1 Which of the following are the factor of $1-x^{2}$?
(A) $(x+1)(x-1)$
(B) $(1-x)(1+x)$
(C) $(1-x)(1-x)$
(D) $(1-x)(1-x)$
Q. 2 Which of the following is the common factor of:

5 xy , 3pqr and 40 xyz ?
(A) 5
(B) 0
(C) $x y$
(D) 1
Q. 3 Which of the following is quotient obtained on dividing $-18 \mathrm{xyz}^{2}$ by -3 xz ?
(A) $6 y z$
(B) $-6 y z$
(C) $6 x y^{2}$
(D) $6 x y$
Q. 4 Which of the following is quotient obtained on dividing $\left(x^{2}-b\right)(x-a)$ by $-(x-a)$?
(A) $\left(x^{2}-b\right)$
(B) $\frac{-\left(x^{2}-b\right)}{(x-a)}$
(C) $-\left(x^{2}-b\right)$
(D) $-(x+a)$
Q. 5 Which of the following is true ?
(A) $a b-a-b+1=(1+a)(1-b)$
(B) $\mathrm{ab}-\mathrm{a}-\mathrm{b}+1=(\mathrm{a}-1)(\mathrm{b}-1)$
(C) $a b-a-b+1=(1-a)(b-1)$
(D) $a b-a-b+1=(a-1)(1-b)$
Q. 6 Which of the following is equal to $x^{3}-225 x$
(A) $x(1-15 x)(1+15 x)$
(B) $x(x-15)(x+15)$
(C) $x(1-15 x)(1-15 x)$
(D) $x(1+15 x)(1-15 x)$
Q. 7 Which of the following is the quotient when $44 x^{2}\left(x^{2}-5 x-24\right)$ is divided by $22 x(x-8)$:
(A) $x(x+3)$
(B) $2 \mathrm{x}(\mathrm{x}+3)$
(C) $2(x-3)$
(D) $x(x-3)$
Q. $8 \quad$ By which of the following $\mathrm{a}^{4}-\mathrm{b}^{4}$ be divided to get quotient $\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)(\mathrm{a}-\mathrm{b})$ and, remainder as $0 .:$
(A) $a^{2}+b^{2}$
(B) $a-b$
(C) $a+b$
(D) $a^{2}-b^{2}$
Q. $9 \quad$ Factorise: $\left(5 x-\frac{1}{x}\right)^{2}+5\left(5 x-\frac{1}{x}\right)+6$
(A) $\left(5 \mathrm{x}-\frac{1}{\mathrm{x}}+3\right)\left(5 \mathrm{x}-\frac{1}{\mathrm{x}}+2\right)$
(B) $\left(5 \mathrm{x}-\frac{1}{\mathrm{x}}-3\right)\left(5 \mathrm{x}-\frac{1}{\mathrm{x}}-2\right)$
(C) $\left(5 x-\frac{1}{x}+3\right)\left(5 x-\frac{1}{x}-2\right)$
(D) $\left(5 x-\frac{1}{x}-3\right)\left(5 x-\frac{1}{x}+2\right)$
Q. 10 Factors of $\left(x^{3}+\frac{1}{x^{3}}-2\right)$ are :
(A) $\left(x+\frac{1}{x}+1\right)\left(x^{2}+\frac{1}{x^{2}}+\frac{1}{x}+1\right)$
(B) $\left(\mathrm{x}+\frac{1}{\mathrm{x}}-1\right)\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}-\frac{1}{\mathrm{x}}+\mathrm{x}\right)$
(C) $\left(x+\frac{1}{x}-1\right)\left(x^{2}+\frac{1}{x^{2}}-\frac{1}{x}+x\right)$
(D) None of these
Q. $11 \quad\left(\mathrm{x}^{51}-1\right)$ is always divisible by
(A) $(x+1)$
(B) $(\mathrm{x}-1)$
(C) $(x+2)$
(D) $(x-2)$
Q. 12 The factors of $y^{2}+2+\frac{1}{y^{2}}$ are :
(A) $\left(y+\frac{1}{y}\right)^{2}$
(B) $\left(y-\frac{1}{y}\right)^{2}$
(C) $\left(y+\frac{1}{y}+1\right)^{2}$
(D) $\left(y+\frac{1}{y}-1\right)^{2}$
Q. 13 When $16 x^{2}-9 y^{2}$ is resolved into factors, we get
(A) $(8 x-3 y)^{2}$
(B) $(4 x-3 y)(4 x+3 y)$
(C) $(4 x-3 y)^{2}$
(D) $(3 x-4 y)(3 x+4 y)$
Q. 14 The factors of $y^{2}+7 y+10$ are
(A) $(\mathrm{y}-5)(\mathrm{y}-2)$
(B) $(y-5)(y+2)$
(C) $(y+5)(y+2)$
(D) $(y+5)(y-2)$
Q. 15 Which of the following is a common factor is $15 \mathrm{x}^{2}$ and $18 \mathrm{xy}{ }^{2}$?
(A) 5
(B) $3 x$
(C) 5 x
(D) 6
Q. 16 Which of the following is the common factor of $(2 x-3)$ and $(4 x-6)$?
(A) 2
(B) 3
(C) $2 x-3$
(D) $4 x-6$
Q. $1755 \mathrm{xy}^{2} \div 11 \mathrm{xy}=$ \qquad
(A) 5 y
(B) 5 x
(C) $5 x y^{2}$
(D) $5 x y$
Q. $18 \quad \frac{5 \mathrm{x}+10}{2}=$ \qquad
(A) $5 x+5$
(B) $\frac{5 x}{2}+10$
(C) $\frac{5 x}{2}+\frac{5}{2}$
(D) $\frac{5 x}{2}+5$
Q. 19 Which of the following is/are the factors(s) of $25 x^{2}-36 y^{2}$?
(A) $5 x+6 y$
(B) $5 x-6 y$
(C) $25 x^{2}-36 y^{2}$
(D) All of these
Q. $20 \quad \mathrm{ac}+\mathrm{ad}+\mathrm{bc}+\mathrm{bd}=$ \qquad
(A) $(a+b)(b+d)$
(B) $(a+d)(b+c)$
(C) $(a+b)(c+d)$
(D) None of these
Q. 21 Find the value of $9 x^{2}+3 x+1$, when $x=-\frac{1}{3}$
(A) 1
(B) 2
(C) 3
(D) 4
Q. 22 Factorize: $4 \mathrm{t}^{4}+4 \mathrm{t}^{2}+1$
(A) $\left(2 t^{2}+1\right)^{2}$
(B) $(2 t+2)^{2}$
(C) $\left(2 t^{2}-1\right)^{2}$
(D) $(4 t+4)^{2}$
Q. 23 Factorize: $x^{2} y+x y^{2}+3 x+3 y$
(A) $(x y+3)(x+y)$
(B) $(x y+3)(3 x+y)$
(C) $(x+2 y)(2 x+y)$
(D) $(x y+3)(y+3 x)$
Q. 24 Divide $x^{2}-9 x+14$ by $x-2$
(A) $x-7$
(B) $x-8$
(C) $x-5$
(D) $\mathrm{x}-2$
Q. 25 Divide $4 \mathrm{p}^{2} \mathrm{q}^{4} \mathrm{r}^{3} \div 12$ pqr.
(A) $\frac{1}{3} \mathrm{pq}^{3} \mathrm{r}^{2}$
(B) pqr
(C) $p^{2} q^{3} r^{2}$
(D) $3 \mathrm{pq}^{3} \mathrm{r}^{2}$
Q. 26 Divide $4\left(12 x^{4}-25 x^{3}-7 x^{2}\right)$ by $8 \mathrm{x}(4 \mathrm{x}+1)$
(A) $x(4 x+1)$
(B) $\frac{x}{2}(3 x-7)$
(C) $\frac{x(x+3)}{2}$
(D) None
Q. 27 Divide $3 x^{3}+7 x^{2}+2 x-2$ by $x+1$ and find the quotient.
(A) $(x+3)(x+4)$
(B) $3 x^{2}+4 x-2$
(C) $x^{2}+5 x-6$
(D) None

SECTION-C

> Match the Column :

Q. 1 Match the Column

ColumnA

(A) $x^{4}+x^{2} y^{2}+y^{4}$
(B) $1-x^{2}+2 x y-y^{2}$
(C) $x^{3}+x^{2}+x+1$
(p) $\quad(x+1)\left(x^{2}+1\right)$
(q) $(1+x-y)(1-x+y)$
(r) $\quad\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$
Q. 2 Match the Column

Column-A
(A) $\left(\frac{2}{3} a^{2} b\right)\left(\frac{-9}{4} a^{2}\right)$
(B) $\quad(-\mathrm{pq})\left(-2.3 \mathrm{p}^{2} \mathrm{q}^{2}\right)$
(C) $\quad\left(-1.5 \mathrm{a}^{2} \mathrm{~b}\right)\left(0.3 \mathrm{ab}^{2}\right)$
(D) $\quad\left(\frac{-3}{7} \mathrm{p}^{3} \mathrm{q}^{2}\right)\left(\frac{-14}{9} \mathrm{pq}^{2}\right)\left(\frac{-2}{3} \mathrm{pq}\right)$
(s) $\quad-2.3 \mathrm{p}^{3} \mathrm{q}^{3}$

