CONCEPT APPLICATION LEVEL - I [NCERT Qustions

EXERCISE - 1

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral ABCD
$\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{BC}=5.5 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{AD}=6 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$
(ii) Quadrilateral JUMP
$\mathrm{JU}=3.5 \mathrm{~cm}, \mathrm{UM}=\mathbf{4} \mathrm{cm}, \mathrm{MP}=5 \mathrm{~cm}, \mathrm{PJ}=4.5 \mathrm{~cm}, \mathrm{PU}=6.5 \mathrm{~cm}$
(iii) Parallelogram MORE
$\mathrm{OR}=6 \mathrm{~cm}, \mathrm{RE}=4.5 \mathrm{~cm}, \mathrm{EO}=7.5 \mathrm{~cm}$
(iv) Rhombus BEST
$\mathrm{BE}=4.5 \mathrm{~cm}, \mathrm{ET}=6 \mathrm{~cm}$
Sol. (i) Steps of construction

1. Draw $\mathrm{AB}=4.5 \mathrm{~cm}$
2. With A as centre and radius $\mathrm{AC}=7 \mathrm{~cm}$, draw an arc.
3. With B as centre and radius $\mathrm{BC}=5.5 \mathrm{~cm}$, draw another arc to the intersect the arc of step (2) at C.
4. With A as centre and radius $\mathrm{AD}=6 \mathrm{~cm}$, draw an arc on the side of $A C$, opposite to that of B.
5. With C as centre and radius $\mathrm{CD}=4 \mathrm{~cm}$, draw another arc to intersect the arc of step (4) at D.

6. Join BC, CD, DA and AC.

Then, ABCD is the required quadrilateral.
(ii) Steps of construction

1. Draw JU $=3.5 \mathrm{~cm}$
2. With J as centre and radius $\mathrm{JP}=4.5 \mathrm{~cm}$, draw an arc.
3. With U as centre and radius $U P=6.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 2 at P .
4. With U as centre and radius $\mathrm{UM}=4 \mathrm{~cm}$, draw an arc on the side of PU opposite to that of J .

5. With P as centre and radius $\mathrm{PM}=5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at M .
6. Join UM, MP, PJ and UP.

Then, JUMP is the required quadrilateral.
(iii) Steps of Construction

1. Draw $\mathrm{MO}=4.5 \mathrm{~cm}$
2. With M as centre and radius $\mathrm{ME}=6 \mathrm{~cm}$, draw an arc.
3. With O as centre radius $\mathrm{OE}=7.5 \mathrm{~cm}$, draw an arc to intersect the arc of step 2 at E .
4. With O as centre and radius $\mathrm{OR}=6 \mathrm{~cm}$, draw an arc on the side of OE opposite to that of M.
5. With E as centre and radius $E R=4.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at the
 E.
6. Join OR, RE, EM and EO.

Then, MORE is the required parallelogram.

(iv) Steps of Construction

1. Draw $\mathrm{BE}=4.5 \mathrm{~cm}$
2. With B as centre and BT $=4.5 \mathrm{~cm}$, draw an arc.
3. With E as centre and radius $\mathrm{ET}=6 \mathrm{~cm}$, draw another arc to intersect arc of step 2 at T .
4. With E as centre and radius $\mathrm{ES}=4.5 \mathrm{~cm}$, draw
 an arc on the side of ET opposite to that of B.
5. With T as centre and radius $\mathrm{TS}=4.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at S.
6. Join ES, ST, TB and TE.

Then, BEST is the required rhombus.

EXERCISE - 2

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral LIFT
$L I=4 \mathrm{~cm}, I F=3 \mathrm{~cm}, T L=2.5 \mathrm{~cm}, L F=4.5 \mathrm{~cm}, I T=4 \mathrm{~cm}$.
(ii) Quadrilateral GOLD
$\mathrm{OL}=7.5 \mathrm{~cm}, \mathrm{GL}=6 \mathrm{~cm}, \mathrm{GD}=6 \mathrm{~cm}, \mathrm{LD}=5 \mathrm{~cm}, \mathrm{OD}=10 \mathrm{~cm}$
(iii) Rhombus BEND

$$
\mathrm{BN}=5.6 \mathrm{~cm}, \mathrm{DE}=6.5 \mathrm{~cm}
$$

Sol. (i) Steps of construction

1. Draw $\mathrm{LI}=4 \mathrm{~cm}$.
2. With L as centre and radius $\mathrm{LT}=2.5 \mathrm{~cm}$, draw an arc.
3. With I as centre and radius $\mathrm{IT}=4 \mathrm{~cm}$, draw another arc to intersect the arc of step 2 at T .
4. With I as centre and radius $\mathrm{IF}=3 \mathrm{~cm}$, draw an arc.
5. With Las centre and radius $\mathrm{LF}=4.5 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at F .
6. Join IF, FT, TL, LF and IT.

Then, LIFT the required quadrilateral.

(ii) Steps of construction

1. Draw LD=5cm.
2. With L as centre and radius $\mathrm{LG}=6 \mathrm{~cm}$, draw an arc.
3. With D as centre and radius $\mathrm{DG}=6 \mathrm{~cm}$, draw another arc to intersect the arc of step 2 at G.
4. With Las centre and radius $\mathrm{LO}=7.5 \mathrm{~cm}$, draw an arc.
5. With D as centre and radius $\mathrm{DO}=10 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at O.

6. Join DG, GO, OL, LG and DO.

Then GOLD is the required quadrilateral.

(iii) Steps of Construction

1. Draw $\mathrm{DE}=6.5 \mathrm{~cm}$.
2. Draw perpendicular bisector PQ of DE. Let M be the mid-point of DE.
3. $\operatorname{Cut~MN}=\frac{1}{2} \times 5.6 \mathrm{~cm}=2.8 \mathrm{~cm}$ from MP.
4. $\operatorname{Cut} \mathrm{MB}=\frac{1}{2} \times 5.6 \mathrm{~cm}=2.8 \mathrm{~cm}$ from MQ.
5. Join DN, NE, EB and BD.

Then, BEND is the required rhombus.

EXERCISE - 3

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral MORE
$\mathrm{MO}=6 \mathrm{~cm}, \mathrm{OR}=4.5 \mathrm{~cm}, \angle \mathrm{M}=60^{\circ}, \angle \mathrm{O}=105^{\circ}, \angle \mathrm{R}=105^{\circ}$
(ii) Quadrilateral PLAN
$\mathrm{PL}=\mathbf{4} \mathrm{cm}, \mathrm{LA}=6.5 \mathrm{~cm}, \angle \mathrm{P}=90^{\circ}, \angle \mathrm{A}=110^{\circ}, \angle \mathrm{N}=85^{\circ}$
(iii) Parallelogram HEAR
$\mathrm{HE}=5 \mathrm{~cm}, \mathrm{EA}=6 \mathrm{~cm}, \angle \mathrm{R}=85^{\circ}$
(iv) Rectangle OKAY
$O K=7 \mathrm{~cm}, K A=5 \mathrm{~cm}$
Sol. (i) Steps of construction

1. Draw $\mathrm{MO}=6 \mathrm{~cm}$.
2. At O , draw ray OX such that $\angle \mathrm{MOX}=105^{\circ}$
3. $\mathrm{Cut} \mathrm{OR}=4.5 \mathrm{~cm}$ from ray OX .
4. At M, draw ray MY such that $\angle \mathrm{OMY}=60^{\circ}$
5. At R, draw ray RZ such that $\angle \mathrm{ORZ}=105^{\circ}$ Let the rays. MY and RZ meet at E .
Then, MORE is the required quadrilateral.

(ii) Steps of construction
6. Draw PL=4cm.
7. At L , draw ray LX such that $\angle \mathrm{PLX}=75^{\circ}$. By Angle-sum property of quadrilateral, $\angle \mathrm{P}+\angle \mathrm{A}+\angle \mathrm{N}+\angle \mathrm{L}=360^{\circ}$
$\Rightarrow \quad 90^{\circ}+110^{\circ}+85^{\circ}+\angle \mathrm{L}=360^{\circ}$
$\Rightarrow \quad 285^{\circ}+\angle \mathrm{L}=360^{\circ}$
$\Rightarrow \quad \angle \mathrm{L}=360^{\circ}-285^{\circ}=75^{\circ}$
8. Cut LA $=6.5 \mathrm{~cm}$ from ray LX .
9. At A, draw ray AY such that $\angle \mathrm{LAY}=110^{\circ}$.
10. At P , draw ray PZ such that $\angle \mathrm{LPZ}=90^{\circ}$. Let the rays AY and PZ meet at N .

Then, PLAN is the required quadrilateral.
(iii) Steps of construction

1. Draw $\mathrm{HE}=5 \mathrm{~cm}$.
2. At E, draw ray EX such that $\angle \mathrm{HEX}=85^{\circ}$. Opposite angles of a parallelogram are equal.
3. Cut $E A=6 \mathrm{~cm}$ from the ray $E X$.
4. With A as centre and radius $\mathrm{AR}=5 \mathrm{~cm}$, draw an arc.
5. With H as centre and radius $\mathrm{HR}=6 \mathrm{~cm}$, draw another arc to intersect the arc of step 4 at R .
6. Join AR and HR.

Then, HEAR is the required parallelogram.

(iv) Steps of construction

1. Draw $\mathrm{OK}=7 \mathrm{~cm}$.
2. At K , draw ray KX such that $\angle \mathrm{OKX}=90^{\circ}$.
3. Cut KA $=5 \mathrm{~cm}$ from ray KX .
4. Taking A as centre and radius $\mathrm{AY}=7 \mathrm{~cm}$, draw an arc.
5. Taking O as centre and radius $\mathrm{OY}=5 \mathrm{~cm}$, draw
 another arc to intersect the arc of step 4 at Y .
6. Join AY and OY.

Then OKAY is the required rectangle.

EXERCISE - 4

Q. 1 Construct the following quadrilaterals:

(i) Quadrilateral DEAR

$$
\mathrm{DE}=4 \mathrm{~cm}, \mathrm{EA}=5 \mathrm{~cm}, \mathrm{AR}=4.5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}, \angle \mathrm{A}=90^{\circ}
$$

(ii) Quadrilateral TRUE

[Sol. (i) Steps of construction

1. Draw $\mathrm{DE}=4 \mathrm{~cm}$.
2. AtE draw ray EX such that $\angle \mathrm{DEX}=60^{\circ}$.
3. From ray $E X$, cut $E A=5 \mathrm{~cm}$.
4. At A, draw ray $A Y$ such that $\angle \mathrm{EAY}=90^{\circ}$

$5 \quad$ Cut $\mathrm{AR}=4.5 \mathrm{~cm}$ from ray AY .
5. Join RD.

Then, DEAR is the required quadrilateral.
(ii) Steps of construction

1. Draw TR $=3.5 \mathrm{~cm}$.
2. At R, draw ray $R X$ such that $\angle T R X=75^{\circ}$.
3. $\operatorname{Cut} R U=3 \mathrm{~cm}$ from ray RX .
4. At U, draw ray $U Y$ such that $\angle R U Y=120^{\circ}$.
5. $\operatorname{Cut} U E=4 \mathrm{~cm}$ from ray $U Y$.

6. JoinET.

Then, TRUE is the required quadrilateral.

EXERCISE - 5

Q. 1 Draw the following:

1. The square READ with $R E=5.1 \mathrm{~cm}$.
2. A rhombus where diagonals are 5.2 cm and 6.4 cm long.
3. A rectangle with adjacent sides of lengths 5 cm and 4 cm .
4. A parallelogram $O K A Y$ where $O K=5.5 \mathrm{~cm}$ and $K A=4.2 \mathrm{~cm}$.

Sol. (1) Steps of construction

1. Draw $\mathrm{RE}=5.1 \mathrm{~cm}$.
2. At R, draw a ray $R X$ such that $\angle E R X=90^{\circ}$.
3. From ray RX , cut $\mathrm{RD}=5.1 \mathrm{~cm}$.
4. At E , draw a ray EY such that $\angle \mathrm{REY}=90^{\circ}$.
5. From ray EY, cut $\mathrm{EA}=5.1 \mathrm{~cm}$.
6. Join AD.

Then, READ is the required square.

(2) Steps of Construction

1. Draw $\mathrm{AC}=5.2 \mathrm{~cm}$.
2. Construct its perpendicular bisector.Let them meet at O.
3. Cut off $\frac{6.4}{2}=3.2 \mathrm{~cm}$ lengths on of the drawn
 bisector, we get B and D .
4. Join AB, BC, CD and DA.

Then, ABCD is the required rhombus.
(3) Steps of Construction

1. Draw $\mathrm{PQ}=5 \mathrm{~cm}$.
2. At Q , draw a ray QX such that $\angle \mathrm{PQX}=90^{\circ}$.
3. From ray QX , cut $\mathrm{QR}=4 \mathrm{~cm}$.
4. Through P , draw a ray PY parallel to QR .
5. Through R , draw a ray RZ parallel to QP to meet the ray of step 4 at S.
Then, PQRS the required rectangle.
(4) Steps of Construction
6. Draw $\mathrm{OK}=5.5 \mathrm{~cm}$.
7. At K, draw a ray $K X$.
8. From ray KX , cut $\mathrm{KA}=4.2 \mathrm{~cm}$.
9. Through A, draw a ray AT parallel to KO.
10. Through O, draw a ray OZ parallel to KA to

cut the ray of step 4 at Y.
Then, OKAY is the required parallelogram.

TRYTHESE

Q. 1 Arshad has five measurements of a quadrilateral ABCD . These are $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~A}=50^{\circ}$, $A C=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$. Can he construct a unique quadrilateral?
Give reasons for your answer.
Sol. We cannot construct a unique quadrilateral because
(i) We can construct $\triangle \mathrm{ABD}$ but not $\triangle \mathrm{BCD}$
(ii) Neither we can construct $\triangle \mathrm{ACD}$ not $\triangle \mathrm{ABC}$.
Q. 2 (i) We saw that 5 measurements of a quadrilateral can determine a quadrilateral uniquely. Do you think any five measurements of the quadrilateral can do this?
(ii) Can you draw a parallelogram BATS where $\mathrm{BA}=5 \mathrm{~cm}, \mathrm{AT}=6 \mathrm{~cm}$ and $\mathrm{AS}=6.5 \mathrm{~cm}$? Why?
(iii) Can you draw a rhombus ZEAL where $\mathrm{ZE}=3.5 \mathrm{~cm}$, diagonal $\mathrm{EL}=5 \mathrm{~cm}$? Why?
(iv) A student attempted to draw a quadrilateral PLAY where $P L=3 \mathrm{~cm}, L A=4 \mathrm{~cm}$, $A Y=4.5 \mathrm{~cm}, P Y=2 \mathrm{~cm}$ and $\mathrm{LY}=6 \mathrm{~cm}$, but could not draw it. What is the reason?
Sol. (i) No! Any five measurements cannot determine a quadrilateral uniquely. To determine a quadrilateral uniquely, we require any one of the following sets of measurements.
(a) four sides and one diagonal.
(b) two sides and three diagonals.
(c) two adjacent sides and three angles.
(d) three sides and two included angles.
(ii) Yes, we can draw a parallelogram BATS, where $\mathrm{BA}=5 \mathrm{~cm}, \mathrm{AT}=6 \mathrm{~cm}$ and $\mathrm{AS}=6.5 \mathrm{~cm}$ because the opposite sides of a parallelogram are equal in length.
(iii) Yes! we can draw a rhombus ZEAL because all the four sides of a rhombus are equal in length.
(iv) The students could not draw it because PL $+\mathrm{PY}<\mathrm{LY}$. Actually the sum of the lengths of any two sides of a triangle must always be greater than the length of the third side.
Q. 3 How will you construct a rectangle PQRS if you know only the lengths PQ and QR?

Sol. Steps of construction

1. Draw PQ of given length.
2. At Q , draw a ray QX such that $\angle \mathrm{PQX}=90^{\circ}$.
3. From ray QX , cut QR of given length.
4. Through P, draw a ray PY parallel to QR.
5. Through R, draw a ray RZ parallel to QP to meet the ray of step 4 at S.
Then, PQRS the required rectangle.

Q. 4 Construct the kite EASY, if $A Y=8 \mathrm{~cm}, E Y=4 \mathrm{~cm}$ and $S Y=6 \mathrm{~cm}$. Which properties of the kite did you use in the process.
Sol. Kite EASY cannot be constructed with the given measurements as a kite has two pairs of equal consecutive sides. Here,
$\mathrm{AE}=\mathrm{EY}=4 \mathrm{~cm}$
$\mathrm{AY}=8 \mathrm{~cm}$
$\therefore \mathrm{AE}+\mathrm{EY}=8 \mathrm{~cm}=\mathrm{AY}$
which is not possible as the sum of the lengths of any two sides of a triangle must be greater than the third side.

CONCEPT ApPLCATION LEVEL-II

Q. 1 Construct a quadrilateral ABCD having given $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4.5 \mathrm{~cm}$, $\mathrm{DA}=5 \mathrm{~cm}$ and $\angle \mathrm{B}=60^{\circ}$.

Sol. Steps of Construction:

1. $\operatorname{Draw~} \mathrm{AB}=3.5 \mathrm{~cm}$.
2. At B draw $\angle \mathrm{ABY}=60^{\circ}$.
3. Cut off from $B Y$, a segment $B C=4 \mathrm{~cm}$
4. With A as centre and radius 5 cm draw an arc.

5. With C as centre and radius 4.5 cm draw an arc cutting the first arc at D .
6. Join A to D and also C to D . Then ABCD is the required quadrilateral.
Q. 2 Construct a quadrilateral ABCD , given $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}, \mathrm{AD}=3.5 \mathrm{~cm}$, diagonal $A C=5 \mathrm{~cm}$ and diagonal $\mathrm{BD}=6 \mathrm{~cm}$.
Sol. Steps of Construction:
7. Draw $\mathrm{BC}=3 \mathrm{~cm}$.
8. With B as centre and radius 4 cm draw an arc.
9. With C as centre and radius 5 cm draw an arc cutting the first arc at A .
10. Join B to A and also C to A .
11. With A as centre and radius 3.5 cm draw an arc.

12. with B as centre and radius 6 cm draw an arc cutting the first arc at D.
13. Join C to D, B to D and also A to D.

Then ABCD is the required quadrilateral.
Q. 3 Construct a quadrilateral $A B C D$, given $A B=5 \mathrm{~cm}, B C=4 \mathrm{~cm}, \angle B=60^{\circ}, \angle A=90^{\circ}$ and $\angle \mathrm{C}=135^{\circ}$.

Sol. Steps of Construction:

1. Draw $\mathrm{AB}=5 \mathrm{~cm}$.
2. $A t B$ draw $\angle \mathrm{ABY}=60^{\circ}$
3. From BY cut off $B C=4 \mathrm{~cm}$
4. At A draw $\angle \mathrm{BAX}=90^{\circ}$.
5. \quad At C draw $\angle \mathrm{BCD}=135^{\circ}$, so
that its arm CD cuts AX at D .

Then ABCD is the required quadrilateral.
Q. 4 Construct a parallelogram ABCD , given that $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=5.5 \mathrm{~cm}$ and $\angle \mathrm{B}=75^{\circ}$.

Sol. Steps of Construction:

1. Draw $\mathrm{BC}=5.5 \mathrm{~cm}$.
2. At B draw $\angle \mathrm{CBY}=75^{\circ}$.
3. From BY, cut off $B A=3.5 \mathrm{~cm}$.
4. With A as centre and radius $5.5 . \mathrm{cm}$ draw an arc.
5. With C as centre and radius 3.5 cm draw another arc cutting the first arc at D .
6. Join A to D and C to D . Then ABCD is the required parallelogram.
Q. 5 Construct a parallelogram ABCD , given that $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$ and diagonal $\mathrm{BD}=6.5 \mathrm{~cm}$.
Sol. Steps of Construction:
7. Draw $\mathrm{AB}=5.5 \mathrm{~cm}$.
8. With A as centre and radius 4 cm draw an arc.
9. With B as centre and radius 6.5 cm draw another arc cutting the first arc at D.
10. Joint A to D
11. Now with D as centre and radius $5.5 \mathrm{~cm}(=\mathrm{AB})$ draw an arc.
12. With B as centre and radius $4 \mathrm{~cm}(=\mathrm{AD})$ draw another arc cutting the arc of step 5 at C .
13. Join D to C and also B to C .

Then ABCD is the required parallelogram.

Q. 6 Construct a parallelogram ABCD , given that $\mathrm{AC}=4.5 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}$ and the angle between the diagonals is 30°.
Sol. Steps of Construction:

1. Draw $\mathrm{AC}=4.5 \mathrm{~cm}$.
2. Draw PQ , the perpendicular bisector of AC meeting AC at O .
3. Through O draw a line XY making $\angle \mathrm{XOC}=30^{\circ}$.
4. Cut off $\mathrm{OD}=\mathrm{OB}=2 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{BD}\right)$ from XY .
5. Joint A to B, B to C, C to D and A to D.

Then ABCD is the required parallelogram.

Q. 7 Construct a square ABCD , given that diagnonal $\mathrm{AC}=6 \mathrm{~cm}$.

Sol. Steps of Construction:

1. Draw a segment $\mathrm{AC}=6 \mathrm{~cm}$.
2. Draw XY , the right bisector of AC meeting AC at O .
3. Cut off $\mathrm{OD}=\mathrm{OB}=3 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{AC}\right)$ from OX and OY respectively.
4. Join A to B, B to C, C to D and A to D .

Then ABCD is the required square.

Q. 8 Construct a rectangle ABCD whose diagonal $\mathrm{AC}=6 \mathrm{~cm}$ and the angle between the diagonals is 30°.
Sol. Steps of Construction:

1. Draw $\mathrm{AC}=6 \mathrm{~cm}$.
2. Bisect AC at O .
3. AtO, draw XY making $\angle \mathrm{COX}=30^{\circ}$.
4. Cut off $\mathrm{OB}=\mathrm{OD}=3 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{AC}\right)$.
5. Join A to B, B to C, C to D and A to D .

Then ABCD is the required rectangle.

Q. 9 Construct a rectangle ABCD given that side $\mathrm{AB}=5 \mathrm{~cm}$ and the diagonal $\mathrm{AC}=5.5 \mathrm{~cm}$.

Sol. Steps of construction:

1. Draw $\mathrm{AB}=5 \mathrm{~cm}$.
2. AtB, draw $\mathrm{BP} \perp \mathrm{AB}$.
3. With A as centre and radius 5.5 cm draw an arc cutting BP at C .
4. With C as centre and radius 5 cm draw an arc.
5. With A as centre and radius equal to BC draw another arc cutting the first arc at D .
6. Join A to D and also C to D .

Then ABCD is the required rectangle.

Q. 10 Construct a rhombus ABCD given that side $\mathrm{AB}=4.5 \mathrm{~cm}$ and a diagonal is 7 cm .

Sol. Step of Construction:

1. Draw $\mathrm{AC}=7 \mathrm{~cm}$.
2. With A and C as centres and radius 4.5 cm draw arcs on both sides of CC , cutting each other at B and D.
3. Join A to B, C to B and C to D, A to D.

Then ABCD is the required rhombus.

Q. 11 Construct a rhombus $A B C D$ whose diagonals $A C$ and $B D$ are 7 cm and 5 cm respectively.

Sol. Step of Construction:

1. Draw $\mathrm{AC}=7 \mathrm{~cm}$
2. Draw PQ , the perpendicular bisector of AC , meeting AC at O .
3. From OP and OQ cut off $\mathrm{OD}=\mathrm{OB}=2.5 \mathrm{~cm}\left(=\frac{1}{2} \mathrm{BD}\right)$ respectively.
4. Join A to B, B to C, C to D and D to A.

Then $A B C D$ is the required rhombus.

Q. 12 To construct a unique rectangle, the minimum number of measurements required is
[IMO-2016]
(A) 4
(B) 3
(C) 2
(D) 1
Q. 13 Given below are the steps of construction to construct a quadrilateral ABCD where $\mathrm{AB}=5.6 \mathrm{~cm}$, $\mathrm{BC}=4.1 \mathrm{~cm}, \mathrm{CD}=4.4 \mathrm{~cm}, \mathrm{AD}=3.3 \mathrm{~cm}$ and $\angle \mathrm{A}=75^{\circ}$. Which of the following is INCORRECT step?
Step-I : Draw $\mathrm{AB}=5.6 \mathrm{~cm}$ and construct $\angle \mathrm{BAX}=75^{\circ}$.
Step-II: With A as centre and radius $=3.3 \mathrm{~cm}$, cut off AD $=3.3 \mathrm{~cm}$ along AX.
Step-III : Join BD. With D as centre and radius $=4.1 \mathrm{~cm}$, draw an arc.
Step-IV : With B as centre and radius $=4.1 \mathrm{~cm}$, draw an arc to cut the arc drawn in above step at C . Join BC, CD to obtain the required quadrilateral ABCD .
[IMO-2016]
(A) Step-I
(B) Step-II
(C) Step-III
(D) Step-IV

ANSWER KEY \rightarrow Q. $12 \quad$ C \quad Q. $13 \quad$ C

